
Chapter 1

Introduction

In this introduction we give an overview of mathematical optimization, focusing on
the special role of convex optimization. The concepts introduced informally here
will be covered in later chapters, with more care and technical detail.

1.1 Mathematical optimization

A mathematical optimization problem, or just optimization problem, has the form

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m.

(1.1)

Here the vector x = (x1, . . . , xn) is the optimization variable of the problem, the
function f0 : Rn → R is the objective function, the functions fi : Rn → R,
i = 1, . . . ,m, are the (inequality) constraint functions, and the constants b1, . . . , bm
are the limits, or bounds, for the constraints. A vector x� is called optimal, or a
solution of the problem (1.1), if it has the smallest objective value among all vectors
that satisfy the constraints: for any z with f1(z) ≤ b1, . . . , fm(z) ≤ bm, we have
f0(z) ≥ f0(x

�).
We generally consider families or classes of optimization problems, characterized

by particular forms of the objective and constraint functions. As an important
example, the optimization problem (1.1) is called a linear program if the objective
and constraint functions f0, . . . , fm are linear, i.e., satisfy

fi(αx + βy) = αfi(x) + βfi(y) (1.2)

for all x, y ∈ Rn and all α, β ∈ R. If the optimization problem is not linear, it is
called a nonlinear program.

This book is about a class of optimization problems called convex optimiza-
tion problems. A convex optimization problem is one in which the objective and
constraint functions are convex, which means they satisfy the inequality

fi(αx + βy) ≤ αfi(x) + βfi(y) (1.3)
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2 1 Introduction

for all x, y ∈ Rn and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0. Comparing (1.3)
and (1.2), we see that convexity is more general than linearity: inequality replaces
the more restrictive equality, and the inequality must hold only for certain values
of α and β. Since any linear program is therefore a convex optimization problem,
we can consider convex optimization to be a generalization of linear programming.

1.1.1 Applications

The optimization problem (1.1) is an abstraction of the problem of making the best
possible choice of a vector in Rn from a set of candidate choices. The variable x
represents the choice made; the constraints fi(x) ≤ bi represent firm requirements
or specifications that limit the possible choices, and the objective value f0(x) rep-
resents the cost of choosing x. (We can also think of −f0(x) as representing the
value, or utility, of choosing x.) A solution of the optimization problem (1.1) corre-
sponds to a choice that has minimum cost (or maximum utility), among all choices
that meet the firm requirements.

In portfolio optimization, for example, we seek the best way to invest some
capital in a set of n assets. The variable xi represents the investment in the ith
asset, so the vector x ∈ Rn describes the overall portfolio allocation across the set of
assets. The constraints might represent a limit on the budget (i.e., a limit on the
total amount to be invested), the requirement that investments are nonnegative
(assuming short positions are not allowed), and a minimum acceptable value of
expected return for the whole portfolio. The objective or cost function might be
a measure of the overall risk or variance of the portfolio return. In this case,
the optimization problem (1.1) corresponds to choosing a portfolio allocation that
minimizes risk, among all possible allocations that meet the firm requirements.

Another example is device sizing in electronic design, which is the task of choos-
ing the width and length of each device in an electronic circuit. Here the variables
represent the widths and lengths of the devices. The constraints represent a va-
riety of engineering requirements, such as limits on the device sizes imposed by
the manufacturing process, timing requirements that ensure that the circuit can
operate reliably at a specified speed, and a limit on the total area of the circuit. A
common objective in a device sizing problem is the total power consumed by the
circuit. The optimization problem (1.1) is to find the device sizes that satisfy the
design requirements (on manufacturability, timing, and area) and are most power
efficient.

In data fitting, the task is to find a model, from a family of potential models,
that best fits some observed data and prior information. Here the variables are the
parameters in the model, and the constraints can represent prior information or
required limits on the parameters (such as nonnegativity). The objective function
might be a measure of misfit or prediction error between the observed data and
the values predicted by the model, or a statistical measure of the unlikeliness or
implausibility of the parameter values. The optimization problem (1.1) is to find
the model parameter values that are consistent with the prior information, and give
the smallest misfit or prediction error with the observed data (or, in a statistical
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1.1 Mathematical optimization 3

framework, are most likely).

An amazing variety of practical problems involving decision making (or system
design, analysis, and operation) can be cast in the form of a mathematical opti-
mization problem, or some variation such as a multicriterion optimization problem.
Indeed, mathematical optimization has become an important tool in many areas.
It is widely used in engineering, in electronic design automation, automatic con-
trol systems, and optimal design problems arising in civil, chemical, mechanical,
and aerospace engineering. Optimization is used for problems arising in network
design and operation, finance, supply chain management, scheduling, and many
other areas. The list of applications is still steadily expanding.

For most of these applications, mathematical optimization is used as an aid to
a human decision maker, system designer, or system operator, who supervises the
process, checks the results, and modifies the problem (or the solution approach)
when necessary. This human decision maker also carries out any actions suggested
by the optimization problem, e.g., buying or selling assets to achieve the optimal
portfolio.

A relatively recent phenomenon opens the possibility of many other applications
for mathematical optimization. With the proliferation of computers embedded in
products, we have seen a rapid growth in embedded optimization. In these em-
bedded applications, optimization is used to automatically make real-time choices,
and even carry out the associated actions, with no (or little) human intervention or
oversight. In some application areas, this blending of traditional automatic control
systems and embedded optimization is well under way; in others, it is just start-
ing. Embedded real-time optimization raises some new challenges: in particular,
it requires solution methods that are extremely reliable, and solve problems in a
predictable amount of time (and memory).

1.1.2 Solving optimization problems

A solution method for a class of optimization problems is an algorithm that com-
putes a solution of the problem (to some given accuracy), given a particular problem
from the class, i.e., an instance of the problem. Since the late 1940s, a large effort
has gone into developing algorithms for solving various classes of optimization prob-
lems, analyzing their properties, and developing good software implementations.
The effectiveness of these algorithms, i.e., our ability to solve the optimization prob-
lem (1.1), varies considerably, and depends on factors such as the particular forms
of the objective and constraint functions, how many variables and constraints there
are, and special structure, such as sparsity. (A problem is sparse if each constraint
function depends on only a small number of the variables).

Even when the objective and constraint functions are smooth (for example,
polynomials) the general optimization problem (1.1) is surprisingly difficult to solve.
Approaches to the general problem therefore involve some kind of compromise, such
as very long computation time, or the possibility of not finding the solution. Some
of these methods are discussed in §1.4.

There are, however, some important exceptions to the general rule that most
optimization problems are difficult to solve. For a few problem classes we have
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4 1 Introduction

effective algorithms that can reliably solve even large problems, with hundreds or
thousands of variables and constraints. Two important and well known examples,
described in §1.2 below (and in detail in chapter 4), are least-squares problems and
linear programs. It is less well known that convex optimization is another exception
to the rule: Like least-squares or linear programming, there are very effective
algorithms that can reliably and efficiently solve even large convex problems.

1.2 Least-squares and linear programming

In this section we describe two very widely known and used special subclasses of
convex optimization: least-squares and linear programming. (A complete technical
treatment of these problems will be given in chapter 4.)

1.2.1 Least-squares problems

A least-squares problem is an optimization problem with no constraints (i.e., m =
0) and an objective which is a sum of squares of terms of the form aT

i x− bi:

minimize f0(x) = ‖Ax− b‖2
2 =

∑k
i=1(a

T
i x− bi)

2. (1.4)

Here A ∈ Rk×n (with k ≥ n), aT
i are the rows of A, and the vector x ∈ Rn is the

optimization variable.

Solving least-squares problems

The solution of a least-squares problem (1.4) can be reduced to solving a set of
linear equations,

(ATA)x = AT b,

so we have the analytical solution x = (ATA)−1AT b. For least-squares problems
we have good algorithms (and software implementations) for solving the problem to
high accuracy, with very high reliability. The least-squares problem can be solved
in a time approximately proportional to n2k, with a known constant. A current
desktop computer can solve a least-squares problem with hundreds of variables, and
thousands of terms, in a few seconds; more powerful computers, of course, can solve
larger problems, or the same size problems, faster. (Moreover, these solution times
will decrease exponentially in the future, according to Moore’s law.) Algorithms
and software for solving least-squares problems are reliable enough for embedded
optimization.

In many cases we can solve even larger least-squares problems, by exploiting
some special structure in the coefficient matrix A. Suppose, for example, that the
matrix A is sparse, which means that it has far fewer than kn nonzero entries. By
exploiting sparsity, we can usually solve the least-squares problem much faster than
order n2k. A current desktop computer can solve a sparse least-squares problem
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1.2 Least-squares and linear programming 5

with tens of thousands of variables, and hundreds of thousands of terms, in around
a minute (although this depends on the particular sparsity pattern).

For extremely large problems (say, with millions of variables), or for problems
with exacting real-time computing requirements, solving a least-squares problem
can be a challenge. But in the vast majority of cases, we can say that existing
methods are very effective, and extremely reliable. Indeed, we can say that solving
least-squares problems (that are not on the boundary of what is currently achiev-
able) is a (mature) technology, that can be reliably used by many people who do
not know, and do not need to know, the details.

Using least-squares

The least-squares problem is the basis for regression analysis, optimal control, and
many parameter estimation and data fitting methods. It has a number of statistical
interpretations, e.g., as maximum likelihood estimation of a vector x, given linear
measurements corrupted by Gaussian measurement errors.

Recognizing an optimization problem as a least-squares problem is straightfor-
ward; we only need to verify that the objective is a quadratic function (and then
test whether the associated quadratic form is positive semidefinite). While the
basic least-squares problem has a simple fixed form, several standard techniques
are used to increase its flexibility in applications.

In weighted least-squares, the weighted least-squares cost

k∑
i=1

wi(a
T
i x− bi)

2,

where w1, . . . , wk are positive, is minimized. (This problem is readily cast and
solved as a standard least-squares problem.) Here the weights wi are chosen to
reflect differing levels of concern about the sizes of the terms aT

i x − bi, or simply
to influence the solution. In a statistical setting, weighted least-squares arises
in estimation of a vector x, given linear measurements corrupted by errors with
unequal variances.

Another technique in least-squares is regularization, in which extra terms are
added to the cost function. In the simplest case, a positive multiple of the sum of
squares of the variables is added to the cost function:

k∑
i=1

(aT
i x− bi)

2 + ρ
n∑

i=1

x2
i ,

where ρ > 0. (This problem too can be formulated as a standard least-squares
problem.) The extra terms penalize large values of x, and result in a sensible
solution in cases when minimizing the first sum only does not. The parameter ρ is
chosen by the user to give the right trade-off between making the original objective
function

∑k
i=1(a

T
i x−bi)2 small, while keeping

∑n
i=1 x

2
i not too big. Regularization

comes up in statistical estimation when the vector x to be estimated is given a prior
distribution.

Weighted least-squares and regularization are covered in chapter 6; their sta-
tistical interpretations are given in chapter 7.
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6 1 Introduction

1.2.2 Linear programming

Another important class of optimization problems is linear programming, in which
the objective and all constraint functions are linear:

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m.
(1.5)

Here the vectors c, a1, . . . , am ∈ Rn and scalars b1, . . . , bm ∈ R are problem pa-
rameters that specify the objective and constraint functions.

Solving linear programs

There is no simple analytical formula for the solution of a linear program (as there
is for a least-squares problem), but there are a variety of very effective methods for
solving them, including Dantzig’s simplex method, and the more recent interior-
point methods described later in this book. While we cannot give the exact number
of arithmetic operations required to solve a linear program (as we can for least-
squares), we can establish rigorous bounds on the number of operations required
to solve a linear program, to a given accuracy, using an interior-point method. The
complexity in practice is order n2m (assuming m ≥ n) but with a constant that is
less well characterized than for least-squares. These algorithms are quite reliable,
although perhaps not quite as reliable as methods for least-squares. We can easily
solve problems with hundreds of variables and thousands of constraints on a small
desktop computer, in a matter of seconds. If the problem is sparse, or has some
other exploitable structure, we can often solve problems with tens or hundreds of
thousands of variables and constraints.

As with least-squares problems, it is still a challenge to solve extremely large
linear programs, or to solve linear programs with exacting real-time computing re-
quirements. But, like least-squares, we can say that solving (most) linear programs
is a mature technology. Linear programming solvers can be (and are) embedded in
many tools and applications.

Using linear programming

Some applications lead directly to linear programs in the form (1.5), or one of
several other standard forms. In many other cases the original optimization prob-
lem does not have a standard linear program form, but can be transformed to an
equivalent linear program (and then, of course, solved) using techniques covered in
detail in chapter 4.

As a simple example, consider the Chebyshev approximation problem:

minimize maxi=1,...,k |aT
i x− bi|. (1.6)

Here x ∈ Rn is the variable, and a1, . . . , ak ∈ Rn, b1, . . . , bk ∈ R are parameters
that specify the problem instance. Note the resemblance to the least-squares prob-
lem (1.4). For both problems, the objective is a measure of the size of the terms
aT

i x − bi. In least-squares, we use the sum of squares of the terms as objective,
whereas in Chebyshev approximation, we use the maximum of the absolute values.

Cambridge University Press
978-0-521-83378-3 - Convex Optimization
Stephen Boyd and Lieven Vandenberghe
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9780521833783
http://www.cambridge.org
http://www.cambridge.org


1.3 Convex optimization 7

One other important distinction is that the objective function in the Chebyshev
approximation problem (1.6) is not differentiable; the objective in the least-squares
problem (1.4) is quadratic, and therefore differentiable.

The Chebyshev approximation problem (1.6) can be solved by solving the linear
program

minimize t
subject to aT

i x− t ≤ bi, i = 1, . . . , k
−aT

i x− t ≤ −bi, i = 1, . . . , k,
(1.7)

with variables x ∈ Rn and t ∈ R. (The details will be given in chapter 6.)
Since linear programs are readily solved, the Chebyshev approximation problem is
therefore readily solved.

Anyone with a working knowledge of linear programming would recognize the
Chebyshev approximation problem (1.6) as one that can be reduced to a linear
program. For those without this background, though, it might not be obvious that
the Chebyshev approximation problem (1.6), with its nondifferentiable objective,
can be formulated and solved as a linear program.

While recognizing problems that can be reduced to linear programs is more
involved than recognizing a least-squares problem, it is a skill that is readily ac-
quired, since only a few standard tricks are used. The task can even be partially
automated; some software systems for specifying and solving optimization prob-
lems can automatically recognize (some) problems that can be reformulated as
linear programs.

1.3 Convex optimization

A convex optimization problem is one of the form

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m,

(1.8)

where the functions f0, . . . , fm : Rn → R are convex, i.e., satisfy

fi(αx + βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ∈ R with α+β = 1, α ≥ 0, β ≥ 0. The least-squares
problem (1.4) and linear programming problem (1.5) are both special cases of the
general convex optimization problem (1.8).

1.3.1 Solving convex optimization problems

There is in general no analytical formula for the solution of convex optimization
problems, but (as with linear programming problems) there are very effective meth-
ods for solving them. Interior-point methods work very well in practice, and in some
cases can be proved to solve the problem to a specified accuracy with a number of
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8 1 Introduction

operations that does not exceed a polynomial of the problem dimensions. (This is
covered in chapter 11.)

We will see that interior-point methods can solve the problem (1.8) in a num-
ber of steps or iterations that is almost always in the range between 10 and 100.
Ignoring any structure in the problem (such as sparsity), each step requires on the
order of

max{n3, n2m,F}

operations, where F is the cost of evaluating the first and second derivatives of the
objective and constraint functions f0, . . . , fm.

Like methods for solving linear programs, these interior-point methods are quite
reliable. We can easily solve problems with hundreds of variables and thousands
of constraints on a current desktop computer, in at most a few tens of seconds. By
exploiting problem structure (such as sparsity), we can solve far larger problems,
with many thousands of variables and constraints.

We cannot yet claim that solving general convex optimization problems is a
mature technology, like solving least-squares or linear programming problems. Re-
search on interior-point methods for general nonlinear convex optimization is still
a very active research area, and no consensus has emerged yet as to what the best
method or methods are. But it is reasonable to expect that solving general con-
vex optimization problems will become a technology within a few years. And for
some subclasses of convex optimization problems, for example second-order cone
programming or geometric programming (studied in detail in chapter 4), it is fair
to say that interior-point methods are approaching a technology.

1.3.2 Using convex optimization

Using convex optimization is, at least conceptually, very much like using least-
squares or linear programming. If we can formulate a problem as a convex opti-
mization problem, then we can solve it efficiently, just as we can solve a least-squares
problem efficiently. With only a bit of exaggeration, we can say that, if you formu-
late a practical problem as a convex optimization problem, then you have solved
the original problem.

There are also some important differences. Recognizing a least-squares problem
is straightforward, but recognizing a convex function can be difficult. In addition,
there are many more tricks for transforming convex problems than for transforming
linear programs. Recognizing convex optimization problems, or those that can
be transformed to convex optimization problems, can therefore be challenging.
The main goal of this book is to give the reader the background needed to do
this. Once the skill of recognizing or formulating convex optimization problems is
developed, you will find that surprisingly many problems can be solved via convex
optimization.

The challenge, and art, in using convex optimization is in recognizing and for-
mulating the problem. Once this formulation is done, solving the problem is, like
least-squares or linear programming, (almost) technology.
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1.4 Nonlinear optimization 9

1.4 Nonlinear optimization

Nonlinear optimization (or nonlinear programming) is the term used to describe
an optimization problem when the objective or constraint functions are not linear,
but not known to be convex. Sadly, there are no effective methods for solving
the general nonlinear programming problem (1.1). Even simple looking problems
with as few as ten variables can be extremely challenging, while problems with a
few hundreds of variables can be intractable. Methods for the general nonlinear
programming problem therefore take several different approaches, each of which
involves some compromise.

1.4.1 Local optimization

In local optimization, the compromise is to give up seeking the optimal x, which
minimizes the objective over all feasible points. Instead we seek a point that is
only locally optimal, which means that it minimizes the objective function among
feasible points that are near it, but is not guaranteed to have a lower objective
value than all other feasible points. A large fraction of the research on general
nonlinear programming has focused on methods for local optimization, which as a
consequence are well developed.

Local optimization methods can be fast, can handle large-scale problems, and
are widely applicable, since they only require differentiability of the objective and
constraint functions. As a result, local optimization methods are widely used in
applications where there is value in finding a good point, if not the very best. In
an engineering design application, for example, local optimization can be used to
improve the performance of a design originally obtained by manual, or other, design
methods.

There are several disadvantages of local optimization methods, beyond (possi-
bly) not finding the true, globally optimal solution. The methods require an initial
guess for the optimization variable. This initial guess or starting point is critical,
and can greatly affect the objective value of the local solution obtained. Little
information is provided about how far from (globally) optimal the local solution
is. Local optimization methods are often sensitive to algorithm parameter values,
which may need to be adjusted for a particular problem, or family of problems.

Using a local optimization method is trickier than solving a least-squares prob-
lem, linear program, or convex optimization problem. It involves experimenting
with the choice of algorithm, adjusting algorithm parameters, and finding a good
enough initial guess (when one instance is to be solved) or a method for producing
a good enough initial guess (when a family of problems is to be solved). Roughly
speaking, local optimization methods are more art than technology. Local opti-
mization is a well developed art, and often very effective, but it is nevertheless an
art. In contrast, there is little art involved in solving a least-squares problem or
a linear program (except, of course, those on the boundary of what is currently
possible).

An interesting comparison can be made between local optimization methods for
nonlinear programming, and convex optimization. Since differentiability of the ob-
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10 1 Introduction

jective and constraint functions is the only requirement for most local optimization
methods, formulating a practical problem as a nonlinear optimization problem is
relatively straightforward. The art in local optimization is in solving the problem
(in the weakened sense of finding a locally optimal point), once it is formulated.
In convex optimization these are reversed: The art and challenge is in problem
formulation; once a problem is formulated as a convex optimization problem, it is
relatively straightforward to solve it.

1.4.2 Global optimization

In global optimization, the true global solution of the optimization problem (1.1)
is found; the compromise is efficiency. The worst-case complexity of global opti-
mization methods grows exponentially with the problem sizes n and m; the hope
is that in practice, for the particular problem instances encountered, the method is
far faster. While this favorable situation does occur, it is not typical. Even small
problems, with a few tens of variables, can take a very long time (e.g., hours or
days) to solve.

Global optimization is used for problems with a small number of variables, where
computing time is not critical, and the value of finding the true global solution is
very high. One example from engineering design is worst-case analysis or verifica-
tion of a high value or safety-critical system. Here the variables represent uncertain
parameters, that can vary during manufacturing, or with the environment or op-
erating condition. The objective function is a utility function, i.e., one for which
smaller values are worse than larger values, and the constraints represent prior
knowledge about the possible parameter values. The optimization problem (1.1) is
the problem of finding the worst-case values of the parameters. If the worst-case
value is acceptable, we can certify the system as safe or reliable (with respect to
the parameter variations).

A local optimization method can rapidly find a set of parameter values that
is bad, but not guaranteed to be the absolute worst possible. If a local optimiza-
tion method finds parameter values that yield unacceptable performance, it has
succeeded in determining that the system is not reliable. But a local optimization
method cannot certify the system as reliable; it can only fail to find bad parameter
values. A global optimization method, in contrast, will find the absolute worst val-
ues of the parameters, and if the associated performance is acceptable, can certify
the system as safe. The cost is computation time, which can be very large, even
for a relatively small number of parameters. But it may be worth it in cases where
the value of certifying the performance is high, or the cost of being wrong about
the reliability or safety is high.

1.4.3 Role of convex optimization in nonconvex problems

In this book we focus primarily on convex optimization problems, and applications
that can be reduced to convex optimization problems. But convex optimization
also plays an important role in problems that are not convex.
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