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Introduction

1.1 In the beginning

The subject of this book dates back to the beginning of the twentieth century. In

1900, at the International Congress of mathematicians, David Hilbert presented

a list of problems, which exerted great influence on the development of math-

ematics in the twentieth century. The tenth problem on the list had to do with

solving Diophantine equations. Hilbert was interested in the construction of an

algorithm which could determine whether an arbitrary polynomial equation in

several variables had solutions in the integers. If we translate Hilbert’s question

into modern terms, we can say that he wanted a program taking coefficients of a

polynomial equation as input and producing a “yes” or “no” answer to the ques-

tion “Are there integer solutions?” This problem became known as Hilbert’s

Tenth Problem (HTP).

It took some time to prove that the algorithm requested by Hilbert did not

exist. At the end of the sixties, building on the work of Martin Davis, Hilary

Putnam, and Julia Robinson, Yuri Matiyasevich proved that Diophantine sets

over Z were the same as recursively enumerable sets and, thus, that Hilbert’s

Tenth Problem was unsolvable. The original proof and its immediate implica-

tions have been described in detail. The reader is referred to, for example, a book

by Matiyasevich (see [52] – the original Russian edition – or [53], an English

translation), an article by Davis (see [12]) or an article by Davis, Matiyasevich,

and Robinson (see [14]). The solution of the original Hilbert’s Tenth Problem

gave rise to a whole new class of problems, some of which are the subject of

this book.

The question posed by Hilbert can of course be asked of any recursive ring.

In other words, given a recursive ring R, we can ask whether there exists an

algorithm capable of determining when an arbitrary polynomial equation over R

has solutions in R. Since the time when the solution of Hilbert’s Tenth Problem
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2 Introduction

was obtained, this question has been answered for many rings. In this book we

will describe the developments in the subject pertaining to subrings of global

fields: number fields and algebraic function fields over finite fields of constants.

While there has been significant progress in the subject, many interesting ques-

tions are still unanswered. Chief among them are the questions of solvability of

the analog of Hilbert’s Tenth Problem over Q and the ring of algebraic integers

of an arbitrary number field. Recent results of Poonen brought us “arbitrarily

close” to solving the problem for Q but formidable obstacles still remain.

A question which is closely related to the analogs of Hilbert’s Tenth Problem

over number fields is the question of the Diophantine definability of Z. As we

will see in this book, the Diophantine definability of Z over a ring of charac-

teristic zero contained in a field which is not algebraically closed implies the

unsolvability of Hilbert’s Tenth Problem for this ring. In general, questions of

Diophantine definability are of independent number-theoretic and model the-

oretic interest. In particular, the question of the Diophantine definability of Z

over Q has generated a lot of interest. Barry Mazur has made several conjec-

tures which imply that such a definition does not exist. In this book we will

discuss some of these conjectures and their consequences for generalizations

of Hilbert’s Tenth Problem to other domains.

For various technical reasons, which we will endeavor to make clear in

this book, greater progress has been made for the function fields over finite

fields of constants. In particular, we do know that the analog of Hilbert’s Tenth

Problem is unsolvable over all global function fields of positive characteristic

over finite fields of constants. The main unanswered questions here have to

do with Diophantine definability. In particular, we still do not know whether

S-integers have a Diophantine definition over a function field though in some

senses we have come “arbitrarily close” to such a definition.

I would also like to address the main motivation in writing this book. What

was wanted was a single coherent account of various methods employed so far in

generalizing Hilbert’s Tenth Problem to domains other than Z that are contained

in global fields. In particular, I wanted to highlight the expected similarities and

differences in the way various problems were solved over number fields and

function fields of positive characteristic. In my opinion the relative comparison

of these two cases brings to light the nature of the difficulty encountered over

the number fields: the existence of archimedean valuations.

The material contained in the book will require some familiarity on the part

of the reader with number theory and recursion (computability) theory. The

required background information is collected with references in Appendix A

(recursion theory) and Appendix B (number theory). As a general reference

for recursion theory we suggest Theory of Recursive Functions and Effective
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Computability by H. Rogers, McGraw-Hill, 1967. Unfortunately, there is no

single reference for the number-theoretic material used in the book. How-

ever, the reader can find most of the necessary material in Field Arithmetic

by M. Jarden and M. Fried, second edition, Springer Verlag, 2005 (this book

also contains material pertaining to recursion theory), Algebraic Number Fields

by J. Janusz, Academic Press, 1973, Introduction to Theory of Algebraic

Functions of One Variable by C. Chevalley, Mathematical Surveys, volume

6, AMS, Providence, 1951, and An Invitation to Arithmetic Geometry, by

D. Lorenzini, Graduate Studies in Mathematics, volume 9, AMS, 1997. Under-

standing Poonen’s results in Chapter 12 will require some familiarity with ellip-

tic curves. For this material the reader can consult The Arithmetic of Elliptic

Curves by Joseph Silverman, Springer Verlag, 1986.

Before proceeding further we should also settle on the future use of some

terms. Given a ring R, we will call the analog of Hilbert’s Tenth Problem over R

the “Diophantine problem of R”. The expression “Diophantine (un)solvability

of a ring R” will refer to the (un)solvability of the Diophantine problem of

R. All the rings in the book will be assumed to be integral domains with the

identity. We will also settle on a fixed algebraic closure of Q contained in the

field of complex numbers and assume that all the number fields occurring in

the book are subfields of this algebraic closure. Similarly, for each prime p,

we will fix an algebraic closure of a rational function field over a p-element

field of constants and assume that any global function field of characteristic

p occurring in this book is a subfield of this algebraic closure. On occasion

we will talk about the compositum of abstract fields. For these cases we will

also maintain an implicit assumption throughout the book that all the fields in

question are subfields of the same algebraically closed field.

Finally, a few words about the structure of this book and its possible uses

as a text for a class. Chapters 1–3 contain the introductory material necessary

to familiarize the reader with the terminology and to establish a connection

between the algebraic and logical concepts presented in this book. Chapters 4–

12 are the technical core of the book: Chapter 4 discusses the definability of

order at a prime over global fields; Chapters 5–7 cover Diophantine classes

of number fields; Chapters 8–10 go over the analogous material for function

fields; Chapter 11 addresses Mazur’s conjectures and their relation to the issues

of Diophantine definability; Chapter 12 describes Poonen’s results on undecid-

ability and Mazur’s conjectures for “large” subrings of Q. The ideas described

in Chapters 4–10 are essentially number-theoretic in nature, while Chapters 11

and 12 add geometric flavor to the mix. Finally, Chapter 13 briefly surveys

some issues related to the problems discussed in the book but not covered by

the book.
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An experienced reader can probably skip most of Chapters 1–3 except for the

definition of Diophantine generation (Definition 2.1.5) and the relation between

Diophantine generation and HTP (Section 3.4). The chapters on the defini-

tion of order at a prime in number fields and function fields and on Mazur’s

conjectures are fairly self-contained and can be read independently. Under-

standing Poonen’s results does require knowing the statement of the modified

Mazur’s conjectures (Section 11.2) and the material on Diophantine models in

Section 3.4.

Parts of the book could be used as a text for an undergraduate course.

For an algebra course, one could cover the following chapters and sections:

Chapters 1–3 and Sections 6.3 and 7.1–7.3. Such a course would thus include

some general ideas on Diophantine definability and would discuss in detail HTP

over the rings of integers of number fields.

There are several options for a semester-long graduate course which would

assume some background in algebraic number theory. One option would be

to cover the Diophantine classes of number fields; using Chapters 1–3, Sec-

tions 4.1 and 4.2, and Chapters 5–7. Another option would be to cover the

analogous material for function fields, using Chapters 1–3, Sections 4.1 and

4.3, and Chapters 8–10. A third possibility would be to cover Mazur’s conjec-

tures and Poonen’s results, using Chapters 1–3, Sections 11.2 and 11.4, and

Chapter 12. Such a course would also require a background in elliptic curves.

The appendices should be used as needed for all the course versions.

The key to the whole subject lies in the notions of Diophantine definition

and Diophantine sets, which we describe and discuss in the next section.

1.2 Diophantine definitions and Diophantine sets

Definition 1.2.1. Let R be an integral domain. Let m, n be positive integers

and let A ⊂ Rn . Then we will say that A has a Diophantine definition over R

if there exists a polynomial

f (y1, . . . , yn, x1, . . . , xm) ∈ R[y1, . . . , yn, x1, . . . , xm]

such that for all (t1, . . . , tn) ∈ Rn ,

(t1, . . . , tn) ∈ A ⇔ ∃x1, . . . , xm, f (t1, . . . , tn, x1, . . . , xm) = 0.

The set A is called Diophantine over R.

We can now state the precise result obtained by Matiyasevich.

Theorem 1.2.2. The Diophantine sets over Z coincide with the recursively

(computably) enumerable sets.
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1.2 Diophantine definitions and Diophantine sets 5

The negative answer to Hilbert’s problem is an immediate corollary of

this theorem since not all the recursively enumerable (r.e.) sets are recursive.

(For the definitions of recursive (computable) and recursively enumerable sets

and their relationship to each other, see Definitions A.1.2, A.1.3, and A.2.1,

Lemma A.2.2, and Proposition A.2.3 in Appendix A.)

Indeed, suppose that we had an algorithm taking the coefficients of a polyno-

mial equation as inputs and determining whether the polynomial equation has

a solution. Let A ⊂ N be a recursively enumerable but not recursive set. By the

theorem above, there would exist a polynomial f (y, x1, . . . , xm) with integer

coefficients such that f (t, x1, . . . , xm) = 0 has integer solutions if and only if

t ∈ A. Given a specific t ∈ N, we could use t and other coefficients of f as the

required input for our algorithm and determine whether f (t, x1, . . . , xm) = 0

has solutions (x1, . . . , xm) in Z. But this would also determine whether t ∈ A.

Since, by assumption, there is no algorithm to determine membership in A, we

must conclude that Hilbert’s Tenth Problem is unsolvable.

Having seen how Matiyasevich’s theorem implies the unsolvability of

Hilbert’s Tenth Problem via its characterization of the Diophantine sets, we

would like to consider some alternative descriptions of Diophantine sets which

will shed some light on the nature of our subject. The definition of Diophan-

tine sets used above naturally identifies these sets as number-theoretic objects.

Matiyasevich’s theorem tells us that these sets also belong in recursion the-

ory. However, as we will see from the lemma below, one could also consider

Diophantine sets as sets definable in the language of rings by positive existen-

tial formulas and thus a subject of model theory. Finally, Diophantine sets are

also projections of algebraic sets and consequently belong in algebraic geom-

etry. Thus, the reader can imagine that the flavor of the discussion can vary

widely depending on how one views Diophantine sets. In this book we display

a pronounced bias towards the number-theoretic view of the matter at hand,

though we will make some forays into geometry in our discussion of Mazur’s

conjectures and Poonen’s results.

As we have mentioned in the previous section, Diophantine definitions can

be used to establish the unsolvability of the Diophantine problem for other

rings. Before we can explain in more detail how this is done, we have to make

the following observation.

Lemma 1.2.3. Let R be a ring whose quotient field K is not algebraically

closed. (Here we remind the reader that by assumption all the rings in this book

are integral domains.) Let

{ fi (x1, . . . , xr ), i = 1, . . . , m}
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6 Introduction

be a finite collection of polynomials over R. Then there exists a polynomial

H (x1, . . . , xr ) ∈ R[x1, . . . , xr ] such that the system
⎧

⎪

⎨

⎪

⎩

f1(x1, . . . , xr ) = 0;
...

fm(x1, . . . , xr ) = 0.

has solutions in R if and only if H (x1, . . . , xr ) = 0 has solutions in R.

Proof. It is enough to prove the lemma for the case m = 2. Let h(x) be a

polynomial with no roots in K . Assume that h(x) = a0 + a1x + · · · + an xn ,

where a0, . . . , an ∈ R and an �= 0. Further, note that

g(x) = xnh

(

1

x

)

= a0xn + a1xn−1 + · · · + an

is also a polynomial without roots in K . Indeed, if for some b �= 0, we have

that g(b) = 0, then bnh(1/b) = 0 and consequently h(1/b) = 0. Finally, since

an �= 0, we know that g(0) �= 0. Next consider

H (x1, . . . , xr ) =

n
∑

i=0

ai f n−i
1 (x1, . . . , xr ) f i

2 (x1, . . . , xr ).

It is clear that if for some r -tuple (b1, . . . , br ) ∈ Rr

f1(b1, . . . , br ) = f2(b1, . . . , bn) = 0,

then H (b1, . . . , br ) = 0. Conversely, suppose for some r -tuple (b1, . . . , br ) ∈

Rr we have that H (b1, . . . , br ) = 0 and f1(b1, . . . , br ) �= 0. Then

h

(

f2(b1, . . . , br )

f1(b1, . . . , br )

)

= 0.

However, if f2(b1, . . . , br ) �= 0 then

g

(

f1(b1, . . . , br )

f2(b1, . . . , br )

)

= 0.

We can derive two consequences from this lemma. First, we note that, over

fields which are not algebraically closed, having an algorithm for solving an

arbitrary single polynomial equation is equivalent to having an algorithm for

solving a finite system of polynomial equations. Second, we note that we can

allow a Diophantine definition to consist of several polynomial equations with-

out changing the nature of the relation.

We should also note here that for some algebraic geometers the restriction of

Diophantine definitions to exactly one polynomial, as opposed to finitely many,
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1.2 Diophantine definitions and Diophantine sets 7

might seem unnatural. In our defense we offer two arguments. As demonstrated

by the lemma above, this distinction makes no difference for the global fields

which are the main subjects of this book, and historically questions related

to Hilbert’s Tenth Problem have been phrased as questions about a single

polynomial.

Equipped with the preceding lemma, we can now establish the following.

Proposition 1.2.4. Let R1 ⊂ R2 be two recursive (i.e. computable) rings. Sup-

pose that the fraction field of R2 is not algebraically closed. Assume that the

Diophantine problem of R1 is undecidable and that R1 has a Diophantine

definition over R2. Then the Diophantine problem of R2 is also undecidable.

Proof. Let f (t, x1, . . . , xr ) be a Diophantine definition of R1 over R2. Let

g(t1, . . . , tk) be a polynomial over R1, and consider the following system:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g(t1, . . . , tk) = 0;

f (t1, x1, . . . , xr ) = 0;
...

f (tk, x1, . . . , xr ) = 0.

(1.2.1)

Clearly the equation g(t1, . . . , tk) = 0 will have solutions in R1 if and

only if the system in (1.2.1) above has solutions in R2. Further, by the

preceding lemma, since both rings are recursive, given coefficients of g

there is an algorithm to construct a polynomial T (g)(t1, . . . , tk, x1, . . . , xr ) ∈

R2[t1, . . . , tk, x1, . . . , xr ] such that the corresponding polynomial equation

T (g)(t1, . . . , tk, x1, . . . , xr ) = 0 has solutions over R2 if and only if (1.2.1)

has solutions in R2.

Suppose now that the Diophantine problem of R2 is decidable. Then for each

polynomial g over R1 we can effectively decide whether g(t1, . . . , tr ) = 0 has

solutions in R1 by first algorithmically constructing T (g) and then algorithmi-

cally determining whether T (g) = 0 has solutions in R2. Thus the Diophantine

problem of R1 is decidable in contradiction of our assumption, and we must

conclude that the Diophantine problem of R2 is not decidable.

Remark 1.2.5. In this proof we used the notions of “algorithm” and “recursive

ring” rather informally. We will formalize this discussion in the chapter on weak

presentations.

Almost all the known results (except for Poonen’s theorem) concerning the

unsolvability of the Diophantine problem of rings of algebraic numbers have

been obtained by constructing a Diophantine definition of Z over these rings.
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8 Introduction

Before we present details of these and other constructions we would like to

enlarge somewhat the context of our discussion by introducing the notions

of Diophantine generation, Diophantine equivalence, and Diophantine classes.

These concepts will serve several purposes. They will provide a uniform lan-

guage for the discussion of “Diophantine relations” between rings with the same

and different quotient fields. They will allow us to view the existing results

within a unified framework. Finally these concepts will point to some natural

directions for possible investigation of more general questions of Diophantine

definability.
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2

Diophantine classes: definitions and basic facts

In this chapter we will introduce the notion of Diophantine generation, which

will eventually lead us to the notion of Diophantine classes. We will also obtain

the first relatively easy results on Diophantine generation and develop some

methods applicable to all global fields: number fields and function fields. Most

of the material for this chapter has been derived from [94].

2.1 Diophantine generation

We will start with a first modification of the notion of Diophantine definition.

Definition 2.1.1. Let R be an integral domain with a quotient field F . Let

k, m be positive integers and let A ⊂ Fk . Assume further that there exists a

polynomial

f (a1, . . . , ak, b, x1, . . . , xm)

with coefficients in R such that

∀ a1, . . . , ak, b, x1, . . . , xm ∈ R,

f (a1, . . . , ak, b, x1, . . . , xm) = 0 ⇒ b �= 0 (2.1.1)

and

A = {(t1, . . . , tk) ∈ Fk |∃a1, . . . , ak, b, x1, . . . , xm ∈ R,

bt1 = a1, . . . , btk = ak, f (a1, . . . , ak, b, x1, . . . , xm) = 0}.

(2.1.2)

Then we will say that A is field-Diophantine over R and will call f a field-

Diophantine definition of A over R.

9
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10 Diophantine classes: definitions and basic facts

Next we will see that the notion of field-Diophantine definition is a proper

extension of the notion of Diophantine definition that we discussed in the

introduction.

Lemma 2.1.2. Suppose that R, A, F, k, m are as in Definition 2.1.1. Assume

further that A ⊂ Rk and that F is not algebraically closed. Then A has a

Diophantine definition over R if and only if it has a field-Diophantine definition

over R.

Proof. First we assume that A has a field-Diophantine definition over R and

show that A also has a Diophantine definition over R. Let

g = (a1, . . . , ak, b, x1, . . . , xm)

be a field-Diophantine definition of A over R. Then

f (t1, . . . , tk, b, x1, . . . , xm) = g(t1b, . . . , tkb, b, x1, . . . , xm)

is a Diophantine definition of A over R in the sense that, for all t1, . . . , tk ∈ R,

∃b, x1, . . . , xm ∈ R, f (t1, . . . , tk, b, x1, . . . , xm) = 0 ⇔ (t1, . . . , tk) ∈ A.

Indeed, suppose that, for some t1, . . . , tk, b, x1, . . . , xm ∈ R,

f (t1, . . . , tk, b, x1, . . . , xm) = 0.

Then

g(t1b, . . . , tkb, b, x1, . . . , xm) = 0

and consequently

b �= 0,

while

(t1b/b, . . . , tkb/b) = (t1, . . . , tk) ∈ A.

Conversely, suppose that (t1, . . . , tk) ∈ A. Then by our assumption on g,

∃x1, . . . , xm, b ∈ R, g(bt1, . . . , btk, b, x1, . . . , xm) = 0.

Thus, there exist x1, . . . , xm, b ∈ R such that

f (t1, . . . , tk, b, x1, . . . , xm) = 0.

Suppose now that f (t1, . . . , tk, x1, . . . , xm) is a Diophantine definition of A

over R. Then consider the following system of equations:
{

f (a1, . . . , ak, x1, . . . , xm) = 0;

b = 1.
(2.1.3)
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