Computational Physics
Second Edition

This Second Edition has been fully updated. The wide range of topics covered in the First Edition has been extended with new chapters on finite element methods and lattice Boltzmann simulation. New sections have been added to the chapters on density functional theory, quantum molecular dynamics, Monte Carlo simulation and diagonalisation of one-dimensional quantum systems.

The book covers many different areas of physics research and different computational methodologies, with an emphasis on condensed matter physics and physical chemistry. It includes computational methods such as Monte Carlo and molecular dynamics, various electronic structure methodologies, methods for solving partial differential equations, and lattice gauge theory. Throughout the book, the relations between the methods used in different fields of physics are emphasised. Several new programs are described and these can be downloaded from www.cambridge.org/9780521833462

The book requires a background in elementary programming, numerical analysis and field theory, as well as undergraduate knowledge of condensed matter theory and statistical physics. It will be of interest to graduate students and researchers in theoretical, computational and experimental physics.

Jos Thijssen is a lecturer at the Kavli Institute of Nanoscience at Delft University of Technology.
COMPUTATIONAL PHYSICS

Second Edition

JOS THIJSSEN

Kavli Institute of Nanoscience, Delft University of Technology
Contents

Preface to the first edition xi
Preface to the second edition xiv

1 Introduction 1
 1.1 Physics and computational physics 1
 1.2 Classical mechanics and statistical mechanics 1
 1.3 Stochastic simulations 4
 1.4 Electrodynamics and hydrodynamics 5
 1.5 Quantum mechanics 6
 1.6 Relations between quantum mechanics and classical statistical physics 7
 1.7 Quantum molecular dynamics 8
 1.8 Quantum field theory 9
 1.9 About this book 9
 Exercises 11
 References 13

2 Quantum scattering with a spherically symmetric potential 14
 2.1 Introduction 14
 2.2 A program for calculating cross sections 18
 2.3 Calculation of scattering cross sections 25
 Exercises 27
 References 28

3 The variational method for the Schrödinger equation 29
 3.1 Variational calculus 29
 3.2 Examples of variational calculations 32
 3.3 Solution of the generalised eigenvalue problem 36
 3.4 Perturbation theory and variational calculus 37

© Cambridge University Press
Contents

Exercises 39
References 41

4 The Hartree–Fock method 43
 4.1 Introduction 43
 4.2 The Born–Oppenheimer approximation and the independent-particle method 44
 4.3 The helium atom 46
 4.4 Many-electron systems and the Slater determinant 52
 4.5 Self-consistency and exchange: Hartree–Fock theory 54
 4.6 Basis functions 60
 4.7 The structure of a Hartree–Fock computer program 69
 4.8 Integrals involving Gaussian functions 73
 4.9 Applications and results 77
 4.10 Improving upon the Hartree–Fock approximation 78
 Exercises 80
 References 87

5 Density functional theory 89
 5.1 Introduction 89
 5.2 The local density approximation 95
 5.3 Exchange and correlation: a closer look 97
 5.4 Beyond DFT: one- and two-particle excitations 101
 5.5 A density functional program for the helium atom 109
 5.6 Applications and results 114
 Exercises 116
 References 119

6 Solving the Schrödinger equation in periodic solids 122
 6.1 Introduction: definitions 123
 6.2 Band structures and Bloch’s theorem 124
 6.3 Approximations 126
 6.4 Band structure methods and basis functions 133
 6.5 Augmented plane wave methods 135
 6.6 The linearised APW (LAPW) method 141
 6.7 The pseudopotential method 144
 6.8 Extracting information from band structures 160
 6.9 Some additional remarks 162
 6.10 Other band methods 163
Contents

Exercises .. 163
References 167

7 Classical equilibrium statistical mechanics 169
 7.1 Basic theory 169
 7.2 Examples of statistical models; phase transitions 176
 7.3 Phase transitions 184
 7.4 Determination of averages in simulations 192
 Exercises 194
 References 195

8 Molecular dynamics simulations 197
 8.1 Introduction 197
 8.2 Molecular dynamics at constant energy 200
 8.3 A molecular dynamics simulation program for argon 208
 8.4 Integration methods: symplectic integrators 211
 8.5 Molecular dynamics methods for different ensembles 223
 8.6 Molecular systems 232
 8.7 Long-range interactions 241
 8.8 Langevin dynamics simulation 247
 8.9 Dynamical quantities: nonequilibrium molecular dynamics . 251
 Exercises 253
 References 259

9 Quantum molecular dynamics 263
 9.1 Introduction 263
 9.2 The molecular dynamics method 266
 9.3 An example: quantum molecular dynamics for the hydrogen molecule .. 272
 9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques 278
 9.5 Implementation of the Car–Parrinello technique for pseudopotential DFT . 289
 Exercises 290
 References 293

10 The Monte Carlo method 295
 10.1 Introduction 295
 10.2 Monte Carlo integration 296
 10.3 Importance sampling through Markov chains 299
Contents

10.4 Other ensembles 310
10.5 Estimation of free energy and chemical potential 316
10.6 Further applications and Monte Carlo methods 319
10.7 The temperature of a finite system 330
 Exercises 334
 References 335

11 Transfer matrix and diagonalisation of spin chains 338
 11.1 Introduction 338
 11.2 The one-dimensional Ising model and the transfer matrix 339
 11.3 Two-dimensional spin models 343
 11.4 More complicated models 347
 11.5 ‘Exact’ diagonalisation of quantum chains 349
 11.6 Quantum renormalisation in real space 355
 11.7 The density matrix renormalisation group method 358
 Exercises 365
 References 370

12 Quantum Monte Carlo methods 372
 12.1 Introduction 372
 12.2 The variational Monte Carlo method 373
 12.3 Diffusion Monte Carlo 387
 12.4 Path-integral Monte Carlo 398
 12.5 Quantum Monte Carlo on a lattice 410
 12.6 The Monte Carlo transfer matrix method 414
 Exercises 417
 References 421

13 The finite element method for partial differential equations 423
 13.1 Introduction 423
 13.2 The Poisson equation 424
 13.3 Linear elasticity 429
 13.4 Error estimators 434
 13.5 Local refinement 436
 13.6 Dynamical finite element method 439
 13.7 Concurrent coupling of length scales: FEM and MD 440
 Exercises 445
 References 446
Contents

<table>
<thead>
<tr>
<th>14 The lattice Boltzmann method for fluid dynamics</th>
<th>448</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>448</td>
</tr>
<tr>
<td>14.2 Derivation of the Navier–Stokes equations</td>
<td>449</td>
</tr>
<tr>
<td>14.3 The lattice Boltzmann model</td>
<td>455</td>
</tr>
<tr>
<td>14.4 Additional remarks</td>
<td>458</td>
</tr>
<tr>
<td>14.5 Derivation of the Navier–Stokes equation from the lattice Boltzmann model</td>
<td>460</td>
</tr>
<tr>
<td>Exercises</td>
<td>463</td>
</tr>
<tr>
<td>References</td>
<td>464</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 Computational methods for lattice field theories</th>
<th>466</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>466</td>
</tr>
<tr>
<td>15.2 Quantum field theory</td>
<td>467</td>
</tr>
<tr>
<td>15.3 Interacting fields and renormalisation</td>
<td>473</td>
</tr>
<tr>
<td>15.4 Algorithms for lattice field theories</td>
<td>477</td>
</tr>
<tr>
<td>15.5 Reducing critical slowing down</td>
<td>491</td>
</tr>
<tr>
<td>15.6 Comparison of algorithms for scalar field theory</td>
<td>509</td>
</tr>
<tr>
<td>15.7 Gauge field theories</td>
<td>510</td>
</tr>
<tr>
<td>Exercises</td>
<td>532</td>
</tr>
<tr>
<td>References</td>
<td>536</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 High performance computing and parallelism</th>
<th>540</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>540</td>
</tr>
<tr>
<td>16.2 Pipelining</td>
<td>541</td>
</tr>
<tr>
<td>16.3 Parallelism</td>
<td>545</td>
</tr>
<tr>
<td>16.4 Parallel algorithms for molecular dynamics</td>
<td>552</td>
</tr>
<tr>
<td>References</td>
<td>556</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix A Numerical methods</th>
<th>557</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 About numerical methods</td>
<td>557</td>
</tr>
<tr>
<td>A2 Iterative procedures for special functions</td>
<td>558</td>
</tr>
<tr>
<td>A3 Finding the root of a function</td>
<td>559</td>
</tr>
<tr>
<td>A4 Finding the optimum of a function</td>
<td>560</td>
</tr>
<tr>
<td>A5 Discretisation</td>
<td>565</td>
</tr>
<tr>
<td>A6 Numerical quadratures</td>
<td>566</td>
</tr>
<tr>
<td>A7 Differential equations</td>
<td>568</td>
</tr>
<tr>
<td>A8 Linear algebra problems</td>
<td>590</td>
</tr>
<tr>
<td>A9 The fast Fourier transform</td>
<td>598</td>
</tr>
<tr>
<td>Exercises</td>
<td>601</td>
</tr>
<tr>
<td>References</td>
<td>603</td>
</tr>
</tbody>
</table>
Contents

Appendix B Random number generators 605

B1 Random numbers and pseudo-random numbers 605
B2 Random number generators and properties of pseudo-random numbers 606
B3 Nonuniform random number generators 609
Exercises 611
References 612

Index 613
Preface to the first edition

This is a book on computational methods used in theoretical physics research, with an emphasis on condensed matter applications.

Computational physics is concerned with performing computer calculations and simulations for solving physical problems. Although computer memory and processor performance have increased dramatically over the last two decades, most physical problems are too complicated to be solved without approximations to the physics, quite apart from the approximations inherent in any numerical method. Therefore, most calculations done in computational physics involve some degree of approximation. In this book, emphasis is on the derivation of algorithms and the implementation of these: it is a book which tells you how methods work, why they work, and what the approximations are. It does not contain extensive discussions on results obtained for large classes of different physical systems.

This book is not elementary: the reader should have a background in basic undergraduate physics and in computing. Some background in numerical analysis is also helpful. On the other hand, the topics discussed are not treated in a comprehensive way; rather, this book hopefully bridges the gap between more elementary texts by Koonin, Gould and Giordano, and specialised monographs and review papers on the applications described. The fact that a wide range of topics is included has the advantage that the many similarities in the methods used in seemingly very different fields could be highlighted. Many important topics and applications are however not considered in this book – the material presented obviously reflects my own expertise and interest.

I hope that this book will be useful as a source for intermediate and advanced courses on the subject. I furthermore hope that it will be helpful for graduates and researchers who want to increase their knowledge of the field.

Some variation in the degree of difficulty is inherent to the topics addressed in this book. For example, in molecular dynamics, the equations of motion of a collection of particles are solved numerically, and as such it is a rather elementary subject. However, a careful analysis of the integration algorithms used, the problem of performing these simulations in different statistical ensembles, and the problem of
Preface

treating long range forces with periodic boundary conditions, are much more diffi-
cult. Therefore, sections addressing advanced material are marked with an asterisk
(*) – they can be skipped at first reading. Also, extensive theoretical derivations are
sometimes moved to sections with asterisks, so that the reader who wants to write
programs rather than go into the theory may use the results, taking the derivations
for granted.

Aside from theoretical sections, implementations of algorithms are discussed,
often in a step-by-step fashion, so that the reader can program the algorithms him-
or herself. Suggestions for checking the program are included. In the exercises
after each chapter, additional suggestions for programs are given, but there are also
exercises in which the computer is not used. The computer exercises are marked
by the symbol [C]; if the exercise is divided up into parts, this sign occurs before
the parts in which a computer program is to be written (a problem marked with [C]
may contain major parts which are to be done analytically). The programs are not
easy to write – most of them took me a long time to complete! Some data-files and
numerical routines can be found on www.cambridge.org/9780521833469.

The first person who suggested that I should write this book was Aloysio Janner.
Thanks to the support and enthusiasm of my colleague and friend John Inglesfield
in Nijmegen, I then started writing a proposal containing a draft of the first hundred
pages. After we both moved to the University of Cardiff (UK), he also checked many
chapters with painstaking precision, correcting the numerous errors, both in the
physics and in the English; without his support, this book would probably never
have been completed.

Bill Smith, from Daresbury Laboratories (UK), has checked the chapters on
classical many-particle systems and Professor Konrad Singer those on quantum
simulation methods. Simon Hands from the University of Swansea (UK) has read
the chapter on lattice field theories, and Hubert Knops (University of Nijmegen,
The Netherlands) those on statistical mechanics and transfer matrix calculations.
Maziar Nekovee (Imperial College, London, UK) commented on the chapter on
quantum Monte Carlo methods. I am very grateful for the numerous suggestions
and corrections from them all. I am also indebted to Paul Hayman for helping me
correcting the final version of the manuscript. Many errors in the book have been
pointed out to me by colleagues and students. I thank Professor Ron Cohen in
particular for spotting many mistakes and discussing several issues via email.

In writing this book, I have discovered that the acknowledgements to the author’s
family, often expressed in an apologetic tone as a result of the disruption caused
by the writing process to family life, are too real to be disqualified as a cliché.
My sons Maurice, Boudewijn and Arthur have in turn disrupted the process of
writing in the most pleasant way possible, regularly asking me to show growing
trees or fireworks on the screen of my PC, instead of the dull black-on-white text
windows. Boudewijn and Maurice’s professional imitation of their dad, tapping on
the keyboard, and sideways reading formulae, is promising for the future.

It is to my wife Ellen that I dedicate this book, with gratitude for her patience,
strength and everlasting support during the long, and sometimes difficult time in
which the book came into being.
Preface to the second edition

Six years have passed since the first edition of this book appeared. In these years I have learned a lot more about computational physics – a process which will hopefully never stop. I learned from books and papers, but also from the excellent colleagues with whom I worked on teaching and research during this period. Some of this knowledge has found its place in this edition, which is a substantial extension of the first.

New topics include finite elements, lattice Boltzmann simulation and density matrix renormalisation group, and there are quite a few sections here and there in the book which either give a more in-depth treatment of the material than can be found in the first edition, or extensions to widen the view on the subject matter. Moreover I have tried to eliminate as many errors as possible, but I am afraid that it is difficult for me to beat the entropy of possible things which can go wrong in writing a book of over 650 pages.

In Delft, where I have now a position involving a substantial amount of teaching, I worked for several years in the computational physics group of Simon the Leeuw. I participated in an exciting and enjoyable effort: teaching in an international context. Together with Rajiv Kalia, from Louisana State, we let students from Delft collaborate with Louisiana students, having them do projects in the field of computational physics. Both Simon and Rajiv are experts in the field of molecular dynamics, and I learned a lot from them. Moreover, dealing with students and their questions has often forced me to deepen my knowledge in this field. Similar courses with Hiroshi Iyetomi from Niigata University in Japan, and now with Phil Duxbury at Michigan State have followed, and form my most enjoyable teaching experience. Much of the knowledge picked up in these courses has gone into the new material in this edition.

For one of the new parts of the book, the self-consistent pseudopotential and the Car–Parrinello program, I worked closely together with Erwin de Wolff for a few months. I am grateful for his support in this, and not least for his structured, neat way of tackling the problem.

Many students, university lecturers and researchers have shared their corrections on the text with me. I want to thank Ronald Cohen, Dominic Holland, Ari Harju,
Preface

John Mauro, Joachim Stolze and all the others whose names may have disappeared from my hard disks when moving to a new machine.

Preparing this edition in addition to the regular duties of a university position has turned out to be a demanding job, which has prevented me now and then from being a good husband and father. I thank Ellen and my sons Maurice, Boudewijn and Arthur for their patience and support, and express the hope that I will have more time for them in the future.