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Introduction

1.1 Physics and computational physics

Solving a physical problem often amounts to solving an ordinary or partial differ-
ential equation. This is the case in classical mechanics, electrodynamics, quantum
mechanics, fluid dynamics and so on. In statistical physics we must calculate sums
or integrals over large numbers of degrees of freedom. Whatever type of problem
we attack, it is very rare that analytical solutions are possible. In most cases we
therefore resort to numerical calculations to obtain useful results. Computer perfor-
mance has increased dramatically over the last few decades (see also Chapter 16)
and we can solve complicated equations and evaluate large integrals in a reasonable
amount of time.

Often we can apply numerical routines (found in software libraries for example)
directly to the physical equations and obtain a solution. We shall see, however, that
although computers have become very powerful, they are still unable to provide
a solution to most problems without approximations to the physical equations. In
this book, we shall focus on these approximations: that is, we shall concentrate on
the development of computational methods (and also on their implementation into
computer programs). In this introductory chapter we give a bird’s-eye perspective
of different fields of physics and the computational methods used to solve problems
in these areas. We give examples of direct application of numerical methods but
we also give brief and heuristic descriptions of the additional theoretical analysis
and approximations necessary to obtain workable methods for more complicated
problems which are described in more detail in the remainder of this book. The
order adopted in the following sections differs somewhat from the order in which
the material is treated in this book.

1.2 Classical mechanics and statistical mechanics

The motion of a point particle in one dimension subject to a force F depending on
the particle’s position x, and perhaps on the velocity ẋ and on time t, is determined
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2 Introduction

by Newton’s equation of motion:

mẍ(t) = F[x(t), ẋ(t), t]. (1.1)

The (double) dot denotes a (double) derivative with respect to time. A solution can
be found for each set of initial conditions x(t0) and ẋ(t0) given at some time t0. Ana-
lytical solutions exist for constant force, for the harmonic oscillator (F = κx2/2),
and for a number of other cases. In Appendix A7.1 a simple numerical method
for solving this equation is described and this can be applied straightforwardly to
arbitrary forces and initial conditions.

Interesting and sometimes surprising physical phenomena can now be studied.
As an example, consider the Duffing oscillator [1], with a force given by

F[x, ẋ, t] = −γ ẋ + 2ax − 4bx3 + F0 cos(ωt). (1.2)

The first term on the right hand side represents a velocity-dependent friction; the
second and third terms are the force a particle feels when it moves in a double
potential well bx4 − ax2, and the last term is an external periodic force. An exper-
imental realisation is a pendulum consisting of an iron ball suspended by a thin
string, with two magnets below it. The pendulum and the magnets are placed on
a table which is moved back and forth with frequency ω. The string and the air
provide the frictional force, the two magnets together with gravity form some kind
of double potential well, and, in the reference frame in which the pendulum is at
rest, the periodic motion of the table is felt as a periodic force. It turns out that the
Duffing oscillator exhibits chaotic behaviour for particular values of the parameters
γ , a, b, F0 and ω. This means that the motion itself looks irregular and that a very
small change in the initial conditions will grow and result in a completely different
motion. Figure 1.1 shows the behaviour of the Duffing oscillator for two nearly
equal initial conditions, showing the sensitivity to these conditions. Over the past
few decades, chaotic systems have been studied extensively. A system that often
behaves chaotically is the weather: the difficulty in predicting the evolution of
chaotic systems causes weather forecasts to be increasingly unreliable as they look
further into the future, and occasionally to be dramatically wrong.

Another interesting problem is that of several particles, moving in three dimen-
sions and subject to each other’s gravitational interaction. Our Solar System is
an example. For the simplest nontrivial case of three particles (for two particles,
Newton has given the analytical solution), analytical solutions exist for particular
configurations, but the general problem can only be solved numerically. This prob-
lem is called the three-body problem (N -body problem in general). The motion of
satellites orbiting in space is calculated numerically using programs for the N -body
problem, and the evolution of galaxies is calculated with similar programs using
a large number of test particles (representing the stars). Millions of particles can
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Figure 1.1. Solution of the Duffing oscillator. Parameters are m = 1, a = 1/4,
b = 1/2, F0 = 2.0, ω = 2.4, γ = 0.1. Two solutions are shown: one with initial
position x0 = 0.5, the other with x0 = 0.5001 (ẋ0 = 0 in both cases). For these
nearly equal initial conditions, the solutions soon become uncorrelated, showing
the difficulty in predicting the time evolution of a chaotic system.

be treated using a combination of high-end computers and clever computational
methods which will be considered in Chapter 8. Electrostatic forces are related
to gravitational forces, as both the gravitational and the electrostatic (Coulomb)
potential have a 1/r form. The difference between the two is that electrostatic forces
can be repulsive or attractive, whereas gravitational forces are always attractive.

Neutral atoms interact via a different potential: they attract each other weakly
through induced polarisation, unless they come too close – then the Pauli principle
causes the electron clouds to repel each other. The problem of many interacting
atoms and molecules is a very important subfield of computational physics: it is
called molecular dynamics. In molecular dynamics, the equations of motion for
the particles are solved straightforwardly using numerical algorithms similar to
those with which a Duffing oscillator is analysed, the main difference being the
larger number of degrees of freedom in molecular dynamics. The aim of molecular
dynamics simulations is to predict the behaviour of gases, liquids and solids (and
systems in other phases, like liquid crystals). An important result is the equation
of state: this is the relation between temperature, number of particles, pressure and
volume. Also, the microscopic structure as exhibited by the pair correlation func-
tion, which is experimentally accessible via neutron scattering, is an interesting
property which can be determined in simulations. There are, however, many prob-
lems and pitfalls associated with computer simulations: the systems that can be
simulated are always much smaller than realistic systems, and simulating a system
at a predefined temperature or chemical potential is nontrivial. All these aspects
will be considered in Chapter 8.
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4 Introduction

1.3 Stochastic simulations

In the previous section we have explained how numerical algorithms for solving
Newton’s equations of motion can be used to simulate liquids. The particles are
moved around according to their mechanical trajectories which are governed by
the forces they exert on each other. Another way of moving them around is to
displace them in a random fashion. Of course this must be done in a controlled
way, and not every move should be allowed, but we shall see in Chapter 10 that it is
possible to obtain information in this way similar to that obtained from molecular
dynamics. This is an example of a Monte Carlo method – procedures in which
random numbers play an essential role. The Monte Carlo method is not suitable
for studying dynamical physical quantities such as transport coefficients, as it uses
artificial dynamics to simulate many-particle systems.

Random number generators can also be used in direct simulations: some process
of which we do not know the details is replaced by a random generator. If you
simulate a card game, for example, the cards are distributed among the players by
using random numbers. An example of a direct simulation in physics is diffusion
limited aggregation (DLA), which describes the growth of dendritic clusters (see
Figure 1.2). Consider a square lattice in two dimensions. The sites of the lattice
are either occupied or unoccupied. Initially, only one site in the centre is occupied.
We release a random walker from the boundary of the lattice. The walker moves
over the lattice in a stepwise fashion. At each step, the walker moves from a site to

Figure 1.2. Dendritic cluster grown in a DLA simulation. The cluster consists of
9400 sites and it was grown on a 175 × 175 lattice.
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1.4 Electrodynamics and hydrodynamics 5

one of its neighbour sites, which is chosen at random (there are four neighbours for
each site in the interior of the lattice; the boundary sites have three neighbours, or
two if they lie on a corner). If the walker arrives at a site neighbouring the occupied
central site, it sticks there, so that a two-site cluster is formed. Then a new walker
is released from the boundary. This walker also performs a random walk on the
lattice until it arrives at a site neighbouring the cluster of two occupied sites, to
form a three-site cluster, and so on. After a long time, a dendritic cluster is formed
(see Figure 1.2), which shows a strong resemblance to actual dendrites formed in
crystal growth, or by growing bacterial colonies [2], frost patterns on the window
and numerous other physical phenomena.

This shows again that interesting physics can be studied by straightforward appli-
cation of simple algorithms. In Chapter 10 we shall concentrate on the Monte Carlo
method for studying many-particle systems at a predefined temperature, volume
and particle number. This technique is less direct than DLA, and, just as in molec-
ular dynamics, studying the system for different predefined parameters, such as
chemical potential, and evaluating free energies are nontrivial aspects which need
further theoretical consideration. The Monte Carlo method also enables us to anal-
yse lattice spin models, which are important for studying magnetism and field theory
(see below). These models cannot always be analysed using molecular dynamics
methods, and Monte Carlo is often the only tool we have at our disposal in that
case. There also exist alternative, more powerful techniques for simulating dendrite
formation, but these are not treated in this book.

1.4 Electrodynamics and hydrodynamics

The equations of electrodynamics and hydrodynamics are partial differential
equations. There exist numerical methods for solving these equations, but the prob-
lem is intrinsically demanding because the fields are continuous and an infinite
number of variables is involved. The standard approach is to apply some sort of
discretisation and consider the solution for the electric potential or for the flow
field only on the points of the discrete grid, thus reducing the infinite number of
variables to a finite number. Another method of solution consists of writing the field
as a linear combination of smooth functions, such as plane waves, and solving for
the best values of the expansion coefficients.

There exist several methods for solving partial differential equations: finite differ-
ence methods (FDM), finite element methods (FEM), Fourier transform methods
and multigrid methods. These methods are also very often used in engineering
problems, and are essentially the domain of numerical analysis. The finite element
method is very versatile and therefore receives our particular attention in Chapter 13.
The other methods can be found in Appendix A7.2.
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6 Introduction

1.5 Quantum mechanics

In quantum mechanics we regularly need to solve the Schrödinger equation for
one or more particles. There is usually an external potential felt by the particles,
and in addition there might be interactions between the particles. For a single par-
ticle moving in one dimension, the stationary form of the Schrödinger equation
reduces to an ordinary differential equation, and techniques similar to those used in
solving Newton’s equations can be used. The main difference is that the stationary
Schrödinger equation is an eigenvalue equation, and in the case of a discrete spec-
trum, the energy eigenvalue must be varied until the wave function is physically
acceptable, which means that it matches some boundary conditions and is normal-
isable. Examples of this direct approach are discussed in Appendix A, in particular
Problem A.4.

In two and more dimensions, or if we have more than one particle, or if we
want to solve the time-dependent Schrödinger equation, we must solve a partial
differential equation. Sometimes, the particular geometry of the problem and the
boundary conditions allow us to reduce the complexity of the problem and transform
it into ordinary differential equations. This will be done in Chapter 2, where we
shall study particles scattering off a spherically symmetric potential.

Among the most important quantum problems in physics is the behaviour of
electrons moving in the field generated by nuclei, which occurs in atoms, molecules
and solids. This problem is treated quite extensively in this book, but the methods we
develop for it are also applied in nuclear physics. Solving the Schrödinger equation
for one electron moving in the potential generated by the atomic static nuclei is
already a difficult problem, as it involves solving a partial differential equation.
Moreover, the potential is strong close to the nuclei and weak elsewhere, so the
typical length scale of the wave function varies strongly through space. Therefore,
discretisation methods must use grids which are finer close to the nuclei, rendering
such methods difficult. The method of choice is, in fact, to expand the wave function
as a linear combination of fixed basis functions that vary strongly close to the nuclei
and are smooth elsewhere, and find the optimal values for the expansion coefficients.
This is an example of the variational method, which will be discussed in Chapter 3.
This application of the variational method leads to a matrix eigenvalue problem
which can be solved very efficiently on a computer.

An extra complication arises when there are many (say N ) electrons, inter-
acting via the Coulomb potential, so that we must solve a partial differential
equation in 3N dimensions. In addition to this we must realise that electrons are
fermions and the many-electron wave function must therefore be antisymmetric
with respect to exchange of any pair of electrons. Because of the large number
of dimensions, solving the Schrödinger equation is not feasible using any of the
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1.6 Relations between quantum mechanics and classical statistical physics 7

standard numerical methods for solving partial differential equations, so we must
make approximations. One approach is the Hartree–Fock (HF) method,developed
in the early days of quantum mechanics, which takes into account the antisymmetry
of the many-electron wave function. This leads to an independent particle picture, in
which each electron moves in the potential generated by the nuclei plus an average
potential generated by the other electrons. The latter depends on the electronic wave
functions, and hence the problem must be solved self-consistently – in Chapter 4
we shall see how this is done. The HF method leads to wave functions that are fully
antisymmetric, but contributions arising from the Coulomb interaction between
the particles are taken into account in an approximate way, analogous to the way
correlations are treated in the mean field approach in statistical mechanics.

Another approach to the quantum many-electron problem is given by density
functional theory (DFT), which will be discussed in Chapter 5. This theory, which
is in principle exact, can in practice only be used in conjunction with approximate
schemes to be discussed in Chapter 5, the most important of which is the local den-
sity approximation (LDA). This also leads to an independent-particle Schrödinger
equation, but in this case, the correlation effects resulting from the antisymmetry
of the wave function are not incorporated exactly, leading to a small, unphysi-
cal interaction of an electron with itself (self-interaction). However, in contrast to
Hartree–Fock,the approach does account (in an approximate way) for the dynamic
correlation effects due to the electrons moving out of each other’s way as a result
of the Coulomb repulsion between them.

All these approaches lead in the end to a matrix eigenvalue problem, whose size
depends on the number of electrons present in the system. The resulting solutions
enable us to calculate total energies and excitation spectra which can be compared
with experimental results.

1.6 Relations between quantum mechanics and classical statistical physics

In the previous two sections we have seen that problems in classical statistical
mechanics can be studied with Monte Carlo techniques, using random numbers,
and that the solution of quantum mechanical problems reduces to solving matrix
eigenvalue problems. It turns out that quantum mechanics and classical statistical
mechanics are related in their mathematical structure. Consider for example the
partition function for a classical mechanics system at temperature T , with degrees
of freedom denoted by the variable X and described by an energy function (that is,
a classical Hamiltonian) H:

ZCl =
∑

X

e−H(X )/(kBT ), (1.3)
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8 Introduction

and that of a quantum system with quantum Hamiltonian H :

ZQM = Tr(e−H/(kBT )); (1.4)

‘Tr’ denotes the trace of the operator following it. We will show in Chapter 12 that
in the path-integral formalism, the second expression can be transformed into the
same form as the first one. Also, there is a strong similarity between the exponent
occurring in the quantum partition function and the quantum time-evolution oper-
ator U (t) = exp(−itH/�), so solving the time evolution of a quantum system is
equivalent to evaluating a classical or quantum partition function, the difference
being an imaginary factor it/� replacing the real factor 1/(kBT ), and taking the
trace in the case of the quantum partition function rather than a sum over states in
the classical analogue.

These mathematical analogies suggest that numerical methods for either classical
statistical mechanics or quantum mechanics are applicable in both fields. Indeed,
in Chapter 11, we shall see that it is possible to analyse classical statistical spin
problems on lattices by diagonalising large matrices. In Chapter 12, on the other
hand, we shall use Monte Carlo methods for solving quantum problems. These
methods enable us to treat the quantum many-particle problem without systematic
approximations, because, as will be shown in Chapter 12, Monte Carlo techniques
are very efficient for calculating integrals in many dimensions. This, as we have seen
above, was precisely the problem arising in the solution of interacting many-particle
systems.

1.7 Quantum molecular dynamics

Systems of many interacting atoms or molecules can be studied classically by solv-
ing Newton’s equations of motion, as is done in molecular dynamics. Pair potentials
are often used to describe the atomic interactions, and these can be found from
quantum mechanical calculations, using Hartree–Fock,density functional theory or
quantum Monte Carlo methods. In a dense system, the pair potential is inadequate
as the interactions between two particles in the system are influenced by other par-
ticles. In order to incorporate these effects in a simulation, it would be necessary
to calculate the forces from full electronic structure calculations for all configura-
tions occurring in the simulation. Car and Parrinello have devised a clever way to
calculate these forces as the calculation proceeds, by combining density functional
theory with molecular dynamics methods.

In the Car–Parrinello approach, electron correlations are not treated exactly
because of the reliance on LDA (see Section 1.5), but it will be clear that it is
an important improvement on fully classical simulations where the interatomic
interactions are described by a simple form, such as pair potentials. It is possible
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1.9 About this book 9

to include some damping mechanism in the equations of motion and then let the
nuclei relax to their ground state positions, so that equilibrium configurations of
molecules and solids can be determined (neglecting quantum fluctuations).

1.8 Quantum field theory

Quantum field theory provides a quantum description for fields: strings in one
dimension, sheets in two dimensions, etc. Quantum field theory is also believed
to describe elementary particles and their interactions. The best known example
is quantum electrodynamics (QED) which gives a very accurate description of
the interaction between charged spin-1/2 fermions (electrons) and electromag-
netic fields. The results of QED are obtained using perturbation theory which
works very well for this case, because the perturbative parameter remains small
for all but the smallest length scales (at large length scales this is the fine structure
constant).

In quantum chromodynamics (QCD), the theory which supposedly describes
quarks bound together in a proton or neutron, the coupling constant grows large for
large scales, and perturbation theory breaks down. One way to obtain useful results
for this theory is to discretise space-time, and simulate the theory on this space-time
lattice on a computer. This can be done using Monte Carlo or molecular dynam-
ics techniques. The application of these techniques is far from easy as the QCD
field theory is intrinsically complicated. A problem which needs to be addressed
is efficiency, notably overcoming critical slowing down, which decreases the effi-
ciency of simple Monte Carlo and molecular dynamics techniques for the cases
which are of physical interest. The fact that quarks are fermions leads to additional
complications.

QCD simulations relate quark masses to masses and interaction constants of
hadrons (mesons, protons, neutrons).

1.9 About this book

In this book, the emphasis is on methods which do not merely involve straightfor-
ward application of numerical methods, and which are specific to problems studied
in physics. In most cases, the theory is treated in some detail in order to exhibit
clearly what the approximations are and why the methods work. However, some
of this theoretical material can be skipped at first reading (this is the material in the
sections marked with an asterisk *). Details on implementation are given for most
of the methods described.

We start off with a chapter on quantum mechanical scattering theory. This is
a rather straightforward application of numerical techniques, and is used as an
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10 Introduction

illustration of solving a rather simple (not completely trivial) physical problem
on a computer. The results of a sample program are compared with experiment.
In Chapters 3 to 5 we discuss computational methods for the electronic structure:
variational calculus, Hartree–Fock and density functional theory. We apply these
methods to some simple systems: the hydrogen and the helium atoms, and the
hydrogen molecule. We calculate the energies of these systems. Chapter 6 deals
with solving the independent-particle Schrödinger equation in solids.

In Chapters 7 to 12 we describe molecular dynamics and Monte Carlo techniques
for classical and quantum many-particle systems. Chapter 7 contains an overview
of classical statistical mechanics, with emphasis on ensembles and on critical phe-
nomena, which are also important for field theory, as discussed in Chapter 15. The
molecular dynamics and Monte Carlo techniques are treated in Chapters 8 and 10.
The standard example of a molecular liquid, argon, is analysed, but simulations
for liquid nitrogen and for lattice spin systems (Ising model) are also discussed.
Chapter 9 deals with the quantum molecular dynamics technique.

The relations between classical and statistical mechanics are exploited in
Chapter 11 where the transfer matrix method for lattice spin systems is described.
The next chapter deals with the application of Monte Carlo methods to quan-
tum mechanics, and we revisit the helium atom which is now treated without
Hartree–Fock or DFT approximations.

In Chapter 15 we consider numerical methods for field theory. Techniques for
analysing the simplest interesting field theory, the scalar φ4 theory, are studied,
and methods for studying more complicated field theories (QED and QCD) are
discussed. Because of the relation between statistical and quantum mechanics, some
of the techniques discussed in this chapter are also relevant for classical statistical
mechanics.

Finally, in Chapter 16 modern computer architectures are briefly considered and
an example of a parallel algorithm for molecular dynamics is given.

The algorithms presented, and the programs to be written in the exercises, can
be coded in different languages: C, C++, Java, Fortran 77, Fortran 90 etc. Also,
an integrated scientific computer environment such as MatLab may be used. They
all have their pluses and minuses: Fortran 77 allows for dirty programming, but is
quite efficient, and the same holds for C; Fortran 90 is efficient and neat. MatLab
is easy to use, but not as efficient as using a high-level programming language.
Perhaps the most structured way of programming is by using the objected-oriented
programming paradigm, as implemented in the langauges C++ and Java. For large
and complex projects, these languages are unbeatable. However, for smaller jobs
MatLab or Fortran 90 is usually sufficient. It is my experience that students relatively
new to programming get their programs to run correctly most quickly when using
Fortran 90 or MatLab.
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