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Circling the square

It’s my bad friend Kent . . . Kent works at the Central Statistics Bureau. He knows

howmany litres of milk Norwegians drink per annum and how often people have

sex. On average that is.

Erlend Loe,Naive. Super

The charisma casualty. A scientist in need of an apology and
the question he dreads

Look at that miserable student in the corner at the party. He could be
my younger self. He was doing well until she asked the dreaded ques-
tion. ‘What are you studying?’ At such a moment what would one not
give for the right to a romantic answer: ‘Russian,’ perhaps or ‘drama’. Or a
coldly cerebral one: ‘philosophy’ or ‘mathematics’ or even ‘physics’. Or to
pass oneself as a modern Victor Frankenstein, a genetic engineer or a bio-
chemist.That iswhere theactionwillbe in thismillennium.But statistics?
It’s like Kenny Everett’s joke about elderly women: just like Australia, ev-
eryone knowswhere it is but no onewants to go there. Except that people
do want to go to Australia.
Some years ago there was an advert for a French film, Tatie Danielle,

about a misanthropic, manipulative and downright nasty old lady which
ran, ‘you don’t know her, but she loathes you already’. Of most people
one might just as well say, ‘you’ve never studied statistics but you loathe
it already’. You know already what it will involve (so many tonnes of coal
mined in Silesia in 1963, so many deaths from TB in China in 1978). Well
you are wrong. It has nothing, or hardly anything, to do with that. And
if you have encountered it as part of some degree course, for no scientist
or social scientist escapes, then you know that it consists of a number of
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2 Circling the square

algorithms to carry out tests of significance using data. Well you are also
wrong. Statistics, likeBill Shankly’s football, is not just amatter of life and
death. ‘Son, it’s muchmore important than that.’

Statistics are and statistics is

Statistics singular, contrary to the popular perception, is not really about
facts; it is about how we know, or suspect, or believe, that something
is a fact. Because knowing about things involves counting and measur-
ing them, then, it is true, that statistics plural are part of the concern of
statistics singular, which is the science of quantitative reasoning. This sci-
encehasmuchmore in commonwithphilosophy (inparticular epistemol-
ogy) than it does with accounting. Statisticians are applied philosophers.
Philosophers argue how many angels can dance on the head of a needle;
statisticians count them.
Or rather, count howmany can probably dance. Probability is the heart

of the matter, the heart of all matter if the quantum physicists can be be-
lieved.As far as the statistician is concerned this is true,whether theworld
is strictly deterministic as Einstein believed or whether there is a resid-
ual ineluctable indeterminacy. We can predict nothing with certainty but
we can predict how uncertain our predictions will be, on average that is.
Statistics is the science that tells us how.

Quacks and squares

I want to explain how important statistics is. For example, take my own
particular field of interest, pharmaceutical clinical trials: experiments on
human beings to establish the effects of drugs. Why, as a statistician, do
I do research in this area? I don’t treat patients. I don’t design drugs. I
scarcely know a stethoscope from a thermometer. I have forgotten most
of the chemistry I ever knew and I never studied biology. But I have suc-
cessfully designed and analysed clinical trials for a living. Why should it
be that the International Conference on Harmonisations guidelines for
Good Clinical Practice, the framework for the conduct of pharmaceutical
trials inEurope,America and Japan should state, ‘The sponsor shoulduti-
lize qualified individuals (e.g. biostatisticians, clinical pharmacologists,
and physicians) as appropriate, throughout all stages of the trial process,
from designing the protocol and CRFs and planning the analyses to ana-
lyzing and preparing interim and final clinical trial reports.1’? We know
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A chronic problem 3

why we need quacks but these ‘squares’ who go around counting things,
what use are they?We don’t treat patients with statistics do we?

High anxiety

Of course not. Suppose that you have just suffered a collapsed lung at
35 000 ft and, the cabin crewhaving appealed for help, a ‘doctor’ turns up.
A Ph.D. in statistics would be asmuch use as a spare statistician at a party.
You damnwell want the doctor to be amedic. In fact this is precisely what
happened to a lady travelling fromHongKong toBritain inMay 1995. She
had fallen off a motorcycle on her way to the airport and had not realised
the gravity of her injuries until airborne. Luckily for her, two resourceful
physicians, Professor AngusWallace and Dr. TomWang, were on board.2

Initially distractedby thepain shewas experiencing inher arm, they even-
tually realised that shehadamore seriousproblem.Shehad, in fact, a ‘ten-
sion pneumothorax’, a life-threatening condition that required immedi-
ate attention. With the help of the limited medical equipment on board
plus a coat hanger and a bottle of Evian water the two doctors performed
an emergency operation to release air from her pleural cavity and restore
her ability to breathe normally. The operationwas a complete success and
the woman recovered rapidly.
This story illustrates the very best aspects of the medical profession

and why we value its members so highly. The two doctors concerned had
to react quickly to a rapidly developing emergency, undertake a techni-
cal manoeuvre in which they were probably not specialised and call not
only on their medical knowledge but on that of physics as well: the bot-
tle of water was used to create a water seal. There is another evidential
lesson for us here, however. We are convinced by the story that the inter-
ventionwasnecessary and successful. This is a very reasonable conclusion.
Amongst factors that make it reasonable are that the woman’s condition
wasworsening rapidly and thatwithin a fewminutes of the operation her
condition was reversed.

A chronic problem

However, much ofmedicine is not like that. General practitioners, for ex-
ample, busy and harassed as they are typically have little chance of learn-
ing the effect of the treatments they employ. This is becausemost of what
is done is either for chronically ill patients forwhomno rapid reversal can
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4 Circling the square

be expected or for patientswho are temporarily ill, looking for some relief
or a speedier recovery andwhowill not report back. Furthermore, so short
is the half-life of relevance ofmedicine that if (s)he is middle-aged, half of
what (s)he learned at university will now be regarded as outmoded if not
downright wrong.
The trouble withmedical education is that it prepares doctors to learn

facts, whereas really what the physician needs is a strategy for learning.
The joke (not mine) is that three students are asked to memorise the tele-
phone directory. The mathematician says, ‘why?’, the lawyer says, ‘how
long have I got?’ and the medical student says, ‘will the Yellow Pages also
be in the exam?’ This is changing, however. There is a newmovement for
evidence-basedmedicine that stresses the need for doctors to remain con-
tinually in touch with developments in treatment and also to assess the
evidence for such new treatment critically. Such evidence will be quanti-
tative. Thus doctors are going to have to learnmore about statistics.
It would be wrong, however, to give the impression that there is an

essential antagonism between medicine and statistics. In fact the medi-
cal profession has made important contributions to the theory of statis-
tics. As we shall see when we come to consider John Arbuthnot, Daniel
Bernoulli and several other key figures in the history of statistics, many
who contributed had had a medical education, and in the medical spe-
cialty of epidemiology many practitioners can be found who have made
important contributions to statistical theory. However, on the whole, it
can be claimed that these contributions have arisen because the physician
has come to think like a statistician: with scepticism. ‘This is plausible,
how might it be wrong?’ could be the statistician’s catch-phrase. In the
sections that follow, we consider some illustrative paradoxes.

A familiar familial fallacy?

‘Mr Brown has exactly two children. At least one of them is a boy.What is
the probability that the other is a girl?’ What could be simpler than that?
After all, the other child either is or is not a girl. I regularly use this exam-
ple on the statistics courses I give to life scientists working in the pharma-
ceutical industry. They all agree that the probability is one-half.
So theyareallwrong. Ihaven’t said that the older child is aboy.Thechild

Imentioned, the boy, could be the older or the younger child. Thismeans
that Mr Brown can have one of three possible combinations of two chil-
dren: both boys, elder boy and younger girl, elder girl and younger boy,
the fourth combination of two girls being excluded bywhat I have stated.
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A familiar familial fallacy? 5

But of the three combinations, in two cases the other child is a girl so that
the requisite probability is 2/3. This is illustrated as follows.

Possible Possible Possible Excluded

Elder
Younger

This example is typical of many simple paradoxes in probability: the an-
swer is easy to explain but nobody believes the explanation. However, the
solution I have given is correct.
Or is it? That was spoken like a probabilist. A probabilist is a sort of

mathematician. He or she deals with artificial examples and logical con-
nections but feel no obligation to say anything about the real world. My
demonstration, however, relied on the assumption that the three combi-
nationsboy–boy, boy–girl andgirl–boy are equally likely and thismaynot
be true. The difference between a statistician and a probabilist is that the
latter will define the problem so that this is true, whereas the former will
considerwhether it is true and obtain data to test its truth.
Suppose wemake the following assumptions: (1) the sex ratio at birth

is 50:50; (2) there is no tendency for boys or girls to run in a given family;
(3) the death rates in early years of life are similar for both sexes; (4) par-
ents do not make decisions to stop or continue having children based on
themix of sexes they already have; (5) we can ignore the problemof twins.
Thenthe solution is reasonable. (Provided there isnothingelse Ihaveover-
looked!) However, the first assumption is known to be false, as we shall
see in the next chapter. The second assumption is believed to be (approx-
imately) true but this belief is based on observation and analysis; there
is nothing logically inevitable about it. The third assumption is false, al-
though in economically developed societies, the disparity in the death
rates between sexes, although considerable in later life, is not great be-
fore adulthood.There isgoodevidence that the fourthassumption is false.
The fifth is not completely ignorable, since some children are twins, some
twins are identical and all identical twins are of the same sex.Wenowcon-
sider a data set that will help us to check our answer.
In an article in the magazine Chance, in 2001, Joseph Lee Rogers and

Debby Doughty attempt to answer the question, ‘Does having boys or
girls run in the family?’.3 The conclusion that they come to is that it does
not, or at least, if it does that the tendency is at best very weak. To estab-
lish this conclusion they use data from an American study, the National
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6 Circling the square

Longitudinal Survey of Youth (NLSY). This originally obtained a sample
of over 12 000 respondents aged 14–21 years in 1979. TheNLSY sample has
been followed up from time to time since. Rogers and Doughty use data
obtained in 1994, by which time the respondents were aged 29–36 years
and had had 15 000 children between them. The same data that they use
to investigate the sex distribution of families can be used to answer our
question.
Of the 6089 NLSY respondents who had had at least one child, 2444

had had exactly two children. In these 2444 families the distribution of
childrenwas boy–boy, 582, girl–girl, 530, boy–girl 666 and girl–boy, 666.
If we exclude girl–girl, the combination that is excluded by the ques-
tion, then we are left with 1914 families. Of these families 666 + 666 =
1332 had one boy and one girl so that the proportion of families with at
least one boy in which the other child is a girl is 1332/1914 � 0.70. So, in
fact, our requisite probability is not 2/3 as we previously suggested but 7/10
(approximately).
Or is it?We havemoved from a view of probability that tries to identify

equally probable cases, what is sometimes called classical probability, to
one thatuses relative frequencies.Thereare,however, severalobjections to
using this ratio as a probability, of which two are particularly important.
The first is that a little reflection shows that it is obvious that such a ratio
is itself subject to chance variation. To take a simple example, even if we
believe adie to be fairwewouldnot expect thatwheneverwe rolled thedie
six timeswewouldobtain exactly one 1, 2, 3, 4, 5&6.The secondobjection
is that even if this ratio is an adequate approximation to someprobability,
why should we accept that it is the probability that applies to Mr Brown?
After all, I havenot said thathe is either anAmerican citizenwhowas aged
14–21 in 1971 or has had children with such a person, yet this is the group
fromwhich the ratio was obtained.
The first objection might lead me to prefer a theoretical value such as

the 2/3 obtained by our first argument to the value of approximately 7/10
(which is of course very close to it) obtained by the second. In fact, statisti-
cians have developed anumber of techniques for decidinghow reasonable
such a theoretical value is.

A likely tale∗

One method is due to the great British statistician and geneticist R. A.
Fisher (1890–1962) whomwe shall encounter again in various chapters in
this book. This is based on his idea of likelihood. What you can do in a
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A likely tale∗ 7

circumstance like this, he points out, is to investigate each and every pos-
sible value for the probability from 0 to 1. You can then try each of these
values in turn and see how likely the data are given the value of the proba-
bility you currently assume. The data for this purpose are that of the 1914
relevant families: in 1332 the other child was a girl and in 582 it was a boy.
Let the probability in a given two-child family that the other child is a girl
where at least one child is male be P, where, for example, Pmight be 2/3 or
7/10 or indeedanyvaluewewish to investigate. Suppose thatwego through
the 1914 family recordsonebyone.Theprobability of anygiven record cor-
responding to amixed-sex family isP and theprobability of it correspond-
ing to a boys only family is (1−P). Suppose that we observe that the first
1332 families aremixed sex and the next 582 are boys only. The likelihood,
to use Fisher’s term, of this occurring is P × P × P · · · P, where there are
1332 such terms P, multiplied by (1−P )× (1−P )× (1−P ) · · · (1−P ), where
there are 582 such terms. Using the symbol L for likelihood, wemaywrite
this as

L = P 1332(1−P )582.

Now, of course, we have not seen the data in this particular order; in fact,
we know nothing about the order at all. However, the likelihood we have
calculated is the same for any given order so that all we need to do is mul-
tiply it by the number of orders (sequences) inwhich the data could occur.
This turns out to be quite unnecessary, however, since whatever the value
ofP,whether 2/3, 7/10 or someothervalue, thenumberofpossible sequences
is the sameso that ineachof suchcases thenumberwewouldmultiplyLby
would be the same. This number is thus irrelevant to our inferences about
P and, indeed, for any two values of P, the ratio of the two corresponding
values of Ldoes not dependon thenumber ofways inwhichwe can obtain
1332mixed-sex and 582 two-boy families.
It turnsout that the valueofP thatmaximises L is thatwhich is givenby

our empirical proportion so that we may write Pmax = 1332/1914. We can
now express the likelihood, L, of any value of P as a ratio of the likelihood
Lmax corresponding to Pmax. This has been done and plotted against all
possible values of P in the Figure 1.1. One can see that this ratio reaches a
maximum one at the observed proportion, indicated by a solid line, and
tails off rapidly either side. In fact, for our theoretical answer of 2/3, in-
dicated by the dashed line, the ratio is less than 1/42. Thus the observed
proportion is 42 timesmore likely to occur if the trueprobability is Pmax =
1332/1914 than if it is the theoretical value of 2/3 suggested.
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8 Circling the square
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Figure 1.1 Likelihood ratio for various values of the probability of the other child being
a girl given the NLSY sample data.

An unlikely tail?

This is all very well but the reader will justifiably protest that the best fit-
ting pattern will always fit the data better than some theory that issues a
genuine prediction. For example, nobody would seriously maintain that
the next time somebody obtains a sample of exactly 1914 persons having
exactly two children, at least one of which is male, they will also observe
that in 1332 cases the other is female. Another, perhaps not very different
proportion would obtain and this other proportion would of course not
only fit the data better than the theoretical probability of 2/3, but it would
also fit the data better than the proportion 1332/1914 previously observed.
In fact we have another data set with which we can check this propor-

tion. This comes from the US Census Bureau National Interview Survey,
a yearly random sample of families. Amongst the 342 018 households on
which data were obtained from 1987 to 1993, there were 42 888 families
with exactly two children, 33 365 with at least one boy. The split amongst
the 33 365 was boy–girl, 11 118, girl–boy, 10 913 and boy–boy 11 334. Thus
22 031 of the families had one boy and one girl and the proportion we
require is 22031/33 365�0.66,which is closer to the theoretical value than
our previous empirical answer. This suggests that we should not be too
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Right but irrelevant? 9

hasty in rejecting a plausible theoretical value in favour of some appar-
ently better fitting alternative. How can we decide when to reject such a
theoretical value?
This statistical problemof decidingwhendata should lead to rejection

of a theory has a very long history andwe shall look at attempts to solve it
in the next chapter.Without entering into details herewe consider briefly
the approach of significance testing which, again, is particularly associ-
ated with Fisher, although it did not originate with him. This is to imag-
ine for the moment that the theoretical value is correct and then pose the
question, ‘if the value is correct, how unusual are the data’.
Defining exactly what is meant by unusual turns out to be extremely

controversial. One line of argument suggests, however, that if we were to
reject the so-called null hypothesis that the true probability is 2/3, thenwe
have done so where the observed ratio is 1332/1914, which is higher than
2/3, andwouldbehonourboundtodosohadthe ratiobeenevenhigher.We
thus calculate the probability of observing 1332 or more mixed-sex fami-
lieswhen the trueprobability is 2/3. This sort of probability is referred to as
a ‘tail-area’ probability and, sparing the reader the details,4 in this case it
turnsout tobe0.00337.However,we could argue thatwewouldhavebeen
just as impressed by an observed proportion that was lower than the hy-
pothesised value 2/3 as by finding one that was higher, so that we ought to
double this probability. If we do, we obtain a value of 0.0067. This sort of
probability is referred to as a ‘P-value’ and is very commonly (manywould
say far too commonly) found in scientific, inparticularmedical, literature.
Should we reject or accept our hypothesised value? A conventional

‘level of significance’ often used is 5% or 0.05. If the P-value is lower than
this the hypothesis in question is ‘rejected’, although it is generally ad-
mitted that this is a very weak standard of significance. If we reject 2/3,
however, what are we going to put in its place? As we have already argued
it will be most unlikely for the true probability to be exactly equal to the
observed proportion. That being so, might 2/3 not be a better bet after all?
We shall not pursue this here, however. Instead we now consider a more
serious problem.

Right but irrelevant?

Why should we consider the probability we have been trying to estimate
as being relevant toMr Brown? There are all sorts of objections one could
raise.MrBrownmight be British, for example, but our data come froman
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10 Circling the square

American cohort. Why should such data be relevant to the question? Also
since Mr Brown’s other child either is or is not a girl what on earth can it
mean to speak of the probability of its being a girl?
This seemingly trivial difficulty turns out to be at the heart of a dis-

agreement between two major schools of statistical inference, the fre-
quentist and the Bayesian school, the latter being named after Thomas
Bayes, 1701–1761, an English non-conformist minister whose famous the-
oremwe shall meet in the next chapter.
The frequentist solution is to say that probabilities of single events are

meaningless. We have to consider (potentially) infinite classes of events.
Thus my original question is ill-posed and should perhaps have been, ‘if
we choose an individual at random and find that this individual is male
and has two children at least one of which is male, what is the probabil-
ity that the other is female?’ We then can consider this event as one that
is capable of repetition and the probability then becomes the long-run
relative frequency with which the event occurs.
The Bayesian solution is radically different. This is to suggest that the

probability in question is what you believe it to be since it represents your
willingness to bet on the relevant event. You are thus free todeclare it to be
anythingat all. For example, if youare still unconvincedby the theoretical
arguments I have given and the data that have been presented that, what-
ever the probability is, it ismuch closer to 2/3 than 1/2, you are perfectly free
to call the probability 1/2 instead. However, be careful! Betting has conse-
quences. If you believe that the probability is 1/2 and are not persuaded by
any evidence to the contrary, youmight be prepared to offer odds of evens
onthechildbeingaboy. Suppose Ioffered topayyou£5 if theother child is
a boy provided youpaidme£4 if the child is a girl. You ought to accept the
bet since the odds aremore attractive than evens, which you regard as ap-
propriate. If, however,we hadplayed this game for each family youwould
have lost 1332× 4 for only 582× 5 gained and I would be £2418 better off
at your expense!5

We shall not pursue these discussions further now. However, some of
these issues will reappear in later chapters and indeed from time to time
throughout the book. Instead, we now present another paradox.

TheWill Rogers phenomenon

Amedical officer ofpublichealthkeeps a trackyearbyyear of theperinatal
mortality rate in his district for all births delivered at home and also for
all those delivered at hospital using health service figures. (The perinatal
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