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Commutative Algebra
in the Cohomology of Groups

DAVE BENSON

Abstract. Commutative algebra is used extensively in the cohomology
of groups. In this series of lectures, I concentrate on finite groups, but I
also discuss the cohomology of finite group schemes, compact Lie groups,
p-compact groups, infinite discrete groups and profinite groups. I describe
the role of various concepts from commutative algebra, including finite gen-
eration, Krull dimension, depth, associated primes, the Cohen–Macaulay
and Gorenstein conditions, local cohomology, Grothendieck’s local duality,
and Castelnuovo–Mumford regularity.
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2 DAVE BENSON

1. Introduction

The purpose of these lectures is to explain how commutative algebra is used in
the cohomology of groups. My interpretation of the word “group” is catholic: the
kinds of groups in which I shall be interested include finite groups, finite group
schemes, compact Lie groups, p-compact groups, infinite discrete groups, and
profinite groups, although later in the lectures I shall concentrate more on the
case of finite groups, where representation theoretic methods are most effective.
In each case, there are finite generation theorems which state that under suitable
conditions, the cohomology ring is a graded commutative Noetherian ring; over
a field k, this means that it is a finitely generated graded commutative k-algebra.

Although graded commutative is not quite the same as commutative, the usual
concepts from commutative algebra apply. These include the maximal/prime
ideal spectrum, Krull dimension, depth, associated primes, the Cohen–Macaulay
and Gorenstein conditions, local cohomology, Grothendieck’s local duality, and
so on. One of the themes of these lectures is that the rings appearing in group co-
homology theory are quite special. Most finitely generated graded commutative
k-algebras are not candidates for the cohomology ring of a finite (or compact Lie,
or virtual duality, or p-adic Lie, or . . . ) group. The most powerful restrictions
come from local cohomology spectral sequences such as the Greenlees spectral
sequence Hs,t

m H∗(G, k) =⇒ H−s−t(G, k), which can be viewed as a sort of dual-
ity theorem. We describe how to construct such spectral sequences and obtain
information from them.

The companion article to this one, [Iyengar 2004], explains some of the back-
ground material that may not be familiar to commutative algebraists. A number
of references are made to that article, and for distinctiveness, I write [Sri].

2. Some Examples

For motivation, let us begin with some examples. We defer until the next
section the definition of group cohomology

H∗(G, k) = Ext∗kG(k, k)

(or see § 6 of [Sri]). All the examples in this section are for finite groups G over
a field of coefficients k.

(2.1) The first comment is that in the case where k is a field of characteristic
zero or characteristic not dividing the order of G, Maschke’s theorem in represen-
tation theory shows that all kG-modules are projective (see Theorem 3.1 of [Sri]).
So for any kG-modules M and N , and all i > 0, we have Exti

kG(M,N) = 0. In
particular, H∗(G, k) is just k, situated in degree zero. Given this fact, it makes
sense to look at examples where k has characteristic p dividing |G|.
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COMMUTATIVE ALGEBRA IN THE COHOMOLOGY OF GROUPS 3

(2.2) Next, we discuss finite abelian groups. See also § 7.4 of [Sri]. The Künneth
theorem implies that

(2.2.1) H∗(G1 × G2, k) ∼= H∗(G1, k) ⊗k H∗(G2, k).

So we decompose our finite abelian group as a direct product of cyclic groups of
prime power order. The factors of order coprime to the characteristic may be
thrown away, using (2.1). For a cyclic p-group in characteristic p, there are two
possibilities (Proposition 7.3 of [Sri]). If p = 2 and |G| = 2, then H∗(G, k) = k[x]
where x has degree one. In all other cases (i.e., p odd, or p = 2 and |G| ≥ 4), we
have H∗(G, k) = k[x, y]/(x2) where x has degree one and y has degree two. It
follows that if G is any finite abelian group then H∗(G, k) is a tensor product of
a polynomial ring and a (possibly trivial) exterior algebra.

(2.2.2) In particular, if G is a finite elementary abelian p-group of rank r (i.e.,
a product of r copies of Z/p) and k is a field of characteristic p, then the coho-
mology ring is as follows. For p = 2, we have

H∗((Z/2)r, k) = k[x1, . . . , xr]

with |xi| = 1, while for p odd, we have

H∗((Z/p)r, k) = Λ(x1, . . . , xr) ⊗ k[y1, . . . , yr]

with |xi| = 1 and |yi| = 2. In the latter case, the nil radical is generated by
x1, . . . , xr, and in both cases the quotient by the nil radical is a polynomial ring
in r generators.

(2.3) The next comment is that if S is a Sylow p-subgroup of G then a transfer
argument shows that the restriction map from H∗(G, k) to H∗(S, k) is injective.
What’s more, the stable element method of Cartan and Eilenberg [1956] identifies
the image of this restriction map. For example, if S � G then H∗(G, k) =
H∗(S, k)G/S , the invariants of G/S acting on the cohomology of S (see § 7.6 of
[Sri]). It follows that really important case is where G is a p-group and k has
characteristic p. Abelian p-groups are discussed in (2.2), so let’s look at some
nonabelian p-groups.

(2.4) Consider the quaternion group of order eight,

(2.4.1) Q8 = 〈g, h | gh = h−1g = hg−1〉.
There is an embedding

g �→ i, h �→ j, gh �→ k, g2 = h2 = (gh)2 �→ −1

of Q8 into the unit quaternions (i.e., SU(2)), which form a three dimensional
sphere S3. So left multiplication gives a free action of Q8 on S3; in other words,
each nonidentity element of the group has no fixed points on the sphere. The
quotient S3/Q8 is an orientable three dimensional manifold, whose cohomology
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4 DAVE BENSON

therefore satisfies Poincaré duality. The freeness of the action implies that we
can choose a CW decomposition of S3 into cells permuted freely by Q8. Taking
cellular chains with coefficients in F2, we obtain a complex of free F2Q8-modules
of length four, whose homology consists of one copy of F2 at the beginning and
another copy at the end. Making suitable choices for the cells, this looks as
follows.

0 → F2Q8

(
g−1
h−1

)
−−−−−→ (F2Q8)2

(
h−1 hg+1
gh+1 g−1

)

−−−−−−−−−→ (F2Q8)2
(g−1 h−1)−−−−−−−→ F2Q8 → 0

So we can form a Yoneda splice of an infinite number of copies of this sequence
to obtain a free resolution of F2 as an F2Q8-module. The upshot of this is that
we obtain a decomposition for the cohomology ring

H∗(Q8, F2) = F2[z] ⊗F2 H∗(S3/Q8; F2)(2.4.2)

= F2[x, y, z]/(x2 + xy + y2, x2y + xy2),

where z is a polynomial generator of degree four and x and y have degree one.
This structure is reflected in the Poincaré series

∞∑

i=0

ti dimHi(Q8, F2) = (1 + 2t + 2t2 + t3)/(1 − t4).

The decomposition (2.4.2) into a polynomial piece and a finite Poincaré duality
piece can be expressed as follows (cf. § 11):

H∗(Q8, F2) is a Gorenstein ring.

(2.5) We recall that the meanings of Cohen–Macaulay and Gorenstein in this
context are as follows. Let R be a finitely generated graded commutative k-
algebra with R0 = k and Ri = 0 for i < 0. Then Noether’s normalization lemma
guarantees the existence of a homogeneous polynomial subring k[x1, . . . , xr] over
which R is finitely generated as a module.

Proposition 2.5.1. If R is of the type described in the previous paragraph, then
the following are equivalent .

(a) There exists a homogeneous polynomial subring k[x1, . . . , xr] ⊆ R such
that R is finitely generated and free as a module over k[x1, . . . , xr].

(b) If k[x1, . . . , xr] ⊆ R is a homogeneous polynomial subring such that R is
finitely generated as a k[x1, . . . , xr]-module then R a free k[x1, . . . , xr]-module.

(c) There exist homogeneous elements of positive degree x1, . . . , xr forming a
regular sequence, and R/(x1, . . . , xr) has finite rank as a k-vector space.

We say that R is Cohen–Macaulay of dimension r if the equivalent conditions of
the above proposition hold.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521831954 - Trends in Commutative Algebra
Edited by Luchezar L. Avramov, Mark Green, Craig Huneke, Karen E. Smith and Bernd Sturmfels
Excerpt
More information

http://www.cambridge.org/0521831954
http://www.cambridge.org
http://www.cambridge.org


COMMUTATIVE ALGEBRA IN THE COHOMOLOGY OF GROUPS 5

(2.6) If R is Cohen–Macaulay, and the quotient ring R/(x1, . . . , xr) has a sim-
ple socle, then we say that R is Gorenstein. Whether this condition holds is
independent of the choice of the polynomial subring. Another way to phrase the
condition is that R/(x1, . . . , xr) is injective as a module over itself. This quotient
satisfies Poincaré duality, in the sense that if the socle lies in degree d (d is called
the dualizing degree) and we write

p(t) =
∞∑

i=0

ti dimk(R/(x1, . . . , xr))i

then

(2.6.1) tdp(1/t) = p(t).

Setting

P (t) =
∞∑

i=0

ti dimk Ri,

the freeness of R over k[x1, . . . , xr] implies that P (t) is the power series expansion
of the rational function p(t)/

∏r
i=1(1− t|xi|). So plugging in equation (2.6.1), we

obtain the functional equation

(2.6.2) P (1/t) = (−t)rt−aP (t),

where a = d − ∑r
i=1(|xi| − 1). We say that R is Gorenstein with a-invariant a.

Another way of expressing the Gorenstein condition is as follows. If R (as
above) is Cohen–Macaulay, then the local cohomology Hs,t

m R is only nonzero for
s = r. The graded dual of Hr,∗

m R is called the canonical module, and written
ΩR. To say that R is Gorenstein with a-invariant a is the same as saying that
ΩR is a copy of R shifted so that the identity element lies in degree r − a.

In the case of H∗(Q8, F2), we can choose the polynomial subring to be k[z].
The ring H∗(Q8, F2) is a free module over k[z] on six generators, corresponding
to a basis for the graded vector space H∗(S3/Q8; F2) ∼= H∗(Q8, F2)/(z), which
satisfies Poincaré duality with d = 3. So in this case the a-invariant is 3−(4−1) =
0. We have p(t) = 1 + 2t + 2t2 + t3 and P (t) = p(t)/(1 − t4).

(2.7) A similar pattern to the one seen above for Q8 holds for other groups.
Take for example the group GL(3, 2) of 3 × 3 invertible matrices over F2. This
is a finite simple group of order 168. Its cohomology is given by

H∗(GL(3, 2), F2) = F2[x, y, z]/(x3 + yz)

where deg x = 2, deg y = deg z = 3. A homogeneous system of parameters
for this ring is given by y and z, and these elements form a regular sequence.
Modulo the ideal generated by y and z, we get F2(x)/(x3). This is a finite
Poincaré duality ring whose dualizing degree is 4. Again, this means that the
cohomology is a Gorenstein ring with a-invariant 4− (3− 1)− (3− 1) = 0, but it
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6 DAVE BENSON

does not decompose as a tensor product the way it did for the quaternion group
(2.4.2).

(2.8) It is not true that the cohomology ring of a finite group is always Goren-
stein. For example, the semidihedral group of order 2n (n ≥ 4),

(2.8.1) G = SD2n = 〈g, h | g2n−1
= 1, h2 = 1, h−1gh = g2n−2−1〉

has cohomology ring

H∗(SD2n , F2) = F2[x, y, z, w]/(xy, y3, yz, z2 + x2w)

with deg x = deg y = 1, deg z = 3 and deg w = 4. This ring is not even Cohen–
Macaulay. But what is true is that whenever the ring is Cohen–Macaulay, it is
Gorenstein with a-invariant zero. See § 11 for further details.

Even if the cohomology ring is not Cohen–Macaulay, there is still a certain
kind of duality, but it is expressed in terms of a spectral sequence of Greenlees,
Hs,t

m H∗(G, k) =⇒ H−s−t(G, k). Let us see in the case above of the semidihedral
group, what this spectral sequence looks like. And let’s do it in pictures. We’ll
draw the cohomology ring as follows.
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The vertical coordinate indicates cohomological degree, and the horizontal co-
ordinate is just for separating elements of the same degree. To visualize the
homology, just turn this picture upside down by rotating the page, as follows.

(2.8.2)
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COMMUTATIVE ALGEBRA IN THE COHOMOLOGY OF GROUPS 7

We compute local cohomology using the stable Koszul complex for the homo-
geneous system of parameters w, x,

0 → H∗(G, F2) → H∗(G, F2)[w−1] ⊕ H∗(G, F2)[x−1] → H∗(G, F2)[w−1x−1] → 0

where the subscripts denote localization by inverting the named element. A
picture of this stable Koszul complex is as follows.
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The local cohomology of H∗(G, k) is just the cohomology of this complex. In
degree zero there is no cohomology. In degree one there is some cohomology,
namely the hooks that got introduced when w was inverted,
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8 DAVE BENSON

H1
mH∗(SD2n , F2) =
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In degree two, we get the part of the plane not hit by either of the two degree
one pieces,

H2
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Now the differential d2 in this spectral sequence increases local cohomological
degree by two and decreases internal degree by one, and the higher differentials
are only longer. So there is no room in this example for nonzero differentials. It
follows that the spectral sequence takes the form of a short exact sequence

0 → H1,t−1
m H∗(SD2n , F2) → H−t(SD2n , F2) → H2,t−2

m H∗(SD2n , F2) → 0.

This works fine, because H∗(SD2n , F2) is the graded dual of H∗(SD2n , F2), as
shown in (2.8.2). So the short exact sequence places the hooks of H1

m underneath
every second nonzero column in H2

m to build H∗(SD2n , F2). Notice that the
hooks appear inverted, so that there is a separate Poincaré duality for a hook.

The same happens as in this case whenever the depth and the Krull dimension
differ by one. The kernel of multiplication by the last parameter, modulo the
previous parameters, satisfies Poincaré duality with dualizing degree determined
by the degrees of the parameters; in particular, the top degree of this kernel
is determined. In the language of commutative algebra, this can be viewed in
terms of the Castelnuovo–Mumford regularity of the cohomology ring. See § 14
for more details.

The reader who wishes to understand these examples better can skip directly
to § 14, and refer back to previous sections as necessary to catch up on definitions.
Conjecture 14.6.1 says that for a finite group G, Reg H∗(G, k) is always zero. This
conjecture is true when the depth and the Krull dimension differ by at most one,
as in the above example. It is even true when the difference is two, by a more
subtle transfer argument sketched in § 14 and described in detail in [Benson 2004].

3. Group Cohomology

For general background material on cohomology of groups, the textbooks I
recommend are [Adem and Milgram 1994; Benson 1991b; Brown 1982; Cartan
and Eilenberg 1956; Evens 1991]. The commutative algebra texts most relevant
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COMMUTATIVE ALGEBRA IN THE COHOMOLOGY OF GROUPS 9

to these lectures are [Bruns and Herzog 1993; Eisenbud 1995; Grothendieck 1965;
1967; Matsumura 1989].

(3.1) For a discrete group, the easiest way to think of group cohomology is as
the Ext ring (see § 5 of [Sri]). If G is a group and k is a commutative ring of
coefficients, we define group cohomology via

H∗(G, k) = Ext∗
ZG(Z, k) ∼= Ext∗kG(k, k).

Here, the group ring kG consists of formal linear combinations
∑

λigi of elements
of the group G with coefficients in k. The cup product in cohomology comes
from the fact that kG is a Hopf algebra (see § 1.8 of [Sri]), with comultiplication
∆(g) = g⊗g. Another part of the Hopf structure on kG is the augmentation map
kG → k,

∑
λigi �→

∑
λi, which is what allows us to regard k as a kG-module.

Cup product and Yoneda product define the same multiplicative structure,
and this makes cohomology into a graded commutative ring, in the sense that

ab = (−1)|a||b|ba,

where |a| denotes the degree of an element a (see Prop. 5.5 of [Sri]). In contrast,
the Ext ring of a commutative local ring is seldom graded commutative; this
happens only for a restricted class of complete intersections. The group ring of
an abelian group is an example of a complete intersection (see § 1.4 of [Sri]).

More generally, if M is a left kG-module then

H∗(G,M) = Ext∗
ZG(Z,M) ∼= Ext∗kG(k,M)

is a graded right H∗(G, k)-module.
It is a nuisance that most texts on commutative algebra are written for strictly

commutative graded rings, where ab = ba with no sign. I do not know of an
instance where the signs make a theorem from commutative algebra fail. It is
worth pointing out that if a is an element of odd degree in a graded commutative
ring then 2a2 = 0. So 2a is nilpotent, and it follows that modulo the nil radical
the ring is strictly commutative. On the other hand, it is more than a nuisance
that commutative algebraists often assume that their graded rings are generated
by elements of degree one, because this is not at all true for cohomology rings.
Nor, for that matter, is it true for rings of invariants.

(3.2) A homomorphism of groups ρ : H → G gives rise to a map the other way

ρ∗ : H∗(G,M) → H∗(H,M)

for any kG-module M . If ρ : H → G is an inclusion, this is called the restriction
map, and denoted resG,H . If G is a quotient group of H and ρ : H → G is the
quotient map, then it is called the inflation map, and denoted infG,H .
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10 DAVE BENSON

(3.3) For a topological group (this includes compact Lie groups as well as dis-
crete groups), a theorem of Milnor [1956] says that the infinite join

EG = G � G � · · ·

is weakly contractible, G acts freely on it, and the quotient BG = EG/G together
with the principal G-bundle p : EG → BG forms a classifying space for principal
G-bundles over a paracompact base. A topologist refers to H∗(BG; k) as the
classifying space cohomology of G. Again, it is a graded commutative ring. For
example, for the compact unitary group U(n), the cohomology ring

(3.3.1) H∗(BU(n); k) ∼= k[c1, . . . , cn]

is a polynomial ring over k on n generators c1, . . . , cn with |ci| = 2i, called
the Chern classes. Similarly, for the orthogonal group O(2n), if k is a field of
characteristic not equal to two, then we have

(3.3.2) H∗(BO(2n); k) ∼= k[p1, . . . , pn]

is a polynomial ring over k on n generators p1, . . . , pn with |pi| = 4i, called the
Pontrjagin classes. For SO(2n) we have

(3.3.3) H∗(BSO(2n); k) ∼= k[p1, . . . , pn−1, e].

where e ∈ H2n(BSO(2n); k) is called the Euler class, and satisfies e2 = pn. We
shall discuss these examples further in § 12.

If G is a discrete group then BG is an Eilenberg–MacLane space for G; in
other words, π1(BG) ∼= G and πi(BG) = 0 for i > 1. The relationship between
group cohomology and classifying space cohomology for G discrete is that the
singular chains C∗(EG) form a free resolution of Z as a ZG-module. Then there
are isomorphisms

H∗(BG; k) = H∗ HomZ(C∗(BG), k) ∼= H∗ HomZG(C∗(EG), k) ∼= H∗(G, k),

and the topologically defined product on the left agrees with the algebraically
defined product on the right.

(3.4) Another case of interest is profinite groups. A profinite group is defined
to be an inverse limit of a system of finite groups, which makes it a compact,
Hausdorff, totally disconnected topological group. For example, writing Z

∧
p for

the ring of p-adic integers, SLn(Z
∧
p ) is a profinite group. The open subgroups of

a profinite group are the subgroups of finite index.
Classifying space cohomology turns out to be the wrong concept for a profinite

group. A better concept is continuous cohomology, which is defined as follows
[Serre 1965a]. Let G = lim←−

U∈U

G/U be a profinite group, where U is a system of

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521831954 - Trends in Commutative Algebra
Edited by Luchezar L. Avramov, Mark Green, Craig Huneke, Karen E. Smith and Bernd Sturmfels
Excerpt
More information

http://www.cambridge.org/0521831954
http://www.cambridge.org
http://www.cambridge.org

