Quantum mechanics is our most successful physical theory. However, it raises conceptual issues that have perplexed physicists and philosophers of science for decades. This book develops a new approach, based on the proposal that quantum theory is not a complete, final theory, but is in fact an emergent phenomenon arising from a deeper level of dynamics. The dynamics at this deeper level is taken to be an extension of classical dynamics to non-commuting matrix variables, with cyclic permutation inside a trace used as the basic calculational tool. With plausible assumptions, quantum theory is shown to emerge as the statistical thermodynamics of this underlying theory, with the canonical commutation–anticommutation relations derived from a generalized equipartition theorem. Brownian motion corrections to this thermodynamics are argued to lead to state vector reduction and to the probabilistic interpretation of quantum theory, making contact with recent phenomenological proposals for stochastic modifications to Schrödinger dynamics.

STEPHEN L. ADLER received his Ph.D. degree in theoretical physics from Princeton. He has been a Professor in the School of Natural Sciences at the Institute for Advanced Study since 1969, and from 1979 to 2003 held the State of New Jersey Albert Einstein Professorship there.

Dr. Adler’s research has included seminal papers in current algebras, sum rules, perturbation theory anomalies, and high energy neutrino processes. Dr. Adler has also done important work on neutral current phenomenology, strong field electromagnetic processes, acceleration methods for Monte Carlo algorithms, induced gravity, non-Abelian monopoles, and models for quark confinement. For nearly twenty years he has been studying embeddings of standard quantum mechanics in larger mathematical frameworks, with results described in this volume.

Dr. Adler is a member of the National Academy of Sciences, and is a Fellow of the American Physical Society, the American Academy of Arts and Sciences, and the American Association for the Advancement of Science. He received the J. J. Sakurai Prize in particle phenomenology, awarded by the American Physical Society, in 1988, and the Dirac Prize and Medal awarded by the International Center for Theoretical Physics in Trieste, in 1998.
QUANTUM MECHANICS AS AN EMERGENT PHENOMENON

The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory

STEPHEN L. ADLER

Institute for Advanced Study, Princeton
Quantum mechanics as an emergent phenomenon: the statistical dynamics of global unitary invariant matrix models as the precursor of quantum field theory

Stephen L. Adler

First published 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

© S. L. Adler 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14 pt. System l\TeX \[TB\]

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data

Adler, Stephen L.
Quantum mechanics as an emergent phenomenon: the statistical dynamics of global unitary invariant matrix models as the precursor of quantum field theory / Stephen L. Adler.

p. cm.
Includes bibliographical references and index.
ISBN 0 521 83194 6

1. Quantum theory. I. Title: Statistical dynamics of global unitary invariant matrix models as the precursor of quantum field theory. II. Title: QC174.12.A32 2004 530.12-dc22 2003064019

ISBN 0 521 83194 6 hardback
To Sarah Brett-Smith, with love and admiration
Contents

Acknowledgements x

Introduction and overview 1
1 The quantum measurement problem 2
2 Reinterpretations of quantum mechanical foundations 6
3 Motivations for believing that quantum mechanics is incomplete 9
4 An overview of this book 13
5 Brief historical remarks on trace dynamics 18

1 Trace dynamics: the classical Lagrangian and Hamiltonian dynamics of matrix models 21
1.1 Bosonic and fermionic matrices and the cyclic trace identities 21
1.2 Derivative of a trace with respect to an operator 24
1.3 Lagrangian and Hamiltonian dynamics of matrix models 27
1.4 The generalized Poisson bracket, its properties, and applications 29
1.5 Trace dynamics contrasted with unitary Heisenberg picture dynamics 32

2 Additional generic conserved quantities 39
2.1 The trace “fermion number” N 39
2.2 The conserved operator Ĉ 42
2.3 Conserved quantities for continuum spacetime theories 52
2.4 An illustrative example: a Dirac fermion coupled to a scalar Klein–Gordon field 58
2.5 Symmetries of conserved quantities under \(p_F \leftrightarrow q_F \) 62

3 Trace dynamics models with global supersymmetry 64
3.1 The Wess–Zumino model 64
3.2 The supersymmetric Yang–Mills model 67
3.3 The matrix model for M theory 70
3.4 Superspace considerations and remarks 72

4 Statistical mechanics of matrix models 75
4.1 The Liouville theorem 76
4.2 The canonical ensemble 81
4.3 The microcanonical ensemble 88
4.4 Gauge fixing in the partition function 93
4.5 Reduction of the Hilbert space modulo i_{eff} 100
4.6 Global unitary fixing 106

5 The emergence of quantum field dynamics 117
5.1 The general Ward identity 119
5.2 Variation of the source terms 124
5.3 Approximations/assumptions leading to the emergence of quantum theory 128
5.4 Restrictions on the underlying theory implied by further Ward identities 139
5.5 Derivation of the Schrödinger equation 147
5.6 Evasion of the Kochen–Specker theorem and Bell inequality arguments 151

6 Brownian motion corrections to Schrödinger dynamics and the emergence of the probability interpretation 156
6.1 Scenarios leading to the localization and the energy-driven stochastic Schrödinger equations 157
6.2 Proof of reduction with Born rule probabilities 170
6.3 Phenomenology of stochastic reduction – reduction rate formulas 174
6.4 Phenomenology of energy-driven reduction 175
6.5 Phenomenology of reduction by continuous spontaneous localization 185

7 Discussion and outlook 190
Appendices 193

Appendix A: Modifications in real and quaternionic Hilbert space 194
Appendix B: Algebraic proof of the Jacobi identity for the generalized Poisson bracket 194
Appendix C: Symplectic structures in trace dynamics 198
Appendix D: Gamma matrix identities for supersymmetric trace dynamics models 201
Appendix E: Trace dynamics models with operator gauge invariance 204
Contents

Appendix F: Properties of Wightman functions needed for reconstruction of local quantum field theory 206
Appendix G: BRST invariance transformation for global unitary fixing 208

References 212
Index 220
I have many people to thank for their assistance in aspects of this work. The discovery by my thesis student Andrew Millard of the conservation of \tilde{C} provided the underpinning for the entire project. I am greatly indebted to him, and to my other collaborators in the course of parts of this work, Gyan Bhanot, Dorje Brody, Todd Brun, Larry Horwitz, Lane Hughston, Achim Kempf, Indrajit Mitra, John Weckel, and Yong-Shi Wu. I am grateful to Jeeva Anandan, Angelo Bassi, Todd Brun, Lajos Diósi, Larry Horwitz, Lane Hughston, Gerald Goldin, Stanley Liu, Peter Morgan, Philip Pearle, Artem Starodubtsev, and several anonymous publisher’s reviewers, for many insightful comments on the first draft of this book. I am particularly indebted to Philip Pearle for detailed comments on the Introduction and Chapter 6, to Larry Horwitz for a careful reading of the entire manuscript, and to Todd Brun and Peter Morgan for remarks that led to the present form of Sec. 5.6. Finally, I wish to thank my wife Sarah for her perceptive support throughout this long project.

I have benefited from conversations and/or email correspondence with a great many others as well; a list (undoubtedly incomplete) includes: Philip Anderson, John Bahcall, Vijay Balasubramanian, Lowell Brown, Jeremy Butterfield, Tian-Yu Cao, Sudip Chakravarty, Freeman Dyson, Sheldon Goldstein, GianCarlo Ghirardi, Siyuan Han, William Happer, James Hartle, Roman Jackiw, Abraham Klein, John Klauder, Pawan Kumar, Joel Lebowitz, Anthony Leggett, James Lukens, G. Mangano, Herbert Neuberger, Ian Percival, Michael Ramalis, Soo-Jong Rey, Lee Smolin, Yuri Suhov, Leo Stodolsky, Terry Tao, Charles Thorn, Sam Treiman, Walter Troost, Steven Weinberg, Frank Wilczek, David Wineland, and Edward Witten.

Parts of this book are based on papers that were previously published in *Nuclear Physics B* (Adler, 1994; Adler and Millard, 1996; Adler, 1997a) and in *Physics Letters* B (Adler, 1997b; Adler and Horwitz, 2003), and I wish to thank Elsevier Science, Ltd. for permission to use this material. I similarly wish to thank Institute of Physics Publishing Ltd. for permission to use material originally published in
Acknowledgements

I also wish to acknowledge the hospitality of the Aspen Center for Physics, and of both the Department of Applied Mathematics and Theoretical Physics and Clare Hall at Cambridge University, as well as my home base at the Institute for Advanced Study in Princeton. The Albert Einstein Professorship that I held while writing this book was partially funded by the State of New Jersey, and my work is also supported in part by the Department of Energy under Grant No. DE-FG02-90ER40542.