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chapter 1

Numbers and objects

A striking feature of numbers is their enormous flexibility. A quality like
colour, for instance, can only be conceived for visual objects, so that we
have the notion of a red flower, but not the notion of a red thought. In
contrast to that, there seem to be no restrictions on the objects numbers
can apply to. In 1690 John Locke put it this way, in his ‘Essay Concerning
Human Understanding’:

number applies itself to men, angels, actions, thoughts; everything that either doth
exist, or can be imagined. (Locke 1690: Book II, ch. XVI, § 1)

This refers to our usage of numbers as in ‘four men’ or ‘four angels’, where
we identify a cardinality. This number assignment works for any objects,
imagined or existent, no matter what qualities they might have otherwise;
the only criterion here is that the objects must be distinct in order to be
counted. In a seminal work on numbers from the nineteenth century, the
mathematician and logician Gottlob Frege took this as an indication for
the intimate relationship between numbers and thought, a relationship that
will be a recurring topic throughout this book:

The truths of arithmetic govern all that is numerable. This is the widest domain of
all; for to it belongs not only the existent, not only the intuitable, but everything
thinkable. Should not the laws of number, then, be connected very intimately with
the laws of thought?1 (Frege 1884: § 14)

And this is only one respect in which numbers are flexible. Not only can
we assign them to objects of all kinds, we can also assign them to objects
in ways that are so diverse that, on first sight, they seem not to be related at
all. Of these number assignments, the cardinality assignment that is based
on counting is probably the first that comes to mind when thinking of

1 This is quoted from the translation provided by John Austin (1950). One might want to replace
‘numerable’ by the more specific term ‘countable’ here, since this translation would be closer to
Frege’s term ‘zählbar’ in the German original.

9



10 Numbers, Language, and the Human Mind

numbers and objects, but it is by no means the only way we can assign
numbers to objects.2

The same number, say 3, can be used to give the cardinality of pens on
my desk (‘three pens’); to indicate, together with a unit of measurement,
the amount of wine needed for a dinner with friends (‘three litres of wine’)
or the temperature of the mineral water in my glass (‘water of 3 ◦C’); it
can tell us the rank of a runner in a Marathon race (‘the third runner’);
or identify the bus that goes to the opera (‘bus #3’ / ‘the #3 bus’). The
following example from a paper on the acquisition of number concepts by
Karen Fuson and James Hall illustrates, in one sentence, the various ways
in which we employ numbers in our daily lives:

Despite a seventy-eight yard run by number thirty-four the Bears lost by two touch-
downs and dropped into sixth place. (Fuson and Hall 1983: 49)

What is it that makes numbers so flexible, allowing them to occur natu-
rally in so many different contexts? How are their different usages related
to each other? To answer these questions, let us have a closer look at the
different ways numbers apply to objects. In a first approach, let us distin-
guish three kinds of number assignments: cardinal, ordinal, and nominal
assignments. To give you an idea of what I mean by this classification, I
give a brief characterisation for each of these number assignments in the
following paragraphs (we will analyse them in more detail later in this
chapter).

We encounter cardinal number assignments in contexts like ‘three pens’,
‘three litres of wine’ and ‘three degrees Celsius’, where the number indicates
how many. In our examples the number indicates how many pens there
are, how many litres of wine, and how many degrees Celsius. In the first
case, ‘three’ identifies the cardinality of a set of objects: it tells us how many
elements the set of pens has. In the second case, ‘three’ quantifies over litres,
and by so doing identifies, say, the amount of wine needed for dinner. In
‘three degrees Celsius’, ‘three’ quantifies over degrees of temperature.

Ordinal number assignments are illustrated by our Marathon exam-
ple above, ‘the third runner’. Unlike in cardinal assignments, the number
does not apply to a set, but to an individual element of a set; more pre-
cisely, to an individual element of a sequence. For instance, in ‘the third
runner’, 3 is not the number of the entire set of Marathon participants:

2 Although I speak of ‘numbers and objects’ here, you should be aware of the fact that numbers
themselves might also be among the objects, that is, for instance, among the things that are counted.
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it indicates the rank of one particular person within the sequence of
runners.

Nominal number assignments are ones like ‘bus #3’. This is probably
not what you would call a typical number context (Fuson and Hall (1983)
go so far as to call them ‘non-numerical number contexts’, which sounds a
bit like a contradiction in terms). However, nominal number assignments
are actually quite common in our daily lives; we encounter them in the
numbering of football players, in subway and bus systems, and also in
telephone numbers and in the numbers on an ID card, to name just a few
examples. What these cases have in common is the fact that the numbers
identify objects within a set: in nominal assignments, numbers are used
like proper names. So rather than thinking of names like ‘Mike’ or ‘Lucy’
for buses, we just assign them numbers when we want to identify them, in
the same way that we assign numbers to the members of a football team,
employ them as telephone numbers, or use ID numbers as a means to
identify students within a university.

Figure 1 shows a photograph I took on Fehmarn, an island in the Baltic
Sea. As you can see, the lamb in this picture was given the number ‘289’.
This is an instance of a nominal number assignment that distinguishes
sheep and might for instance help the farmer to keep track of which lamb
belongs to which mother sheep, or which sheep are on which part of the
dyke.

So when we investigate the different ways we apply numbers to objects,
we must include in our analysis nominal number assignments as well as
cardinal and ordinal usages of numbers. A theory that allows us to dis-
cuss the different usages under a unified notion of number assignments
is the Representational Theory of Measurement, a theory that has been
developed within the fields of philosophy and psychology.3 The Represen-
tational Theory of Measurement is concerned with the features that make
a number assignment significant; it aims to establish the criteria that make
sure that the number we assign to an object does in fact tell us something
about the property we want to assess (this property might be, for instance,
cardinality, or volume, or the rank in a sequence).

I will use the machinery of this theory for a somewhat different purpose,
putting it into service for our investigation of numbers and objects. In par-
ticular, I am going to employ the Representational Theory of Measurement

3 Cf. Stevens (1946); Suppes and Zinnes (1963); Krantz et al. (1971); Roberts (1979); Narens (1985). The
Representational Theory has its roots in the philosophical works of Fechner (1858); Helmholtz (1887);
Mach (1896); Hölder (1901); and Russell (1903).
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Figure 1 Nominal number assignment: a numbered lamb on Fehmarn

as a generalised theory of number assignments that can give us a handle on
the different ways we assign numbers to objects and allows us to find out
which properties of numbers we make use of in each case. As a result, we
will be in a position to identify the crucial properties that numbers need to
have.

In order to take into account all meaningful assignments of numbers
to objects, the Representational Theory takes a very broad view of ‘mea-
surement’. Within this framework, any assignment of numbers to objects is
regarded as an instance of measurement, as long as certain relations between
the numbers represent relations between the objects. So, for example, we
can regard the correlation between the pile of books in Figure 2 and the
numbers from 1 to 6 as a kind of measurement, because the numbers express
a relation that holds between the books, namely the relation ‘lies further
up’. In our example, books receive higher or lower numbers depending
on the higher or lower position they occupy within the pile: if a book lies
further to the top than another book, it receives a higher number than that
book; and vice versa, if a book receives a higher number than another book,
you know that it must lie further up than that book.4 This is depicted in
Figure 2: the bottom book has been assigned the number 1, the next book
has been numbered ‘2’, and so on, with the top book receiving the highest
number in our set, namely 6. Hence, the property we ‘measure’ in Figure
2 is the position of a book in relation to other books in the pile, and this
4 Hence, this number assignment is not an instance of counting, where the books could receive numbers

in any order, that is, their relative position would not play a role. We will discuss counting as a
subroutine in number assignments below.



Numbers and objects 13
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Figure 2 Numbering of books as a form of ‘measurement’

property is identified by the ‘>’ relation that holds between the numbers
we assigned to the books. (Note that ‘>’ is just the ordering relation for
our number sequence here, hence ‘2 > 1’ can be understood as ‘2 comes
after 1 in the number sequence’ and does not necessarily relate to a quan-
titative view of numbers, as the reading ‘greater than’ might suggest. For
the time being we leave it open what status numbers have and how their
ordering might work. We will tackle this question in the following two
chapters.)

Calling this kind of book numbering an instance of ‘measurement’ may
strike you as a bit odd, since this is not what we normally mean when we talk
about measuring objects. Our use of the term ‘measurement’ is normally re-
stricted to cases like the three litres of wine from our dinner-example above,
that is, cases where the number assignment tells us something about prop-
erties like volume (as in the dinner-example), weight, length, temperature,
and so on.

However, while being at odds with our pre-theoretical terminology, it
is exactly this generalisation that makes the Representational Theory so
powerful for our investigation of number contexts. By expanding the no-
tion of ‘measurement’ to include all meaningful assignments of numbers
to objects, the Representational Theory can capture the whole range of
number contexts within one unified framework.

To avoid unnecessary terminological confusion, though, I will talk of
measurementRTM when I use ‘measurement’ as a technical term within the
Representational Theory of Measurement, and where possible I will use
the more intuitive term ‘(meaningful) number assignment’. Without su-
perscript, ‘measurement’ will refer to those number assignments where we
measure properties like weight, length, or temperature (in accordance with
our pre-theoretical terminology).

Applying the Representational Theory to our analysis of the relationship
between numbers and objects does not only allow us to determine what is
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common to all number contexts. As I am going to show in this chapter,
it will also enable us to identify the characteristic features of the different
kinds of number assignments, and to relate them to each other within a
unified framework. Together this will give us a clear idea how numbers
work and, in doing so, will give us the key to see what properties are
crucial for our concept of numbers and what it is that makes them so
powerful.

Let me now introduce the basic elements of the Representational Theory.
As mentioned in the introduction, here I will concentrate on the essential
theoretical concepts that are relevant for our investigation of numbers and
the purpose they serve within the model, while the technical definitions
are spelled out in the appendices. You can find the definitions relevant to
the present chapter in Appendix 1.

The Representational Theory of Measurement is based on three principal
notions: measurementRTM, the scales underlying a number assignment, and
the features that make a numerical statement meaningful. Let us have a
look at these in turn.

‘MeasurementRTM’ is defined as a mapping between empirical objects
(in the above example, the books) and numbers. As mentioned above, we
want to express certain relations between our objects by this mapping.
This is determined by two requirements. The first requirement is that the
objects and the numbers form relational structures, that is, sets of elements
that stand in specific relationships to each other. For instance, in the book
example we regarded the books not as unrelated individual objects, but as
elements of a particular pile. The relational structure is here constituted
by the relation ‘lies further up’. The relation between the numbers that
we focused on in our number assignment was ‘>’. All other relations that
might hold between the objects (for example, the size of the books) or
between the numbers (for example, odd numbers versus even numbers) are
ignored for the purposes of this measurement. The two relational structures
are distinguished as numerical relational structure (the relational structure
constituted by the numbers) and empirical relational structure (the one
established by the objects, here: the pile of books).

The second requirement for measurementRTM is that the mapping un-
derlying our number assignment be homomorphic. This means that it should
translate the property we want to measure in the objects into a property of
our numbers. A mapping from a relational structure A (for example, the
pile of books) into a relational structure B (the numbers) is homomorphic
when it not only correlates the elements of A and B, but also preserves the
relations between them. In our example we did not just randomly line up
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books and numbers, but we linked them in a way such that the relation
‘lies further up’ from the empirical relational structure (the pile of books)
was associated with the ‘>’ relation in our numerical relational structure
(the numbers). So if I tell you that one book received the number 1 and
another book got the number 3, you know that the second book lies further
up than the first one, because 3 > 1.

Had I assigned numbers to books without taking into account the rela-
tion ‘lies further up’, it would not help you at all to know which numbers
two books received if you wanted to find out which one lies further up in
the pile. For instance, it might easily turn out that the lowest book had
been given the 3, while a higher book had the 1. The mapping was not
homomorphic with respect to the two relations. However, this does not
necessarily mean that the mapping was random and did not preserve any
relations at all. I might not have bothered about which book lies further
up in the pile, but my numbering might have focused on another property
of the books, for instance their age. In this case, the book that got the 1
might not lie further up in the pile than the one that got the 3, but it would
be newer. Hence, the mapping would indeed have been homomorphic, it
would have preserved a relation between the books, although a different
one: I regarded the books as elements of a different relational structure,
namely one that is based on the relation ‘is newer than’ (rather than the
relation ‘lies further up than’).

Another possibility would be that I focused on the same empirical prop-
erty as before, namely the position of books in the pile, but employed
a different relation between the numbers, for instance the relation ‘lesser
than’. In this case, you would know that the book with the number 1 lies
further up in the pile than the book with the number 3, because 1 < 3.
Again, the mapping would be homomorphic, but this time with respect to
a different numerical relational structure.

The interesting aspect for our investigation of numbers and objects is now
that from this analysis, it follows that number assignments are essentially
links between relations: for the purpose of number assignment it is not so
much the correlation between individual objects and individual numbers
that counts, but the association between relations that hold between the
empirical objects and relations that hold between the numbers. For instance,
in our initial number assignment for the book pile, the links between the
books and the numbers were grounded in the association of two relations,
‘lies further up’ and ‘>’, but we could also associate other relations, for
instance, the relations ‘is newer than’ and ‘>’, or the relations ‘lies further
up’ and ‘<’, and as a result we might get different links between individual
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Figure 3 Measurement as an association of relations

books and individual numbers. Figure 3 gives an illustration for the diff-
erent associations we discussed.

In our example from Figure 2 (illustrated by the graphic on the left),
there is no reason why one should assign the number 3 to the grey book
on the top if one looks at the book and the number as individuals in their
own standing, and there is nothing in the number 1 itself that makes it
particularly prone to be assigned to the black book on the bottom. We are
associating relational structures here: it is because of their relations with
other numbers and with other books, respectively, that 3 is linked up with
the grey book and 1 with the black book. To put it plainly: we link up 3
with the grey book and 1 with the black book because 3 is greater than 1 and
the grey book is higher in the pile than the black one – and not because 3
has anything to do with the grey book or 1 with the black book if we look at
them as individuals outside their respective systems (namely, the number
sequence and the pile of books). The links are dependent on the systems.
Accordingly, I will call such a linking an instance of ‘system-dependent
linking’, or in short: dependent linking.

So when assigning numbers to objects, we are not interested in numbers
as individuals in their own right; it is the relations between them that we
want. Accordingly, when analysing the different kinds of number assign-
ments, I will focus on the relations between numbers that are relevant in
each case, that is, I will focus on the numerical relations that reflect, in each
case, the properties we want to assess in the objects.

The homomorphism that establishes the number assignment identifies
its underlying scale: given a certain empirical property, the scale tells us
which relation between the numbers is relevant in the assignment, that is,
which numerical relational structure the mapping employs. Accordingly,
in number assignments that are based on the same type of scale, the empir-
ical property is reflected by the same relation between the numbers. This
means that the number assignments can be transformed into each other.
For instance in the measurement of weight, we can transform a number
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assignment like ‘The pumpkin weighs 3 kg’ into ‘The pumpkin weighs
6.6138 lb’, because both are based on the same type of scale.

In this example, the ‘>’ relation between numbers reflects the property
‘weight’ (more precisely: it reflects the relation ‘weighs more’ between the
objects), so if you tell me your measurement yielded ‘3 kg’ for one pumpkin,
and ‘2 kg’ for another pumpkin, I know that the first one weighs more than
the second one, and in just the same way I know that a 6 lb pumpkin weighs
more than one of 4 lb. In both cases, the ‘>’ relation between the numbers is
associated with the relation ‘weighs more than’ in a particular way: in both
cases, the numbers tell us that the first pumpkin weighs 11/2 times as much
as the second pumpkin. We can always transform one number assignment
into another one, as long as the association between the relevant numerical
and empirical relations stays intact, because it is this association of relations
that establishes our number assignment. The transformations that satisfy
this requirement are the admissible transformations for a scale.

A numerical statement can now be defined as meaningful if and only if its
truth-value is constant under admissible scale transformations (cf. Suppes
and Zinnes 1963: 66). This means that if a numerical statement is true (or
false), it should still be true (or false, respectively) when we translate it into
another numerical statement, as long as this transformation is one that is
allowed for the type of scale that underlies our number assignment. To put
it plainly, if you tell me that ‘The pumpkin weighs 3 kg’ is true, but ‘The
pumpkin weighs 6.6138 lb’ turns out to be false, something is wrong with
your measurement. In this case, the numbers you apply to your objects
seem not to reflect the property you intended to measure (namely, weight).

This is now a good point to see where we have got so far in our in-
vestigation of numbers and objects. Using the Representational Theory
of Measurement, we have outlined a unified view of number assignments
as mappings from empirical objects to numbers, and we have spelled out
the characteristic features of this mapping: the empirical objects enter the
number assignment with respect to a particular property, the property we
want to assess. This property is then associated with a relation that holds
between the numbers, and it is this association that determines the cor-
relation between numbers and objects and makes the number assignment
meaningful. According to this analysis, the numbers and objects are not
correlated as individuals, but as elements of two systems, they are correlated
in a way we described as ‘dependent linking’.

Having thus spelled out the framework for our investigation, we are
now in a position to examine the different ways in which we assign
numbers to objects, as different instances of the same general scheme of
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‘measurementRTM’. Above, I identified three different types of number as-
signments: cardinal, ordinal, and nominal assignments. Let us have a look
at each of the three types in turn. In each case, we will ask which properties
of numbers we make use of, that is, which properties numbers need to have
in order to represent properties of empirical objects in a meaningful way.
In our discussion I will concentrate on the natural numbers starting from
1, that is on the positive integers, ignoring, for the time being, 0, negative
numbers, rational numbers, and so forth.

cardinal number assignments: 5 ‘ 3 pens’ , ‘ 3 kg’ , ‘ 3 ◦c’

In cardinal number assignments, the mapping from empirical objects to
numbers takes advantage of the numerical relation ‘>’ (or ‘<’, respectively).
As mentioned above, we can distinguish two subclasses of cardinal number
assignments: those like ‘3 pens’, on the one hand, and those like ‘a 3 kg
pumpkin’ or ‘bathwater of 3 ◦C’ on the other hand. In the first case, the
number identifies the cardinality of a set, that is, ‘3’ tells us how many
elements the set has, in this case: how many pens there are on my desk.
The second class of cardinal assignments is the kind we mean when talking
about ‘measurement’ in the familiar, pre-theoretical usage of the word. In
these cases, ‘3’ does not give us the cardinality of the measured objects (the
pumpkin or the bathwater in our examples), but instead the cardinality
of certain units of measurement (kg or ◦C). With the help of these units,
we can use numbers to measure properties like weight or temperature. In
‘a 3 kg pumpkin’, ‘3’ tells us how many kilograms, and ‘3 kg’ specifies the
pumpkin’s weight. In ‘bathwater of 3 ◦C’, ‘3’ tells us how many degrees
Celsius, and ‘3 ◦C’ specifies the temperature of the bathwater. As I am
going to argue later in this section, we can regard these measurements as
a special case of cardinal number assignments. (Admittedly bathwater of
3 ◦C is not a very pleasant image. If this causes you cold shivers, just think
of a spa where you might want to dip into a 3 ◦C bath tub after a really hot
sauna . . .)

Cardinality assignments for sets of objects: ‘3 pens’

In a number assignment like ‘3 pens’, we apply a number to a set of objects;
for instance the number 3 to the set of pens on my desk. This number
tells us the cardinality of that set; it tells us how many pens there are

5 Recall that with this terminology I refer to a classification of number assignments, that is, by ‘cardinal
number assignments’ I do not mean the assignment of ‘cardinal numbers’, but number assignments
that are cardinal in nature.
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Figure 4 ‘MeasurementRTM’ of cardinality

on my desk. This is what distinguishes these from other kinds of num-
ber assignments: when we use numbers to represent cardinalities, it is
crucial that the empirical objects in our assignment are not individuals,
but sets. The empirical relation that we focus on in our number assign-
ment is ‘has more elements than’, and it is linked up with the numerical
relation ‘>’.

Figure 4 illustrates this kind of number assignment. The sets in my
example are different sets of utensils from my desk: a set of plastic pins, a
set of paperclips, and the by now well-known set of pens. What makes this
number assignment meaningful? How can numbers indicate cardinalities
of sets? 3, 5, and 9 in Figure 4 occur as single objects. So where does
the cardinality come from; what property of numbers do we make use of
when we ‘measureRTM’ cardinality in our empirical objects? To answer this
question, let us have an explicit demonstration of the procedure that leads
to a cardinal number assignment. The task is to tell the cardinality of the
set in Figure 5, or, to put it a bit clumsily in measurement terms: to map
the empirical object ‘set of stars’ in Figure 5 onto a number that indicates
its cardinality.

The most straightforward way to determine the correct number is to
assign a number to every star, starting with 1, then 2, and so on, until all
the stars have a number; in short: we count the stars. Then we use the last
number from the counting procedure – which will be 20 if the count is
correct – in order to indicate the cardinality of the whole set of stars: 20
stars.

This gives us an insight into what lies behind our cardinal number
assignment: first, we map the elements of the empirical object (that is, the
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?
Figure 5 How many stars?

elements of our set) onto numbers, we ‘count’ the set; in our example: we
mapped the elements of our empirical object ‘set of stars’ onto the numbers
from 1 to 20. On the basis of this ‘auxiliary number assignment’, we then
map the whole set onto one number, namely onto the last number we used
in counting.

What makes this assignment meaningful is the fact that the counted
set has as many elements as the initial sequence of numbers we used in
counting: there are as many stars as there are numbers from 1 to 20. This
is because when counting the stars, we match each star with exactly one
number. We establish a one-to-one-mapping between stars and numbers
that guarantees that the set of stars and the set of numbers we used in
counting have the same cardinality.

So the number we assigned to the set of stars, 20, is something like a
placeholder for a whole set of numbers, the numbers from 1 to 20. The
cardinality of this number set represents the cardinality of our empirical
object, the set of stars. In a nutshell, in cardinal number assignments we
map a set onto a number n such that the set of numbers less than or equal
to n – the number sequence from 1 to n – has as many elements as that set.

Accordingly, when employing counting as a verification procedure for
our cardinal number assignment, we do not use numbers in random order.
For instance, in Figure 5, you presumably did not count “5, 7, 1, 12, 24, 8,
3”, and so on, and then suddenly came up with 20 as your last number.
Much more likely, you started with 1, then 2, and so on, applying numbers
to stars sequentially, with each number being followed by its successor in
the number line. This is crucial to make sure the last number, 20, is the
endpoint of a particular subsequence of the set N of natural numbers,
namely the sequence <1, 2, 3, . . . , 20>. This sequence consists of the
number 20 and all predecessors of 20 within the number line.

In Figure 6, this procedure is illustrated for our set of pens: we establish
an ordered one-to-one mapping between the pens and the numbers from 1
to 3, in sequential order (column A). On this basis, we assign the number 3
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Figure 6 Procedure underlying cardinal number assignments (‘3 pens’)

to the entire set of pens (column B): 3 functions as a place-holder for the set
consisting of the numbers 1, 2, and 3 – a set that has as many elements as
the set of pens. By so doing, 3 can indicate the cardinality of the set of pens.

Let me sum up our analysis of cardinal number assignments. In cardinal
number assignments, the empirical objects are sets, and the property we
want to assess is their numerical quantity: their cardinality as identified by
a number. When we apply a number n to a set s, we want to specify how
many elements s has. The numerical statement is meaningful if and only if
the number sequence from 1 to n has the same cardinality as the set s, that
is, if there is a one-to-one-mapping between the numbers up to n and the
elements of s. This one-to-one-mapping can be established via counting.

Cardinal number assignments like the ones described here – that is,
those that are about cardinality and not about properties like weight
or temperature – are based upon absolute scales. These scales do not allow
any transformations but the identity transformation, hence a transforma-
tion that does not change the number assignment at all: it yields for a
numerical statement like ‘There are 3 pens on my desk’ the very same state-
ment (‘There are 3 pens on my desk’). This is because in these cardinal
number assignments, we unambiguously refer to the sequence of numbers
starting with 1, and set them in a one-to-one correlation with the elements
of the empirical set. Accordingly, there is always only one number that
applies to a given set.

For our investigation of numbers we now want to know what it is in
particular that qualifies numbers for this kind of assignment: what enables
numbers to represent cardinalities the way they do? What is the system
on which the dependent linking is based in this case? As we have seen,
when indicating a cardinality, a number n points to the set of numbers
less than or equal to n. The elements of this set form a sequence from 1
to n, they constitute an initial sequence of the natural numbers N. This
is possible because of the sequential order of numbers, as established by
the ‘<’-relation: every number has a fixed position within N, hence, for a
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particular number n, we can always specify the set of numbers up to n, the
sequence from 1 to n. This sequence is unique for every number, and it has
always a unique cardinality.

Take any two natural numbers, say 3 and 5, and you can always identify
the respective sets of predecessors (including the numbers themselves) that
are relevant in cardinal number assignments: the set with the elements ‘1,
2, 3’ in the case of 3, and ‘1, 2, 3, 4, 5’ in the case of 5. These sets are different
for any two different numbers, and they never have the same cardinality,
because two different numbers will always occupy different positions within
the number line, so they will always have a different set of predecessors.

In our example, the set we identified for 5 has more elements than that
for 3, and it has either more or less elements than the sequence from 1 to n
for any other number n. This might sound trivial, but it is part and parcel
of our use of numbers in cardinal number assignments. If 3 and 5 were
not elements of a sequence – and what is more, of the same sequence – in
these assignments, we would have no guarantee that they indicate different
cardinalities, or any cardinalities at all. Figure 7 depicts the way 3 and 5
relate to sets of unique cardinalities – namely to distinct initial sequences
of N – due to their position in the number sequence.

The sequential position within N is hence the crucial numerical feature
in cardinal number assignments. It is the sequential order of N that enables
us to represent cardinalities with numbers the way we do. What is more,
it is the only feature N needs to have for this task. As our discussion has
shown, there are no other requirements on numbers in cardinal number
assignments; their sequential position within N was the only feature we
referred to when using numbers to identify the cardinalities of our empirical
objects. Being an element of a sequence is hence an essential property of
numbers.

We can define a sequence as a particular set that is ordered by a rela-
tion R (for instance, ‘>’) with the following properties: R is antireflexive

1 < 2 < 3 < 4 < 5 

≤  3

≤  5

3 and 5 work 
as place-holders 

for initial sequences of N

Figure 7 Sequential order as the basis for cardinal number assignments
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(no number is greater than itself ), asymmetric (if a number x is greater
than another number y, then y cannot be greater than x), and transitive (if
a number x is greater than another number y, and y is greater than a third
number z, then x is also greater than z), and the order introduced by R
must be total (for any two different numbers x and y, one is greater than
the other). If we want to use this sequence in counting, we must make sure
that there is a unique path to each of its elements. This is the case if each
of its elements has only finitely many predecessors, starting with an initial
element, ‘1’. I will call a sequence that fulfils these conditions a ‘progression’
(cf. also the definition given in Appendix 1).

Cardinal number assignments including measures:
‘a 3 kg pumpkin’, ‘water of 3 ◦C’

The second kind of cardinal number assignments is the measurement we
meet in examples like ‘a 3 kg pumpkin’ or ‘bathwater of 3 ◦C’. This is the
kind of number assignment we refer to when using the term ‘measurement’
in the familiar sense. Unlike in number assignments such as ‘3 pens’, the
empirical objects in measurement – the pumpkin and the bathwater in our
examples – are not treated as sets. Of course, they can be sets anyway, as
in ‘3 kg of apples’ (where we measure the weight of a set of apples), but
this is not what the number assignment takes into account; there is no set-
specific feature of the empirical objects (like cardinality) that the number
assignment refers to. My three pens weigh together 20 g, and this is about
as much as the floppy disc lying next to them on my desk, but to find that
out, I totally ignore the fact that the pens form a set of three, whereas the
floppy disc is a single object – for the purpose of measurement, it comes
out just the same.

So whereas in cardinality assessments it is imperative for the number
assignments that the empirical objects be sets, we ignore this feature in
measurement; sets and non-sets are treated alike. In fact, cardinality assess-
ments are the only kind of number assignments where the numbers apply
to sets as sets, and only to sets. This is because only for sets can we identify
the number of elements. Only sets have a cardinality, whereas the proper-
ties we identify in other kinds of number assignments apply to individual
objects as well as sets, so ‘set-ness’ is not a feature we need to focus on; it is
not part of our empirical relational structure in the number assignment.

In measurement, we are concerned with empirical properties like weight,
length, or temperature: dimensional properties other than cardinality. As for
all cardinal number assignments, we associate the empirical property with
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the numerical relation ‘>’ in our mapping. Let us distinguish two kinds
of measurement with respect to the property we relate to: measurement
of extensive properties like weight and length, and measurement of non-
extensive properties like temperature.

An extensive property is one that depends on the amount of the measured
objects. This is the case because an extensive property changes with the size
of our empirical sample; it increases when we add more objects with the
same property. Take weight: when you have a basket with apples, and you
add more apples, it becomes heavier (its weight increases), because the
property ‘weight’ is extensive. It is the same with volume: pour more wine
into a glass, and the volume of wine in that glass increases. And two of my
pens, if arranged end to end in a line, are together longer than one pen,
because ‘length’ is an extensive property, too.

In contrast to this, a non-extensive property like temperature does not
increase if we add ‘more of the same’. When you add more wine of the
same temperature to the wine in a glass, the wine becomes more, but it
does not become warmer: the volume of the wine – an extensive property –
increases, but its temperature does not. The tea in my mug might become
hotter when I add fresh tea from the thermos to it, but that is because when
we mix fluids their temperature equals out, not because it adds up.

Direct measurement: ‘a 3 kg pumpkin’
Let us first have a look at measurements as expressed in ‘a 3 kg pumpkin’.
I call this ‘direct measurement’, because – as we will see below – in this
instance of measurement we have a direct link between cardinality and our
units of measurement. In this kind of number assignment, we want the
numbers to tell us something about an extensive property of the empirical
objects. In particular, we want the relation ‘>’ between the numbers to
reflect differences in this extensive property between our empirical objects.

Figure 8 illustrates this kind of cardinal number assignment. In the
example, we measure the weight of three empirical objects: a watermelon, a
pumpkin, and a squash. Higher or lower numbers are applied with respect
to higher or lower weight: the watermelon as the heaviest object receives
the highest number, 5; the squash is the lightest vegetable with 1, and the
pumpkin is in the middle and gets the number 3. This does not quite look
like a weight measurement as we know it. What is missing in this example
is the specification of measurement units. When asking for the weight
of a pumpkin in a grocery store, you would probably not be satisfied
with an answer like ‘3’. What you expect the sales person to tell you is
rather something like ‘3 kg’ or ‘3 pounds’. Expressions like ‘kg’ or ‘pound’
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5

3

1

Figure 8 Direct measurement as a cardinal number assignment: measurement of weight

identify different units for the measurement of weight; they introduce
supporting measure items that we employ for our number assignment. In
the following discussion, I am going to argue that measure items relate
extensive properties like weight to cardinality and thus enable us to draw
on the cardinal aspect of numbers in the course of measurement.

Before we discuss the use of measure items in detail, let me first illustrate
this with an example, to give you an idea of the procedure that underlies this
kind of number assignment. Figure 9 spells out the use of measure items
for the pumpkin from our example. To measure the pumpkin’s weight, I
employed objects of 1 kg as measure items. I then found a set of these items
that weigh together as much as the pumpkin. Counting the elements of this
set yielded the number I assigned to the pumpkin. Hence I identified the
weight of the pumpkin via the cardinality of a set of measure items: three
kilograms. Let us have a look at what lies behind the usage of measure items
illustrated in Figure 9. How does it work? And why do we employ measure
items in the first place? The problem we face in measurement is that we
want the ‘>’ relation between numbers to indicate ‘more’ (‘weighs more
than’, ‘is longer than’ etc.) – measurement being a form of cardinal number
assignment – but, since our empirical objects are not sets, we cannot employ
the counting procedure for them that worked so well in our first kind of
cardinal number assignments (i.e., assignments as in ‘3 pens’) – it is of no
use to try and count a pumpkin in order to find out its weight.

However, when measuring extensive properties like weight, there is al-
ways a way to relate the property we want to measure to some cardinality.
Remember our apple example from page 23 above: when we add more
apples to a basket of apples, it becomes heavier. So the total weight of the
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pumpkin
pumpkin's weight
matches weight

of measures
set of measure items 

cardinality of
measure items

Figure 9 Procedure underlying direct measurement: weight (‘a 3 kg pumpkin’)

apples increases with their cardinality – the more apples, the heavier the
basket. If we find a way to employ this relation between cardinality and
weight for our measurement, we can base our measurement on numerical
quantification after all. This is what the seventeenth- to eighteenth-century
philosopher Gottfried Wilhelm Leibniz called the ‘recourse from continu-
ous quantity to discrete quantity’, when he discussed the measurement of
size (‘grandeur’), another example of measurement:

we cannot distinctly recognise sizes without having recourse to whole numbers . . . ,
and so, where distinct knowledge of size is sought, we must leave continuous
quantity and have recourse to discrete quantity. (Leibniz 1703/05: § 4)

If we use standardised measure items now instead of apples, we have an
elegant way to realise this recourse, that is, to measure an extensive property
like weight via cardinality. Two requirements are important for the objects
that are to fulfil the task of measure items:
(1) The measure items must possess the empirical property that we want

to measure, and they must be identical with respect to this property.
(2) The property must be additive, that is, it must be a property that can

be associated with cardinality. More precisely, there must be a physical
operation of concatenation for the objects that has the effect of addition
if we represent it numerically.

The first requirement means, for instance, that for the measurement of
weight each measure item must have the same weight. This might sound
circular at first – after all, was not weight what we set out to measure
eventually? So how are we supposed to know whether our measure items
have the same weight beforehand? This is possible because, in order to know
whether two objects have the same weight, we need not know which weight
they have. We can compare the weight of two metal blocks that we might
want to use as measure items and determine whether they have the same
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weight or not, for instance by using a balance, without measuring their
weight in terms of numbers and units of measurements. And, similarly,
we can arrange two objects parallel to each other, starting at the same
point, in order to determine whether they have the same length. This is a
general phenomenon: we can always compare two objects with respect to
an empirical property without employing a number assignment.

The second requirement, namely that the relevant property of our mea-
sure items must be additive, is met by extensive properties. As illustrated
in our examples above, the values of these properties for several objects add
up. For instance, the weight of our set of apples increased and decreased
along with its cardinality. In this case, to ‘concatenate’ means ‘put together’:
if we put together two apples, their total weight adds up. Similarly, the to-
tal length of several pens, when arranged end to end in a straight line
(‘concatenation’ of length), increases and decreases along with their cardi-
nality: if we lay two pens end to end, their total length adds up.

If these requirements are met, the cardinality of a set of measure items is
linked up with the property we want to measure (more precisely: the two
properties are monotonically covarying). For instance, when we measure
weight as illustrated in Figure 9 above, our measure items could be metal
blocks of 1 kg each. Since each of these blocks has the same weight, the
cardinality of the set of blocks indicates their total weight – if we know
how many blocks there are, we know how heavy they are together.

Using this set of measure items, we can then measure the weight of an
empirical object like our pumpkin. All we have to do is make sure that
the total weight of our set of measure items matches that of the pumpkin.
And again, in order to do this, we do not have to employ numbers yet, but
can make a simple comparison, for example with the help of a balance as
sketched in Figure 9. The cardinality of the set of metal blocks then indicates
the weight of the pumpkin: the cardinality tells us the total weight of the
blocks, and, since the blocks together weigh as much as the pumpkin, it also
tells us the pumpkin’s weight. This way, measure items mediate between
cardinality and an extensive property like weight, and it is this correlation
that makes the number assignment meaningful.

Cardinality
of measure items

 
 

 g oes tog ethermatches 
Weight

of the pumpkin

Weight
of measure items

Figure 10 Measure items as agents between an extensive property (weight) and cardinality
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Standardised units like ‘kg’ or ‘metre’ point to measure items of a specified
weight or length, respectively; so when using these units in our number
assignments, we do not have to identify the particular objects one might use
in the course of measurement (particular metal blocks etc.), but can relate to
standardised units. We will come back to the use of different measure items
in our discussion of measure concepts in chapter 6. What is important
for our present investigation is that the introduction of measure items
enables us to base direct measurement entirely on cardinality assignments,
as far as numbers are concerned. We do not make use of any properties of
numbers here that we did not use in simple cardinality assignments (as in
‘3 pens’) anyway. All we need to ask from our numbers is that they form
a progression, so we can use them to identify cardinalities. The additional
features of measurement come in with measure items, but they do not put
any further requirements on numbers.

Let me summarise the analysis of direct measurement that I have pro-
posed here. In direct measurement, the empirical objects are not sets; they
do not have any elements that we can count for the number assignment.
So what we do in this case is we find something that is a set and quan-
tify it instead. This set is a set of measure items, that is, its cardinality is
connected with the extensive property we want to measure items in our
empirical objects. The cardinality of this set of measure items can therefore
identify our extensive property. In a nutshell, direct measurement boils
down to a cardinality assignment for measure items. Accordingly, nothing
is required for numbers over and above the condition that they are ele-
ments of a progression6 – the numerical feature we need for cardinality
assignments.

Because there are always different kinds of measure items one can use to
measure the same property (that is, measure items of a different – standard-
ised – weight, length etc.), this kind of number assignment is not based on
absolute scales (like our first kind of cardinal number assignments), but on
rational scales. This means that you can always multiply the numbers you
used in our measurement with a positive real number – provided you are
using the same number in each measurement procedure – without chang-
ing the truth (or falsity) of your numerical statement. So for rational scales,
the numbers themselves are not kept invariant (as is the case for absolute
scales), only the ratios between them are: in a number assignment based
on a rational scale, we determine uniquely the ratios between the values we
assign to our empirical objects.
6 That is, they are elements of a sequence each of whose elements has only finitely many precursors

(see the definition of a progression on p. 23 above).




