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Introduction and theoretical background

1.1 The Schrödinger equation and models of chemistry

The Schrödinger equation and its elements

As early as 1929, the noted physicist P. A. M. Dirac wrote1

The underlying physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too complicated to be soluble.

A similar view was echoed in a 1944 textbook of quantum chemistry:2

In so far as quantum mechanics is correct, chemical questions are problems in applied
mathematics.

The implication is that chemical phenomena are determined by the laws of quantum
mechanics, as expressed in the fundamental time-independent Schrödinger equation

ĤΨ = EΨ (1.1)

Exact answers to practically all chemical questions are, in principle, obtainable
from solutions of this equation.3 Thus, Eq. (1.1) is the ultimate oracle of chemical
knowledge.

Equation (1.1) contains three mathematical entities: (i) the Hamiltonian operator
Ĥ , determined by the choice of chemical system; (ii) the wavefunction Ψ, describing
the allowed spatial distribution of electrons and nuclei of the system; and (iii) the
energy level E associated with Ψ. The Hamiltonian Ĥ contains terms representing
kinetic- and potential-energy contributions, depending only on fixed properties
(e.g., mass, charge) of the electrons and nuclei that compose the chosen system
of interest. Hence, Ĥ is the “known” and Ψ and E are the “unknowns” of Eq.
(1.1). Mathematically, Ĥ is an operator that modifies the wavefunction Ψ(�r, �R)
appearing on its right, where we write �r = (�r1, �r2, . . ., �rN ) to denote the collective
coordinates of N electrons and �R = ( �R1, �R2, . . ., �Rν) those of ν nuclei. Only for
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2 Introduction and theoretical background

Erwin Schrödinger

exceptional choices of Ψ (“eigenstates”) does this operation give a scalar multiple
of the original wavefunction, with characteristic multiplier (“eigenvalue”) E. The
possible solutions ( Ψn, En) of Eq. (1.1) for a specific Ĥ are commonly labeled
with a quantum-number index n, ordered according to the energy of the ground
state and successive excited states of the system. However, in the present work
we shall generally restrict attention to the ground solution, so this index can be
temporarily omitted.

Perturbation theory of “model chemistry” systems

In practice, the chemist seldom requires numerically exact answers to chemical
questions. Answers that are sufficiently accurate in the context of the chemical
investigation will therefore be considered satisfactory for practical applications.
More specifically, this means that energy differences �E should be reliable to
within a few kcal mol−1 (i.e., a small percentage of a chemical bond energy), but
the necessary accuracy may be higher or lower according to context. To achieve
this goal, we introduce an approximate model Hamiltonian Ĥ (0) that is somehow
simplified (for example, by neglecting some of the potential-energy terms in Ĥ ),
but is expected to retain the most important features of the true Hamiltonian for
describing chemical phenomena. The Schrödinger-type equation associated with
the model Ĥ (0)

Ĥ (0)
Ψ

(0) = E (0)
Ψ

(0) (1.2)

may then be said to describe a “model chemistry” (in the terminology introduced by
J. A. Pople), just as Eq. (1.1) describes4 the true chemistry of Ĥ . The adequacy or
inadequacy of this model chemistry to describe the actual phenomena of chemistry
can of course be tested through direct comparisons with experimental results. How-
ever, it is also feasible to formulate Ĥ (0) in a systematically improvable manner, so
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1.1 The Schrödinger equation 3

that the model chemistry of Eq. (1.2) can be made to approach the exact solutions
of Eq. (1.1) as closely as desired (or as far as computational resources permit).
From the rate of convergence of these successive corrections, useful estimates of
theoretical accuracy that are independent of experimental data can be given. Thus,
a central goal of modern computational quantum chemistry is to formulate and im-
prove systematically model Ĥ (0)’s that can predict chemical phenomena at a useful
level of accuracy.

For our purposes, the most general way to perform systematic correction of a
specified model Ĥ (0) is by means of perturbation theory, as first developed for
such problems by Schrödinger himself.5 The difference between the true Ĥ and the
model Ĥ (0) is defined as the perturbation operator Ĥ (pert),

Ĥ (pert) = Ĥ − Ĥ (0) (1.3)

The perturbed Schrödinger equation (1.1) is rewritten in terms of the model Ĥ (0)

and Ĥ (pert) as

(Ĥ (0) + Ĥ (pert))Ψ = EΨ (1.4)

By systematic perturbation-theoretic procedures,6 the exact E can be obtained in
terms of successive orders of correction to E (0),

E = E (0) + E (1) + E (2) + · · · (1.5a)

where E (1) is the first-order correction, E (2) the second-order correction, and so
forth; Ψ is similarly expanded as

Ψ = Ψ
(0) + Ψ

(1) + Ψ
(2) + · · · (1.5b)

For example, the first-order energy correction in Eq. (1.5a) is given by

E (1) = 〈Ψ(0)|Ĥ (pert)|Ψ(0)〉 (1.5c)

where 〈 〉 is the Dirac “bra-ket” symbol7

〈Ψ(0)|Ĥ (pert)|Ψ(0)〉 =
∫

Ψ
(0)∗ Ĥ (pert)

Ψ
(0) dτ

representing integration over all coordinates, with symbolic differential dτ . (Be-
cause Eq. (1.2) remains true when Ψ(0) is multiplied by any number, we assume
without loss of generality that Ψ(0) is normalized, 〈Ψ(0)|Ψ(0)〉 = 1.) The second-order
correction E (2) can be evaluated from the variational inequality8

E (2) ≤ − 〈Ψ(0)|Ĥ (pert)|Ψ̃(1)〉2

〈Ψ̃(1)|Ĥ (0) − E (0)|Ψ̃(1)〉
(1.5d)
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4 Introduction and theoretical background

where Ψ̃
(1) is any variational trial function orthogonal to Ψ(0) (〈Ψ(0)|Ψ̃(1)〉 = 0) and the

inequality becomes exact when Ψ̃
(1) = Ψ(1). Note that (1.5d) suggests a numerical

method for determining both Ψ(1) (as the Ψ̃
(1) that makes the right-hand side as

negative as possible) and E (2) (as the extremal possible value of the right-hand
side). The leading corrections E (1) and E (2) will suffice for the applications of this
book.

Example 1.1

Exercise: Use the perturbation equations (1.5) to estimate the lowest orbital energy of α spin
for a Li atom in a basis of orthogonalized 1s and 2s orbitals, for which the matrix elements
of the effective one-electron Hamiltonian operator are9 〈1s|Ĥ|1s〉 = −2.3200, 〈1s|Ĥ|2s〉 =
−0.3240, and 〈2s|Ĥ|2s〉 = −0.2291.

Solution: The desired orbital energy is an eigenvalue of a 2 × 2 matrix, which can be
identified as the “Ĥ” for the application of Eqs. (1.1)–(1.5):

Ĥ =
(

H11 H12

H12 H22

)
=

(−2.3200 −0.3240
−0.3240 −0.2291

)

To apply the perturbation-theory formalism we can first separate Ĥ into diagonal (unper-
turbed) and off-diagonal (perturbation) matrices,

Ĥ (0) =
(

H11 0
0 H22

)
=

(−2.3200 0
0 −0.2291

)

Ĥ (pert) =
(

0 H12

H12 0

)
=

(
0 −0.3240

−0.3240 0

)

The solutions of the eigenvalue equation for Ĥ (0) are evidently

E (0) = H11, Ψ(0) =
(

1
0

)

and the first-order correction is

E (1) = 〈Ψ(0)|Ĥ (pert)|Ψ(0)〉 = (1 0)

(
0 H12

H12 0

)(
1
0

)
= 0

For the second-order correction, we can recognize that the only possible normalized trial
function Ψ̃

(1)
orthogonal to Ψ(0) in this 2 × 2 case is

Ψ̃
(1) =

(
0
1

)
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1.1 The Schrödinger equation 5

so that

〈Ψ(0)|Ĥ (pert)|Ψ̂(1)〉 = (1 0)

(
0 H12

H12 0

)(
0
1

)
= H12

〈Ψ̂(1)|Ĥ (0) − E (0)|Ψ̃(1)〉 = (0 1)

(
0 0
0 H22 − H11

)(
0
1

)
= H22 − H11

E (2) = − H12
2

H22 − H11

The lowest eigenvalue (1s orbital energy) is therefore estimated as

E = E (0) + E (1) + E (2) = H11 − H12
2

H22 − H11
= −2.3702 a.u.

The corresponding estimate for the second eigenvalue (2s orbital energy) is −0.1789. These
results are in good agreement with the actual HF/STO-3G (“Hartree–Fock method with a
variational basis set of three-term Gaussians for each Slater-type orbital”10) eigenvalues:
ε1s = −2.3692 and ε2s = −0.1801.

Among various model Ĥ (0)’s that could be considered, the best such model is
evidently that for which the perturbative corrections are most rapidly convergent,
i.e., for which Ĥ (pert) is in some sense smallest and the model E (0) and Ψ(0) are
closest to the true E and Ψ. Perturbation theory can therefore be used to guide
selection of the best possible Ĥ (0) within a class of competing models, as well as
to evaluate systematic corrections to this model.

Conceptual constructs in model systems

Perturbation theory also provides the natural mathematical framework for devel-
oping chemical concepts and “explanations.” Because the model Ĥ (0) corresponds
to a simpler physical system that is presumably well understood, we can determine
how the properties of the more complex system Ĥ evolve term by term from the
perturbative corrections in Eq. (1.5a), and thereby elucidate how these properties
originate from the terms contained in Ĥ (pert). For example, Eq. (1.5c) shows that
the first-order correction E (1) is merely the average (quantum-mechanical expec-
tation value) of the perturbation Ĥ (pert) in the unperturbed eigenstate Ψ(0), a highly
intuitive result. Most physical explanations in quantum mechanics can be traced
back to this kind of perturbative reasoning, wherein the connection is drawn from
what is “well understood” to the specific phenomenon of interest.

Perturbative reasoning can be used to justify conceptual models of chemistry
that are far from evident in Eq. (1.1) itself. An important example is the concept
of molecular structure – the notion that nuclei assume a definite equilibrium con-
figuration �R0, which determines the spatial shape and symmetry of the molecule.
At first glance, this concept appears to have no intrinsic meaning in Eq. (1.1),
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6 Introduction and theoretical background

because the true molecular Hamiltonian Ĥ has identical dependence on all identical
nuclei,11 and thus could not assign a distinct structural role to a particular nucleus.
Indeed, Ĥ is totally symmetric with respect to all rotation axes, mirror planes, or
inversion centers that might be chosen to classify the “structure” of the molecule,
and thus could never distinguish between, e.g., dextro and levo optical isomers,
in-plane and out-of-plane H’s of hydrocarbons, carbonyl-type and hydroxyl-type
O’s of carboxylic acids, and so forth. This means, for example, that no true eigen-
state of Eq. (1.1) can correspond to a chiral molecule of definite handedness,12

even though the experimental existence of distinct enantiomeric species is well
established.

The resolution of this paradox lies in the Born–Oppenheimer approximation,13

which is based on the fact that nuclei are thousands of times more massive than
electrons. The nuclear motions are therefore so sluggish that electrons can be consid-
ered to rearrange virtually instantaneously around each static nuclear configuration
�R0. In this limit, Ĥ can be replaced by a model Ĥ (0) = Ĥ (�r ; �R0) that depends
only parametrically on nuclear positions, which are considered fixed at �R0. Solving
Eq. (1.2) for the electronic motions alone, while holding �R0 fixed, then leads to
solutions in which the energy E (0) = E(�R0) varies with nuclear configuration, the
“potential-energy surface” for subsequent treatment of nuclear motion. The high
accuracy of the Born–Oppenheimer model, i.e., the generally negligible values of
its higher-order perturbative corrections, amply justifies the chemist’s faith in the
existence of well-defined molecular structures. More generally, such considerations
validate the direct formulation of Eq. (1.1) as an electronic Schrödinger equation
in the Born–Oppenheimer framework, as we do throughout this book.

It is also routine to assume the non-relativistic approximation14 in writing
Eq. (1.1). This is based on the fact that molecular electronic velocities are gen-
erally far less than the speed of light, and the magnetic forces arising from elec-
tronic motions can therefore be neglected compared with the dominant electrical
forces between charged particles. In this limit, the model Hamiltonian contains only
potential-energy terms corresponding to Coulomb’s law of classical electrostatics.
However, in reducing Ĥ from relativistic (Dirac-like) to non-relativistic form, one
must recognize the two possible orientations of the intrinsic “spin” angular mo-
mentum of each electron (a relativistic effect) and include suitable spin labels in
the wavefunction Ψ. Thus, we should generalize the spatial coordinate �r to include
the orientation of each electron in “spin space.” Furthermore, we must insure that
the total electronic Ψ(�r ) is antisymmetric with respect to exchange of space–spin co-
ordinates of any two electrons i and j, as required by the Pauli exclusion principle15

(Section 1.7),

Ψ(�ri , �r j ) = −Ψ(�r j , �ri ) (1.6)
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1.1 The Schrödinger equation 7

However, in other respects spin plays no direct role in construction of the non-
relativistic Ĥ . If higher accuracy is desired, perturbative expressions such as (1.5)
can be used to evaluate spin-dependent corrections to the non-relativistic model.

Variational models

Still another useful approximation is introduced by reformulating Eq. (1.1) as a
variational principle,16

E ≤ E (0) = 〈Ψ(0)|Ĥ |Ψ(0)〉
〈Ψ(0)|Ψ(0)〉 (1.7)

The inequality (1.7) is true for any possible variational trial function Ψ(0), subject
only to the usual antisymmetry and boundary conditions for square-integrable func-
tions of proper symmetry, and the best such Ψ(0) is that leading to the lowest possible
value of E (0), closest to the true E. However, it can be shown17 that any such trial
function Ψ(0) and variational energy E (0) are also solutions of a Schrödinger-type
equation (1.2) for a suitably defined model Hamiltonian Ĥ (0). Thus, any variational
approximation (1.7) can be formulated in terms of a model Ĥ (0), and the errors of
this model can be systematically corrected with perturbative expressions such as
Eqs. (1.5).18 This view of variational calculations, although somewhat unconven-
tional, allows us to treat both variational and perturbative approximation methods
in a common “model chemistry” language, along the lines enunciated by Pople.19

Summing up, we may say that approximation methods in quantum chemistry
generally involve (either explicitly or implicitly) a model Ĥ (0) and associated model
chemistry that more or less mimics the true behavior of Eq. (1.1). Such models
might be closely patterned after the well-known conceptual models of empirical
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8 Introduction and theoretical background

chemistry, such as valence bond or ionic models, or chosen for purely mathe-
matical reasons. Perturbation theory always allows us to choose the best among
a family of such proposed models and to calculate systematically the correc-
tions that bring the model into improved agreement with the exact Schrödinger
equation (1.1).

The primary goal of a theory of valency and bonding is to find the model Ĥ (0)

that most simply describes the broad panorama of chemical bonding phenomena,
or, as Gibbs said,20 “to find the point of view from which the subject appears in
its greatest simplicity.” In the past, conceptual models were often cobbled together
from diverse empirical patterns, guided only weakly by theory. This resulted in
a patchwork of specialized “effects,” with incommensurate seams, indeterminate
limits of applicability, and little overall theoretical coherence. However, remark-
able advances in computational technology21 now make it possible to construct
improved conceptual models directly from accurate ab initio (“first-principles”)
wavefunctions.

The fundamental starting point for a rational electronic theory of valency and
bonding is the Lewis-structure representation of the shared and unshared electrons
in each atomic valence configuration, as formulated by G. N. Lewis. In the present
work, we shall focus on a natural Lewis-structure model, based on associating the
electron pairs of the familiar Lewis-structure diagram with a set of optimal, intrin-
sic, “natural” bond orbitals (NBOs),22 as outlined in Section 1.5. This viewpoint
is deeply tied to traditional chemical bonding concepts – including hybridization,
polarization, and bond transferability – and takes advantage of a model Ĥ (0) that de-
scribes localized electron pairs and their interactions in rapidly convergent fashion.
By employing a non-empirical theoretical methodology to construct quantitative
bonding concepts, we can better achieve the goal of unifying and harmonizing con-
ceptual models of valency and bonding with the deepest principles of chemistry, as
expressed by Eq. (1.1).

1.2 Hydrogen-atom orbitals

Orbitals and electron-density distributions

In his first communication23 on the new wave mechanics, Schrödinger presented
and solved his famous Eq. (1.1) for the one-electron hydrogen atom. To this day
the H atom is the only atomic or molecular species for which exact solutions
of Schrödinger’s equation are known. Hence, these hydrogenic solutions strongly
guide the search for accurate solutions of many-electron systems.

The essence of Schrödinger’s treatment was to replace the classical orbit of
Bohr’s semi-classical (particle) model of the H-atom by a corresponding wave-
like orbital (single-electron wavefunction) Ψ. Instead of specifying the electron’s
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1.2 Hydrogen-atom orbitals 9

position at a particular point �r of its orbit (as we should expect classically), the
orbital Ψ(�r ) determines only the electron density ρ(�r ) at each spatial point �r ,

ρ(�r ) = |Ψ(�r )|2 (1.8)

The density ρ(�r ) might also be described as the fractional probability of finding
the (entire) electron at point �r . However, chemical experiments generally do not
probe the system in this manner, so it is preferable to picture ρ(�r ) as a continuous
distribution of fractional electric charge. This change from a “countable” to a
“continuous” picture of electron distribution is one of the most paradoxical (but
necessary) conceptual steps to take in visualizing chemical phenomena in orbital
terms. Bohr’s “orbits” and the associated “particulate” picture of the electron can
serve as a temporary conceptual crutch, but they are ultimately impediments to
proper wave-mechanical visualization of chemical phenomena.

Equally paradoxical is the fact that ρ(�r ) depends only on the absolute square
of the orbital, and is everywhere sensibly non-negative, whereas Ψ(�r ) oscillates in
“wavy” fashion between positive and negative values.24 The phase patterns corre-
sponding to such sign changes are of utmost importance in chemistry. Solutions
of Schrödinger’s equation are generally governed by the superposition principle,
such that two interacting orbitals may interfere with one another in wave-like con-
structive (in-phase) or destructive (out-of-phase) patterns25 that strongly alter the
form of ρ(�r ). Visualizing and understanding the subtle chemical consequences of
orbital phase patterns and superposition is a central goal of this book.

Quantum numbers and shapes of atomic orbitals

Let us denote the one-electron hydrogenic Hamiltonian operator by ĥ, to distinguish
it from the many-electron Ĥ used elsewhere in this book. This operator contains
terms to represent the electronic kinetic energy (t̂e) and potential energy of attraction
to the nucleus (v̂ne),

ĥ = t̂e + v̂ne (1.9)

The associated Schrödinger equation for the H atom can then be written as

ĥΨnlm = εnΨnlm (1.10)

Each orbital eigenstate Ψnlm = Ψnlm(�r ) is labeled by three quantum numbers:

principal: n = 1, 2, 3, . . ., ∞ (1.11a)

azimuthal: l = 0, 1, 2, . . ., n − 1 (1.11b)

magnetic: m = 0, ±1, ±2, . . ., ±l (1.11c)
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10 Introduction and theoretical background

Figure 1.1 Surface plots of representative s, p, and d atomic orbitals (from the
Kr valence shell).

The energy eigenvalue εn depends only on the principal quantum number n; its
value is given (in atomic units; see Appendix C) by

εn = − Z2

2n2
a.u. (1.12)

for atomic number Z (Z = 1 for H).
The three quantum numbers may be said to control the size (n), shape (l), and

orientation (m) of the orbital Ψnlm. Most important for orbital visualization are
the angular shapes labeled by the azimuthal quantum number l: s-type (spherical,
l = 0), p-type (“dumbbell,” l = 1), d-type (“cloverleaf,” l = 2), and so forth. The
shapes and orientations of basic s-type, p-type, and d-type hydrogenic orbitals are
conventionally visualized as shown in Figs. 1.1 and 1.2. Figure 1.1 depicts a surface
of each orbital, corresponding to a chosen electron density near the outer fringes of
the orbital. However, a wave-like object intrinsically lacks any definite boundary,
and surface plots obviously cannot depict the interesting variations of orbital ampli-
tude under the surface. Such variations are better represented by radial or contour
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