INDEX

Note: page numbers in italic refer to figures and boxes.

A stars
reddening 439
sharp-line 431
Abbot, Charles 86, 86–87, 87
Abetti, Giorgio 112
absorption coefficient
blockage of passage of radiation 431–432
color-excess effect for color change per unit distance 295
mean 295
opacity 64
Abt, Helmut 403–404, 453
entered Cal Tech graduate program 543
W Virginis two-component lines 406
achromatism 53
Adams, Walter 10, 86, 93, 198
absolute luminosities from stellar spectra 358–359
appointment of Wilson 472
Arcturus studies 62
Assistant Director 88, 94
asymmetric drift 267
Betelgeuse studies 62
biography 92–95
calibration program 358–359
center-to-limb variations 64
Delta Cephei spectral changes 396
Cepheid variables spectral types 396
clouds in interstellar space 412
collaboration with Joy 258–259
Department of Stellar Spectroscopy 266
chief of 94
Director 88, 94
Dunham's innovations to instruments 468–469
Earth's rotation effect on apparent velocity of light 428–429
Einstein's visit 264
formality 217
Fraunhofer line wavelength shifts 158–159
frugality 191–192
Galactic spiral arms 464–465
ground-state line velocity anomalies for bright stars 407
Hubble opposition to as director 539
prevention of publication criticizing van Maanen 528
IAU chairman 526
interstellar gas 455–455
composition 462
interstellar line profiles 464
line-shifts 467–468
measured spectral types 238
Mount Wilson spectral measurement 257
negative velocity of northern hemisphere stars 267
nighttime observing 266
"Photographic Observations of the Spectra of Sun-Spots" 59, 60–61, 62
radial velocities 264, 265
long-range programs 266–267
Rowland estimated intensity calibration 434, 435–436
Schmidt camera 462
solar atmosphere chemical abundance 436
space motion 313
high-velocity tail asymmetry 314
spectroscopic parallaxes 239, 245, 244–245, 270, 361, 540
absolute magnitudes 247, 248
star space velocities 312–313
statistical parallaxes 359
stellar atmosphere
abundance determinations 442
chemical abundance 436
stellar spectra
absolute luminosities 358–359
sequence 397
subgiant detached sequence 540
sunspots
absorption hypothesis 61
cycle 113
intensities 66–67
support for Humason 126–127
work at Mount Wilson 88
Yerkes Mount Wilson Station 85
air turbulence 68
Albany Zone Catalogue 337
Albany Zone Catalogue for Epoch 1900 342
Albrecht, S. 396
Aldefaran position change 339–340
Allan, J. 36
Alt California 34
Alme, Adelaide 42
Alma California 35
Aller, L. 64
Alfvén, Hannes 87
Anderson, John 88
Allen, C. W. 327
Albany Zone Catalogue for Epoch 1900 342
Albany Zone Catalogue for Epoch 1900 342
INDEX
622
Index

Astronomical Journal, R. E. Wilson as associate editor 335
Astronomische Gesellschaft, meridian circle observations 336–337
astronomy observational 334
practical 336
set also radio astronomy
Astronomy Advisory Committee 31–35
Astrophysical Journal 1, 60
60-inch reflector 161
Baade’s Andromeda group galaxies 380
Snow telescope discoveries 67
solar Fraunhofer line discrepancies 131
Verdes Observatory dedicated 392
Zeeman’s original paper 72
astrophysics 1
Baade’s work 388–389
direct 431–432
early 32
emphasizing to Carnegie trustees 34
high-energy 516
need to study 38
observatory plan 41
astroseismology 72
atmospheric extinction measurement 36
atomic spectra 412–433
Zeta Auriga 402–404
azimuth error 337
B stars absolute magnitudes 233
distribution 236
absorption lines 449
color anomalies 437–439
eclipse by giant star 420–424
radial velocities 327
reddening 438–439
Baade, Walter 161, 227, 220, 284
200-inch telescope use 532
Andromeda nebulae 178, 464
stellar content 379–380
appointment to Mount Wilson 388
astrophysics work 388–389
biography 382–389
Cepheid variables period–luminosity relation zero point 427
competition for telescope time 508
correspondence with Shapley 385
darkroom incident with van Maanen 523–523
driver 513–526
dwarf E galaxies 174–177
eclipse expeditions 387
encouragement to Minkowski to emigrate 374
friendship with Schmidt 387
global clusters 295
main sequence 341–343

Cambridge University Press
Allan Sandage
Index

© Cambridge University Press
Index

623

gradient student training 543–547
H alpha line 464
Hamburg Observatory 385–386
H–R diagram of ordinary stars and globular clusters 295
M3 cluster main sequence 548
M3
globular cluster main sequence prediction 380–382
resolution 377–378
M2 resolution 382
M27
color–magnitude diagram 550
study 208–209
M2e cluster main sequence 544–546
move to Palomar 389
NGC 147 resolution 380, 383
NGC 185 resolution 380, 382
NGC 205 resolution 380, 381
opinion of Merrill 273
photoelectric photometry 439
research methods 386
Shapley's appropriation of work scandal 311
snorting 546
stellar populations 214, 258, 268
field variable stars 270
survey programs at Mount Wilson 369
testing of graduate students 341–346
visit to Mount Wilson 386
Babcock, Harold Delos 206, 198, 417
appointment 217
biography 109–108
collaboration
with King 104
with St. John 107
Fraunhofer line absolute wavelengths 137
grating laboratory 461
Kapteyn photometric program 218
pressure indices 136, 140
retirement 108, 555
solar global magnetic field measurements 112
solar polar magnetic field 411–412
Zeeman separation measurement 112
Babcock, Horace Welcome 76, 108
Andromeda nebula rotation rate 468
appointment at Mount Wilson 420
apprenticeship at Mount Wilson 420
appointment at Yerkes 459
biography 216–212
director of Mount Wilson and Palomar 416, 429, 555, 556
engineering skills 411, 416, 418
grating laboratory 461
Las Campanas Observatory (Chile) 420–421
magnetograph 411–412, 414–415
rocket project work 419–420
solar global magnetic field measurements 112
solar polar magnetic fields 411–412
stellar magnetic fields 439–414
wartime radar development 419
Babcock grating 84, 106–108
production 416
Bache, Alexander 331
Backus, Charles 46
Yerkes Mount Wilson Station 85
Bailey, Solon 288–289
cluster variables 288–289
RR Lyrae variable stars magnitude 300–301
Barnard, E. E. 18
Baum, W. A. 555–556
Baxandall, F. E. 272
Beach, Alice 107
Beal, Carlyle S.
clouds in interstellar space 452–453
galactic-rotation broadening 453
interstellar gas intensity–distance relation 416
Becker, W. 150
Belopolsky, A. 395
Besell, F. W. 318
Bethe, George 62
emission-line velocity splitting 406
fringe visibility 424–425
position change 350–350
Bigelow, H. W. 144–145
Billings, John S. 10, 10–11
Biographical Memoirs (National Academy of Sciences) 90
Blaauw, A. 214
Blackett, Patrick M. S. 117
magnetic fields 413
Bohlin–Shapley center 212
Bohl, Nisch 77
bolometer 33, 34
heat measurements 39
RS Boons
color variation 397
spectral type variation 396
Boss, Benjamin 340, 341, 345
director of Dudley Observatory 350
solar motion 310
uses of Preliminary General Catalogue and General Catalogue 348
Boss, Lewis 33, 331
Argentine expedition 343
Committee on Observatories 42
declinations catalog 316
Department of Meridian Astrometry 312, 332
director of Dudley Observatory 336
disagreement with Hale 312
high-velocity stars space motion asymmetry 313
moving groups discovery 348–350
practical astronomy work 336
proper motions 267
determination 339–341, 349
Bos, Lewis (cont.)
proposal to Carnegie Institution 341–342
solar motion 350
Ursa Major Cluster 349
Year Book (1921) essay 17–18
see also General Catalogue; Preliminary
General Catalogue
Borchinger, K. F. 168
Bovard, Marion 20, 25
agreement with Pickering 25–26
Bowen, Ira 286, 420, 441, 472
200-inch telescope 532
appointment as director 529
Baade's complaint about observation time
allotment 531–532
correspondence with Hubble
director of unified observatories 530
Bowell, William 426
Bradley, James
annual parallactic motion of nearer stars 357
answers correction of catalog 346
Brahe, Tycho
Buisson, H.
Brayton, Ida
Briggs, Paul ten
Brayton, Ida
Buisson, H.
Brayton, Ida
Buisson, H.
Buisson, H.
Bulletin of the Astronomical Institutes of the
Netherlands (AAN) 503
Bunsen, Robert
Burb, Sylvia 207
Burch, Milton 207
spectral parallaxes 248–250
subgiant detached sequence 540
Bruce 16-inch refractor 373–374
Bruce spectrograph 58–59
Bugger, Paul ten 372
Buisson, H. 318
Caboche, Didier 317
Cabri, Jean Rodriguez 14
cage changing 185–187
calcium
neutral, absorption line 462
spectra 62–63
California Colony of Indiana 13
California Institute of Technology 555
amalgamation of Mount Wilson with
Palomar 555
astronomy department 555
Cambridge University Observatory 444,
445
Camino Rea 14
Campbell, William W. 284
Committee on Observatories 41
director of Lick Observatory 170
radial velocities 262–263
solar motion 350
W Carina Venaticorum 275
Cannon, Annie Jump 254–255
draper system development 212, 216
long-period variables classification 271
Capella binary star 424
carbon star giants 270
Carnegie, Andrew 29–30
Carnegie Institution 9, 20–31
abandonment of Mount Wilson
Observatory 157
amalgamation of Mount Wilson with
Palomar 555
Articles of Incorporation 29
Astronomy Advisory Committee 31–35
Board of Trustees 29–30
Boss's proposal 341–342
chatter 9
Executive Committee 30, 31
telegram to Hale 11–12
funding for observatory 11–12
grants for astronomy 42
proposal for new observatory 1
research fields 30–31
support for astronomy 42
Carte du Ciel Program 211, 212
Alpha Centauri parallax 338
VV Cephei 402
Cepheid distances 501
Cepheid variables 128, 258
15-day 371
17-day 371
absolute magnitude 301, 360
classical, radial velocities 276
color–period relation 100, 396
Hubble's discovery 484, 494–495, 499
Humason's interpretation of M31 plates
496
light curves 440–441
period–luminosity relation 300, 354–355, 546
zero point 447
radial velocities 219, 230, 322–325
Joy's studies 234, 313–314, 335
Shapley's dismissal of M31 plates 436
Shapley's P–L relation calibration 302
Small Magellanic Cloud 361
color–period relation 300
period–luminosity relation 100
spectral types 396
pulsation 397
statistical parallax method 460
Delta Cepheid variables 395
spectral changes 396
Cepheid XX Cygni, light and color variables
396
Chalonge, D. 64
Chandra, S. 547
Chapman, Sidney 412
Charlier, Carl Ludwig Wilhelm 312
Chile, Lick station
Mills spectograph 263–264, 276
Wilson on Mills expedition 353–354
Christiansen, Gale 122
Christie, William 298, 207
Zeta Auriga eclipse 403
Schmidt camera 460–462
chlorium spectra 62–63
Clark, Alvan 20, 21, 23
Don Benito Trail 21
Clarke, Agnes 51
Snow telescope 46–49
Don Benito Trail 31
classiﬁcation 230–231
Coelostat telescopes
Dineen, Ed 132–136
Deubner, Franz-Ludwig 288
Curtiss, Ralph H.
Curtis, Heber D.
cyanogen bands, R-type stars
curve-of-growth technique
crimean astrophysical observatory
Crew, Henry 23
Cowling, Thomas G.
Crimean Astrophysical Observatory
denison, ed 132–136
Department of Meridian Astrometry 312, 332
Deulmer, Franz-Ludwig 415–416
Deutsch, Armin J.
decision
Delhaye, J. 250
Department of Stellar Spectroscopy 266
Delort, Anna 406–407, 408, 446
department of meridian astrometry
Deubner, Franz-Ludwig 415–416
Deutsch, Armin J. 406–407, 408, 446
department of Meridian Astrometry 312, 332
proper motions 341
derivation/synthesis
Department of Stellar Spectroscopy 266
Don Benito Trail
Donald, John 466–469
databank of sciences, Gold Medal 351, 354
data
collection at Mount Wilson 394
reduction/synthesis 35
de Sitter, Willem 500–501
competition with Hubble’s expanding universe theory 103–105
de Sitter effect 500–101, 102
dependence 190
Boss’s catalog 116
respect 189
Delhey, J. 250
Dennison, Ed 132–136
Department of Meridian Astrometry 312, 332
proper motions 341
Department of Stellar Spectroscopy 266
Deulmer, Franz-Ludwig 415–416
Deutsch, Armin J. 406–407, 408, 446
Hercules triple system 410
appointment 355–356
giant star expanding atmospheres 408–410
stellar magnetic ﬁelds 414
De-user, Sir James 57–58
Dictionary of Scientiﬁc Biography 90
diffracted star groups
3 diffuse interstellar bands (DIBs) 463–464
dinner room formality
327
Dipper stars 149
Drake, Francis 14
Draper, Anna 231, 234
Draper, Henry 232–233
Draper Memorial Catalogue 233
Draper system of spectral classiﬁcation
231–232, 236
adoption 235–236
development 332
one-dimensional 231–232
dress code 227
drift velocity, asymmetric 259, 267–268, 334,
336, 326, 319–320
high velocity 268
Dudley, Mrs. Charles 312
Dollard, John 53
Dominion Astrophysical Observatory
(Canada) 352
eclipses by extended giant atmospheres
402–405
interstellar gas intensity–distance relation
416
Benito Trail ne Sierra Madre Trail
Don Benito Trail
Dobler, Christian 262
Doppler motion 262
solar atmosphere 139–140
doubled ratio 452, 453, 455
Douglas, A. E. 462
Drake, Francis 14
Draper, Anna 231, 234
Draper, Henry 232–233
Draper Memorial Catalogue 233
Draper system of spectral classiﬁcation
231–232, 236
adoption 235–236
development 332
one-dimensional 231–232
dress code 227
drift velocity, asymmetric 259, 267–268, 334,
336, 326, 319–320
high velocity 268
Dudley, Mrs. Charles 312
Dalton, John 466–469
databank of sciences, Gold Medal 351, 354
data
collection at Mount Wilson 394
reduction/synthesis 35
de Sitter, Willem 500–501
competition with Hubble’s expanding universe theory 103–105
de Sitter effect 500–101, 102
dependence 190
Boss’s catalog 116
respect 189
Delhey, J. 250
Dennison, Ed 132–136
Department of Meridian Astrometry 312, 332
proper motions 341
Department of Stellar Spectroscopy 266
Deulmer, Franz-Ludwig 415–416
Deutsch, Armin J. 406–407, 408, 446
Hercules triple system 410
appointment 355–356
giant star expanding atmospheres 408–410
stellar magnetic ﬁelds 414
De-user, Sir James 57–58
Dictionary of Scientiﬁc Biography 90
diffracted star groups
3 diffuse interstellar bands (DIBs) 463–464
dinner room formality
327
Dipper stars 149
Drake, Francis 14
Draper, Anna 231, 234
Draper, Henry 232–233
Draper Memorial Catalogue 233
Draper system of spectral classiﬁcation
231–232, 236
adoption 235–236
development 332
one-dimensional 231–232
dress code 227
drift velocity, asymmetric 259, 267–268, 334,
336, 326, 319–320
high velocity 268
Dudley, Mrs. Charles 312
Dudley Observatory (Albany, New York) 37, 332–333, 334
achievements 331
Boss as director 336
Carnegie support 342
computation needs 342
Gould as director 334
instruments 333–334
meridian circle 335
observations 336–337, 342
more 333
observing program 342
opening 333
proper motions 340
resumption of observations 345–346
San Luis Expeditionary Observatory 344
scientific council 333
Wilson at 334
Dunham, Theodore 626
Dyson, Frank 444
E galaxies 372–373
dwarf 373–377, 380
early-type stars, narrow stationary H and K lines 449, 454
Earth
atmospheric corrections 338
atmospheric extinction measurement 36
latitude variation of places 319
motion corrections 338
wobbles on axis 318–319
Eaton, Benjamin 232, 236
Don Benito Trail 27
Eddington, A. S. 397, 444
eruptive solar prominences 359
geosynchronous orbit 359
interstellar gas analysis 431

Index

The First Feast, Michael W. 131

Mount Wilson Observatory

visit to Mount Wilson Observatory 140–144, 342, 345, 204
Einstein gravitational redshift 337, 135–137, 139–141
absolute wavelengths 137–139, 157–159
electric furnace 32
Elliot, Charles W. 26–27
Ellerman, Ferdinand 80, 86, 98
assistant to Hale 90–91
biography 97–100
Einstein’s visit 342
hydrogen bombs 146, 133–135
meeting with Hale 98
role 85–86
solar global magnetic field measurements 122
solar prominences 133
eruptive 149
spectrohelograms 144, 144
solar prominences 65
spectral differences 58–59, 62
sunspot cycle 113
work at Mount Wilson 88
Yerkes Mount Wilson Station 85
Elsey, Christian 432
Emden, Robert 339
Epstein, Paul 472
Evershed effect 139
ether-drift experiment 423, 447–448
Evans, John 451
interstellar dust 456
Evershed, John 127–128, 133–134
prominence patrols 144
velocity field 241
Evershed effect 133–135

Fabry, C. 131, 138
Fath, Edward
appointment 85, 127
Kapteyn photometric program 218
work at Mount Wilson 88
Feast, Michael W. 273, 277–278
galactic rotation 326–328
The First 50 Years at Palomar 321
Firenz, A. H. L. 162
Fleming, Williamina P. 322
Fornax constellation 373–374, 376, 377
Foucault test 190
Fowler, F. E. 86–87
Fowler, Alfred 170
Fowler, R. H. 231
Fraunhofer, Joseph von 11, 13–14
Fraunhofer’s spectroscope 11, 13–14
absolute wavelengths 137
contours 443, 444
earliest discovery 50–51
formation heights in solar atmosphere 139–140
| Strengths 444 |
| Studies 67 |
| Tables of solar lines 60, 67, 130–131 |
| Correction 131–133 |
| Discrepancies 131 |
| Wavelengths 130–133 |
| Wavelengths center-to-limb variations 138 |
| Measurement 139–140 |
| Shifts 138–139 |
| Widths 443 |
| Freeman, Kenneth 268 |
| Friedmann, Alexander 501 |
| Fringe visibility variation 444 |
| Frost, Edwin P. 94 |
| G stars, absolute magnitude distribution 409–410 |
| Galactic longitude 279, 311, 464 |
| Galactic spiral arms 461–466 |
| Globular clusters 384, 391 |
| Galactic plane |
| Cluster avoidance 305–307 |
| Cluster destruction 306–307 |
| Galactic rotation 359, 268, 327 |
| Discovery 312 |
| Dominion Astrophysical Observatory 325 |
| Double-sine-wave signal 431–432 |
| Interstellar gas 464 |
| Lindblad’s work 319–320 |
| Oort’s model 276, 465 |
| Theoretical effects 321–322 |
| Galaxies |
| Classification 481, 485–487, 489, 491 |
| Bin size 489–490 |
| Class interval introductions 490 |
| Intermediate types 490 |
| Luminosity class 492 |
| Lundmark’s 486–488 |
| Merits of Hubble’s system 489–490 |
| Reynolds’ criticisms 489, 490 |
| Shapley’s 488–489 |
| Textbook of revised system 490–491 |
| Cluster 506–507 |
| Redshift 512, 513 |
| Color measurement 440 |
| Count–magnitude program 355–356 |
| Distribution 316, 317, 317 |
| Elliptical 372, 484, 106–107 |
| Redshift measurement 513 |
| Energy distributions 318, 316 |
| General 506–507, 508 |
| Globular 372 |
| Groups 588 |
| Linear velocity-distance relationship 501, 502, 503 |
| Counter-claims 503–505 |
| Luminosity function 505, 510–511, 512 |
| Magnitude 508–509, 510–511 |
| Apparent 506, 508–509, 513 |
| Measurement 440 |
| Redshift correction 517 |
| Total 440 |
| Northern |
| Reclassification by Hubble 492 |
| Survey 464 |
| Number per square degree 416 |
| Physical properties 491–492 |
| Radial velocities 278–279 |
| Redshifts 278, 499–503 |
| Relative distances for fainter 506 |
| Spiral 372, 484, 506–507 |
| Redshift measurement 513 |
| Surface brightness 120 |
| True flattening distribution 491 |
| Velocities 499–500, 503, 506, 510–511 |
| Apparent magnitude correlation 508–509 |
| Magnitude correlation 513 |
| Velocity–apparent magnitude diagram 506 |
| Velocity–distance relation 279, 392, 397, 398, 516 |
| Luminosity function 512 |
| Velocity–magnitude Hubble diagrams 513 |
| See also E galaxies |
| Galaxy |
| Age-dating of disk 249 |
| Chemical evolution 558 |
| Formation 274 |
| Kinematics 536 |
| Local system 317 |
| Orbits 268 |
| Selective absorption 437–439 |
| Shapley’s proposals 506–507 |
| Size 290–291 |
| Spiral arms 464–466 |
| Local 223 |
| Structure 1, 211, 221, 222, 227 |
| Globular clusters 303–307 |
| Group kinematics of long-period variables 273–277 |
| Subsystems 321 |
| Surface brightness calculation 229 |
| Gale, Henry G. 62–63 |
| Vacuum-pipe experiment 419 |
| Gaposchkin, Cecilia Payne see Payne, Cecilia |
| Gas, galactic nebulae 484–485 |
| Gas pressure |
| Indices 239, 140 |
| Measurement 239 |
| General Astronomy (Young) 58 |
| General Catalogue 331–334, 349, 347 |
| Completion 346 |
| Scientific uses 348 |
| Uses of 348 |
| See also Preliminary General Catalogue |
| Gerasimov, B. 431–432 |
| Giant-branch stars 547–550 |
resignation from Yerkes and Chicago 42
Selected Areas program appointments 216–217
solar global magnetic field 217, 316–318
solar program 59
solar velocities 64–66, 73
spectral analysis 34
spectral differences 38–59
spectrographs 14
spectroheliograph development 32–33
solar prominence photographs 143
stellar evolution 339, 527–534
stellar spectral sequence 397
sunspots

cycle 113
intensities 60–61
magnetic fields 65–66, 72–77
 polarity in magnetic fields 76–77
spectra and displacement curve 118
telegram from Carnegie Executive Committee 11, 22, 42
telescopes 54
transfer of Yerkes astronomers 10
at University of Chicago 33–34
visitor program 86–87
Year Book (1902) essay 38–39
Yerkes Mount Wilson Station 81
Yerkes Observatory dedication 52
Hall, Chester 53
Halley, Edmund 339–340
Hallen, Jacob 139, 159
Hamburg Observatory 386–388
eclipse expeditions 387
Hancock, Eugene 188, 141
Handbuch der Astrophysik 113
Harper, William Rainey 91
Hartmann, Johannes 448–449
Hartmann E. 430
Harvard College, California, observatory 25–27
Harvard-Dreger system of spectral classification 231–233
Heareshaw, John B. 211–212
Heinzenberg, Werner 412
heliometer see Fraunhofer heliometer
helioseismology 416
Hemenway, Mary 275
hemispheres, sunspot magnetic field polarity 76–77
Henderson, T. 318
Hendix, Don 461–462, 476
200-inch mirror correction 475
biography 474–477
fishing expedition 477
Lick Observatory 475
optical shop work 474–475
Henry, Joseph 333
Henry Draper Catalogue 235

Index

Alpha Hercules 409–410
mass-loss rate 409–410
triple system 420
Herschel, Sir John 17, 358
Herschel, Sir William 165
solar motion 314–315, 350
star counts 211–212
Hertzsprung E. 240
Cepheid period–luminosity relation 300
Copenhagen Observatory 241–243
HR diagram 217
statistical parallax method 160, 166
systematic variation of mass along main sequence 339
Hertzsprung–Russell (HR) diagram 220, 367, 430
calibration 212
color–magnitude 369
Cartesio 246
globular clusters 285
bright stars 370
giant branch 360–370
high-velocity field stars 542
M67 subgiants 550
ordinary stars 295
renewing 240–243
spectroscopic absolute magnitudes 370
1895 catalog 249
stellar chemical composition differences 556
stellar evolution 295–296, 353
subgiants 350–351, 548
detached sequence 450
Herzberg, Gerhard 482
Hickox, Joseph 182, 181–182, 198
solar global magnetic field measurements 122
Hinks, Arthur R. 430
Hogg, Edson 181, 298
Holmberg, Erik 447, 490
galaxy absolute magnitudes 511
Holmes, J. H. 24, 45
Hooker, John D. 89
fundings for 100-inch reflector 170
Hooker telescope see telescopes,100-inch
hot stars
clouds near 410–411
O and B 355
hotel on Mount Wilson 24, 45
Howard, Robert
solar atmosphere five-minute oscillation 415
sunspot polarity 77, 412
Hubble, Edwin 16, 87–88, 198, 204, 482
200-inch telescope use 532
appointment 481–482
biography 521
calibration methods 316
Cepheid distances 501
Cepheid variables 128, 494–495, 499
Index

Hubble, Edwin (cont.)
classification of nebulae 481–484
galactic 484–485
collaboration with Humason 501–507
correspondence with Bowes 510–513
curvature of space 514–515
directorship ambitions 519–531
disagreement
with de Sitter 503–505
with Lundmark 486–488
with van Maanen 128
distance modulus 147
distance scale correction
Einstein’s visit 483
expanding universe 501–502
eXtragalactic distance scale revision 547
galaxies 489
classification 481–487, 487, 491
counter-claims for linear
velocity–distance relation 503–505
count–magnitude program 515–516
distribution 516, 517
luminosity function 510–511
magnitude 510–511, 516–518
physical properties 491–493
reclassification of northern 492
spiral 517
truflattening distribution 491
velocity 510–511
IAU Commission 28 on Nebulae 495, 496
luminosity function 509
Merritt’s antipathy to 284
Monastery dining room
discourse 314–315
incident 523–524
nebula
placesections for observations 493
reflection 490–491
novae
discoveries 494–495
photography 494
photometricphotometry 419
photography
novae 494
Shapley–Ames galaxies 492
redshifts 478
distance incorrect assumption 318–319
distance relationship 518
survey with Humason 506
relationship with van Maanen 127–129
research methods 386
response to de Sitter’s publication 504
Shapley
attack by 503, 505
critique with 499
velocity–distance relation for galaxies 279,
582, 597, 511, 512
linear 503–505

Hubble, Grace 518–529
Hubble Atlas 490
Hubble constant 501, 520–531
Hubble diagram 520–521, 556
Huffer, C. N. 418
Huggins, Sir William 232
Hulbert, Henry S. 151
Hummel, Milton 15, 183, 184, 183–184, 198, 284
Adams’ support for 536–547
collaboration with Hubble 505–507
curvature of space 514–515
diffuse interstellar bands 463–464
fishing expedition 477
galaxy groups 528
Hugel, H. H. 104
Hubble diagram 468
Hubble, Edwin (cont.)
galaxy velocity 503
gambling 516–517
luminosity function 509
M31 plates 495–498
M67 study 519
new galaxies 508
night assistant 192–193
Palomar Observatory 513
polar comparison of photospheric scales 220
radial velocities 279
redshift measurement 518, 509–510
Collaboration with Mayall 513
redshift survey with Hubble 506
redshift–distance relation 507, 507–508
spectroscopic parallaxes 247–250
absolute magnitudes 428
subgiant detached sequences 540
telecope use while dome rotation broken 527
velocity–distance relation 507
zero-point transfers 287
Hunt, Myron 180
Hunt and Gray (architects) 180
Hussey, William J. Jr. 341
Hyades moving group 214, 215
color–magnitude diagrams 240
convergent point 248, 249
extended region 349–350
extended 234
proper motions 279
hydrogen Balmer lines 64–65
hydrogen bombs 113–114, 115
hydrogen H alpha line
eruption 213–214
waviness 175–176
hydrogen radio line 427
Hynck, J. Allen 437
Ingersoll, Leonard 86, 86–87
instrumental meridian 337
instruments
building 207–208
development 2, 39
Hale’s perception of need 38
maintaining 207–208
interference fringes 423–424
interferometers 131
20-foot 424–425
Anderson eyepiece 424
Michelson’s work 424
Pease’s 50-foot 425
stellar 199
interferometry
cessation and revival at Mount Wilson 425–426
stellar 423–426
International Astronomical Union (IAU) 236
Commission 28 on Nebulae 485, 486
Landmark 486–488
Shapley 486
International Standards for wavelengths 423
International Astronomical Union (IAU) 131, 137
International Union for Cooperation in Solar Research 235
interstellar clouds 433–435
interstellar extinction, Shapley’s rejection 305
interstellar gas 448–449
absorption line intensity 453, 466
analysis 431
chemical composition 462–463
coudé spectrographs 477–478
Galactic rotation 464
intensity–distance relation 455–456
intercloud 466–467
molecular lines 462
interstellar lines 431
Ca II 467
interstellar 436
profiles 464
quantitative measurement 452–453
stationary 458–472
strengths 435
velocities 436
interstellar matter 448
interstellar space 432–435
ionization equation 64, 119
iron, neutral, absorption line 462
Jacomini, Clement 461
Janssen, Jules 143
Jeans, James 172
Johnson, Katherine 473
Journal of the Italian Scientific Society 232
Joy, Alfred 2, 87–88, 106, 257
appointment 258
asymmetric drift 267
biography 256–261
Cepheid studies 324, 371
radial velocities 376
collaboration with Adams 258–259
fall from 100-inch telescope 260
globular clusters 371
RR Lyrae variable stars 275
Miura spectrograms 404–406
publications 216–217
radial velocity programs 324, 322–324, 335
Cepheid studies 276
long-range 267
review of MKK Atlas 235
space motion 344
spectroscopic parallaxes 245, 245–250, 258, 361, 400
absolute magnitudes 247, 248
spectroscopy 228–229
statistical parallaxes 199
subgiant detached sequence 540
variable-star survey 269–270
Joyner, Mary 220, 221, 225
marriage to Seares 229
Jupiter IX discovery 124
K corrections 506, 518
redshifts 516
K stars 402
absolute magnitudes 385, 386
atmosphere 404–408
density gradient 403–404
Kahler-Morgan equinoctial corrections 540
Kapteyn, Jacobus C. 126, 127, 211, 222
heliocentric Universe 233
RR Lyrae variable stars absolute magnitude 304
Mount Wilson Catalogue 220
research associates visits 216
Selected Areas program 211–213, 214
Mount Wilson Catalogue 208–209
value 214
star stream movements 212–213, 215, 233–234
statistical parallaxes 199–200
stellar-concentration index 222, 223
surface distribution of stars 222
Kapteyn Selected Areas program 60-inch reflector telescope 236
appointments 216–217
observations for 218–219
Kaye, Heinrich 131
Kedzer, James E. 163
Yerkes Observatory dedication 91
Kerran, Philip 213–215
color anomalies in B stars 412
Kiss, C. C. 274–275
Kellman, Edith 233–235
Kenedy, Roy J. 427–428
Kenwood Observatory 90–91
Ellerman at 98
transfer to Chicago 92
King, Arthur 67, 79, 204, 218
appointment 81, 216–217
biography 102–105
collaboration with Babcock 104
pressure indices 119
Zeeman separation measurement 112
King, E. S. 219
King, Robert 203, 218
Kinney, Abbot 18
Kirchhoff, Gustav 54
Klein, Felix 270, 315
Kohlstetter, Arnold 94
absolute luminosities from stellar spectra 318–319
long-range radial velocity programs
266–267
measured spectral types 218
negative velocity of northern hemisphere stars 267
spectroscopic parallaxes 239, 244
star space velocities 312–313
Krafl, Serge A. 445
Kourganoff, V. 64
Kraft, Robert 446
appointment 511–516
Krause, Gerald (Jerry) 418, 441–444
laboratory research 19
Crew and Spence's spectral studies 63
discoveries at Pasadena physical laboratory 67
Gale's spectral studies 62–63
Lake Angelus Observatory 111
Lake Vineyard Ranch 15
Lane, Homer 539
Langley, Samuel Pierpont 8–9
Advisory Committee for Astronomy 31–32
alliance with Pickering and Hale 32
association with Hale 34
visitor program 86–87
Year Book (1902) appendices 36–37
Las Campanas Observatory (Chile) 131–143
development 316–317
redshift measurements 313–314
Layden, Andrew 275
Leightoun, Robert 72
magnetograph 414–415
velocity measurement 415
Lemaître, Georges 501
lenses
60-foot telescope 82–84
achromatization 51
level error 337–338
library 264, 272, 218
Lick, James E. 25

Index

Lick Observatory 11, 15
Hendrix at 475
Mills spectrograph 261–264
organization 179–180
redshift measurement program 513
Stebbins’ appointment 441–442
Wilson at 335
see also Chile, Lick station
light, velocity of 413
Earth’s rotational effect on apparent velocity 428
speed of light measurement 416–417
Lilley, A. E. 457
Lindblad, Bertil 233, 319
Galactic rotation 259, 199–210
Littrow arrangement 51–56
Littrow self-collimating spectograph 71
30-foot 61
75-foot 82–84
Living, G. D. 57–58
loan document 15
Locanthi, Dorothy Davis 207
Lockyer, Norman 58, 143, 213
long-period variables (LPV) 369
absolute magnitudes 161–162
atmospheric physics 404–407
drift velocity 316
emission lines 441
group kinematics 272–274
kinematics 369
Merrill's study 283–284
Mira-like 371
heat measurement 401–403
radial velocities 272–274
red 404–407
S-type star classification 271–272, 274
space motion correlation with pulsation
period 272–273
spectral types 270–272
spectroscopic variations 404–407
Lorentz, Hendrik A.
ether-drift experiment 437
theory 77, 78
Los Angeles 14
Low, Thaddeus 21, 26
Don Benito Trail 21
observatory plans 27–28
Lowell Observatory 27–28
Lowell Observatory (Arizona) 449, 450
Lowen, Louise 207
L–S coupling 451
Lukens, Theodore P. 19
lumber, need for 14
luminosity 348
absolute 212
classification 490
effect 239–240
function 509, 510–511
Index

633

Shapley's interpretation of plates 493–494
stellar content 494
M67 cluster 298–299
color–magnitude diagram 299, 327, 549–551
evolutionary tracks 312
stellar evolution explanation 550
main-sequence termination point 551
normal solar metallicity 550
M68 cluster 294
M92 cluster 381, 444–446
main sequence 456, 547
MacCormack, Elizabeth 407–408
Macpherson, David 27–28
Magellanic clouds, bright-line emission nebulae 133
magnetic fields 410–414
dollar 122, 123
polar 400–413
sunspots 61–66, 73–77
magnetograph 411–412, 414–415
Leighton's 414–415
velocity measurement 415
magnets 32
Mars, heat radiation 400
Martin, Clarence 23, 16–27, 28
Martin's Camp 207
Martin, Clarence 23
Maunder, Edward 37
Mauzy, Antonia C. 314
Draper system development 233
luminosity effect 420
Mauzy classification 233–234
Mauzy--Picketing catalog 234
Mayall, Nicholas 234
redshift measurement collaboration with Humason 513
Mayer, Walther 122, 143
McAlister, Harold 410–416
McCuskey, Sidney 227
McDonald, Edward 415
McDonald, 81-inch reflector 429
McKee, William 147
McKellar, Andrew 166
McKee, William 147
Maury classification 233–234
Mercury, surface temperature 399–400
meridian circle see Olcott Circle
meridian passage 377
clock errors 337
data 377

new criteria 253
see also Cepheid variables, period–luminosity relation
Lummer plate interferometer 217
Lundmark, Knut 211–212, 416–418
de Sitter effect 300–301
novae classes 403
solar motion 503
Luyten, W. J. 540
RR Lyrae variable stars 259
absolute magnitude 543–544
angular size–parallax 204
calibration 300–301
drift velocity variation 320
field 371
M3 disk 543
magnitude 300–301
absolute 301, 304
radial velocities 274–275
Scalpere system 174, 177
Shapley's P–L relation calibration 302
spectral type variation 396
M stars
atmosphere 404
emission-line doubling 406
spectra 259
spectroscopic absolute magnitudes 248
M3 cluster 382
color–magnitude diagram 293, 294, 446, 553
main sequence 546, 547, 548, 551
evolutionary tracks 549
M5 cluster 204
M11 galactic cluster 299–300
color–magnitude diagram 294
M13 globular cluster brightest stars colors/magnitudes 290, 291, 292
color coefficient 206–217
color variation rate with distance 295
color–magnitude diagram 294
distance to 207–208
giant branch 201–202
horizontal branch 201–204
selective scattering 295
upper limit to selective absorption 294–297
M5 cluster 294
M51
Cepheid variables 495
declination 378
resolution by Baade 377–380
Shapley's plates 493–498
interpretation 493
spiral 373
stellar content 494–495
M52 372–373
resolution by Baade 380
M53
Cepheid variables 495

© Cambridge University Press
meridian photometer 32
Merrill, Paul Willard 87–88, 198, 218, 285
Anderson eyepiece interferometer 424
antipathy to Hubble 284
appointment of Wilson 472
biography 288–289
Capella spectroscopy 424
catalogues 273
clouds in interstellar space 452
diffuse interstellar bands 463–464
doubler ratio 421, 455
interstellar gas 415–415
long-period variables 269, 270, 272,
283–284, 361–362
group kinematics 272–274
Mira emission-line ratios 405
peer-refereeing 197
politics 285–286
retirement 286
S-type stars
classification 270–272
technetium discovery 284
supergiant M star emission/absorption
differences 406–407
technetium in S-type stars discovery 284
variable-star survey 269–270
Messier 67 (M67) globular cluster see M67
cluster
Metromedia 24
Mexican sovereignty 13–14
Michaud, Raymond 435
Michelson, Albert 84, 204
ether-drift experiment 423, 427–428
fringe visibility variation 424
Nobel prize for physics 432–433
Pease’s collaboration with 101–103
red cadmium line wavelength 111–111
research associate visits 422–429
Rowland’s tables of solar Fraunhofer lines 131
speed of light measurement 416–417
stellar interferometry 423–426
vacuum-pipe experiment 429
velocity of light studies 423
Earth’s rotational effect on apparent
velocity 428
Michelson–Sagnac effect 428
Michigan University Observatory 402–403
microphotometer 452–453
microwave background radiation 220
microwave radio detections 462
midnight lunch shack 188, 191–193
Milky Way
concentration of stars towards plane 222
size 297
spiral arms 464
Miller, Dayton 427–428
Miller, H. L. 86
Millikan, Robert 539

Index

Mills, D. O. 164
Mills spectrograph 263–264
Milne, Edward A. 251
solar prominences 148
Minkowski, Rudolph 298, 207, 446, 533
biography 533–537
mentoring of student observers 155
observational astronomy 134
publications 534
redshift work 356–357
retirement 356, 377
work with Baade 356–357
Minnaert, M. 64
curve-of-growth technique 445
Mira 406–407
absorption velocities 405
emission-line ratios 405
hydrogen emission lines 405
spectrograms 404–406
mirrors
24-inch 161
60-inch 96–97, 160–161
focal length 164
off-axis coma aberration 164
100-inch 97
contract 170
optical work on blank 173
coidator 70, 71–77
60-inch reflector 78, 82
Snow telescope 48–49
Foucault test 190
secondary 177
Mission San Gabriel Archangel 14, 15
missions, Catholic 14
MKK Atlas 254–256
disappointment of Observatory
spectroscopists 256
MKK system 253–255
luminosity bins 255
Monastery 87, 180–181
dining room
Hubble’s discourse 124–125
incident 123–124
protocol 123–124
snowstorm 264
stewards 83
Monck, William 259
Monthly Notices of the Royal Astronomical
Society 100
Moon
bright/dark 162
eclipse 400
radiation from 397–403
temperature structure of surface 400, 401
Moore, Charlotte 431, 434–435
multiplier tables 434
Rowland estimated intensity calibration
434, 435–436
solar atmospheric chemical abundance 436
Morgan, William 253–255
Galactic spiral arms 464
interstellar dust 456
subgiants spectral classification 141
Mount Stromlo Observatory 354
Mount Harvard 27
Mount Kinneyloa 17–18
Mount Lowe Railway 28
Mount Stromlo Observatory (Canberra) 469–470, 354
Mount Wilson
all-weather road 154
Casino 179
expedition 92
first proposals for telescopes 20–22
Hale’s reconnaissance 179
Harvard College Observatory 21, 25
hotel 24, 41
investigation of site 9–10
mule transport 68, 69
naming 18
proposals for routes 19–20
suitability for observatory 8
weather conditions 8
wildlife 193, 195
Mount Wilson Catalogue of Selected Areas 216–217, 220, 221, 229
catalog corrections 220–221
program 216–217
Mount Wilson Contribution series 481
Mount Wilson Institute 557
Mount Wilson Observatory
abandonment by Carnegie Institution 557
accommodation for essential personnel 180
divisions 196–208
Einstein’s visit 140–141, 142, 143, 204
formation 1
houses 183
importance 1
living arrangements 180–181
merger with Palomar 2, 519, 555
dissolving 516–517
organization 179–180, 106
routine survey programs 194
science 2
scientiﬁc staff in 1939 198
Shapley as Director 188
see also midnight lunch shack; Monastery
Mount Wilson Revised Rowland Tables (RR) 118–119
Louise Wate’s computing 206–207
wavelengths 131–133
Mount Wilson Toll Road and Hotel Company 24
moving groups
discovery 348–350
distances 348–349
Mulders, G. E. W. 445
multiple intensities, solar atmosphere 444–445
multiple lines 423
AMultipletTableofAstrophysicalInterest
(Moore) 434
Munch, Guido 464, 475
CalTech astrophysics department 555
Galactic spiral arms 464–466
intercloud medium 467
interstellar gas 443, 446
Cha Orionis interstellar lines 463
Muscat 13
National Academy of Sciences, Engineering
Council plaque 176
Native Americans 14
Nature 76–77
nebulae
classiﬁcation 481–484
difuse 481
galactic 483–485
dust 484–485
emission lines 484–485
gas 484–485
luminosity 484
spectroscopy 484
illumination mechanisms 485
nongalactic 483–484
classiﬁcation 485	nature of 491–494
nonspiral 484
spiral 484
photography 199
radiation from 485
reﬂection 450–451
Nelson, Tom 188, 188, 182
Newcomb, Simon 31, 34
Department of Meridian Astrometry 332
nuation constants 340
precision constants 340
velocity of light studies 433
Year Book (1902) essay 40
Yerkes Observatory dedication 92
Newton, Isaac 50–51, 51
NGC 477
declaration 378
resolution by Baade 380, 383
NGC 481
declaration 378
resolution by Baade 380, 382
NGC 201 380, 381
Nichols, Edgar 461
Nicholson, Seth B. 76–77, 87–88, 123, 198, 228
angular diameters of stars 413
appointment 164
biography 122–123
collaboration with Pettit 125
Jupiter satellites discovery 124
Mira thermocouple measurements 405
planetary heat emission 406, 408–409, 402
publications 125

© Cambridge University Press
www.cambridge.org
Nicholson, Seth B. (cont.)
pulsation effect on spectral-line profiles 397
solar global magnetic field measurements 122
stellar heat emission 400–402
sunset cycle 113
night assistants 183, 188–190
60-inch telescope 164
Noonan, Thomas 419
North Polar Magnetic Sequence 219–220, 439
photometric transfers 287
novae 493
Ritchey’s discoveries 494
Noyes, Robert 72, 415
nutation 339, 357
constants 340
rate 339
O stars 253
observatories
astrophysics 41
earliest in US 304
high mountain for solar constant 36
orbiting 467
site survey 40–41
temporary southern 37
observers, nighttime 180–181
routine 266
see also night assistants
observing
100-inch telescope at Newtonian focus with cage north 377–380
crossing meridian with cage south 378
preparation for 185–187
routine 188–189
nighttime 266
schedule 189, 194, 185
politics 184–185, 473–474
Oke, J. B.
Cal Tech astronomy department 555
energy distributions 418
interstellar gas intensity–distance relation 416
O’Keefe Circle 333–334, 335, 343
Argentine 343, 344
delicateness 343
observatories 31, 38
Argentina 342
Boss’s 336–337
Dudley Observatory 342
return to Dudley Observatory 345–346
systematic errors 337–338
Oort, Jan
double sine wave 326
equations 321–322, 324, 335
Galactic rotation 259
model 276, 465
Index

Osterbrock, Donald 446, 464
Cal Tech astronomy department 555
Palomar Observatory
cosmology 210–211
merger with Mount Wilson 2, 150, 555
dissolving 336–337
Program Committee 141–141
redshift measurement 151, 154
see also telescope, 100-inch at Palomar
parallaxes/parallax astronomy 235, 359
convergent point 249
effect 518
measurement 127–128
Russell’s work 431
Shapley’s P–L relation calibration 202
see also spectroscopic parallaxes; statistical
parallaxes; trigonometric parallaxes
Pasadena 13, 17, 17
campus for Observatory 180
International Union for Cooperation in Solar Research 235
offices 167, 180
physical laboratory
astronomers 200
discoveries 67
Pasadena & Mount Wilson Railway Company 28
Pasadena & Mount Wilson Toll Road Company 22–24
ownership of Mount Wilson peak 24
Pasadena & Wilson’s Peak Railway Company 20, 21
Paul, Wolfgang 412
Payne, Cecil 211, 415, 416
stellar atmosphere abundance
determination 442
Pearce, J. A. 315
interstellar line velocities 412
radial velocity variation 226
Pearson, Fred 416–417
Pease, Francis 89, 101, 123
100-foot interferometer 415
100-inch telescope

© Cambridge University Press
www.cambridge.org
completing 173
innovations 173–174
300-inch telescope design 185
angular diameters of giant stars 443–445
biography 100–102
collaboration with Michelson 101–102
gratings 460–461
radial velocities 278–279
role 85–86
ruling engine 460–461
Schmidt camera 461–462
speed of light measurement 416–417
work with Ritchey 100
Yerkes Mount Wilson Station 85
peer-refereeing 197
Penet 151
Perrin, Gasper de 44
Perite, Robert 213, 265
Petit, Edison 87–88, 152, 198
angular diameters of stars 445
collaboration with McMath 111–115
with Nicholson 125
Mira thermonuclear measurements 405
planetary heat
emission 491, 598–601, 402
filters for radiation 399
return to Mount Wilson 153
solar prominences 146–147
eruptive 149–150, 310. 352, 151
time-lapse motion pictures 447
stellar heat emission 400–402
thermoelectric thermopiles 408–409
"Photographic Observations of the Spectra of Sun-Spots" 59, 60–61, 62
photography
nebulae 193
solar prominences 143
Sun 32–33
telescope focusing 190
time-lapse 351–353
photometer
meridian 32
microphotometer 432–435
photometry 228–230
Argentina expedition observations
144
photoelectric 436–438, 439–440
nebulae 435
staff appointments 555–556
photographic
M43 cluster 444–456
methods 239
Seares’ work 215–216
six-colour 440–444
stellar 40, 399
photosphere see solar atmosphere
photovisual scales 220
physical laboratory
astronomers 200
discoveries 67
"Physik der Sternatmospharen" (Unsdl)
Pickering, Edward C. 20–22, 16
alliance with Langley and Hale 32
Arequipa site 214–215
astronomy methods 393–394
chairman of Advisory Committee for Astronomy 31
Don Benito Trail 22
Draper system development 231, 236
visual magnitudes 218, 219
Year Book (1902) essay 40
Pickering–Fleming classifications 233
Pierce, Benjamin 333
Pierce, K. 64
planets, radiation from 397–402
Plaskett, Harry H. 235
galactic rotation 323
interstellar line velocities 402
radius velocity variation 526
solar granule velocity 44
Plaskett, John S. 440–450
Plieades cluster, color–magnitude diagrams 240
Polaris, photoelectric light curve 439
"Popular Astronomy" 240
Shapley’s retrospective 373
Wilson as editor 313, 315–316
potassium absorption line 461
Prall, Elmer 461
precession 338, 339
constants 460
rate 339
Preliminary General Catalogue 333–354, 340
scientific uses 148
uses of 348
Penzion, George 516–517
appointment 555–556
stellar magnetic fields 414
Proceedings of the National Academy of Sciences 503
Procyon, ground-state line velocity anomalies 407
proper motions
astronomers 199
determination 339–340
Hyades moving group 249
radial velocity 267
reduced 212
regularity 212–213, 213
reverse 360
rotation 435
Russell’s work 431
tau component 360, 364
proper motions (cont.)
uppsilon component 360, 364
see also General Catalogue; Preliminary General Catalogue
Pueblo de Los Angeles 14, 15
pulsation theory of variable stars 295–297
quantum theory 77, 432
quarter-wave plate, compound 116, 417–418
quasars 320, 556
R-type stars, cyanogen bands 270, 271
Radcliffe Observatory (Pretoria) 277–278
galactic rotation 325–326
Thackeray at 446
radial velocities 236, 259
Cepheid variables 238, 270
classical Cepheids 276
early measurement 263–265
galaxies 278–279
long-period variables 272–274
long-range programs 266–267
RR Lyrae variable stars 274–275
Mount Wilson Program 264, 265–266
Oort’s predictions 252
Radcliffe Observatory work 277–278
southern stars 264
spectroscopic determination 262
variable star programs 268–270
Wilson’s catalog 276–278, 355
see also drift velocity
radiation 397–402
absorption determination 36
radio astronomy 320, 355, 556
radio source optical identification 520
radiometers, thermopile 39
Randers, Gunnar 447
Raymond, Harry
high-velocity stars space motion asymmetry 373
solar motion 310–315
Raymond, Duke 15–16
The Realm of the Nebulae (Hubble) 490, 504–505
red cadmium line wavelength 131–133
red giants 1
mass loss from atmospheres 407
redshift–distance relation 499–503, 505
Humason’s work 507–508
redshifts
curvature of space 314–315
distance relationship 518
galaxies 278, 409–409
cluster 912
groups 388
Hubble and Humason’s survey 506
Hubble’s measurement 512
Hubble’s opinion as not velocity shifts 518
Humason’s measurement 120, 509–510
Index
K-corrections 316
long-range program 512–513
Minkowski’s work 356–357
Shapley–Ames Catalog determinations 314
southern hemisphere observations 215–214
surface brightness 350
reduction-to-the-Sun calculation 205–206
reflection nebulae 410–411
replacement 52
research associates 200–205, 412
closure of program 444–444
Michell’s 442–443
Russell 422, 435, 430–436
Stebbins 422, 416–416
Whitford 436–441
Research Division 196–197
research papers, peer-refereeing 197
Reynolds, J. H. 496, 499
Ricco, prominence patrols 144
Richardson, Robert 216, 28, 207
solar granule velocity 414
Richmond, Myrtle 220, 221
Richter, A. 319
tight ascension 189–190
Ritchey, George W. 10, 95
60-inch telescope
construction 164–166
mirror 97, 160–161
mounting design 166–169
photographic plates 169
100-inch telescope 89
mirror 172–173
optical work 173
proposed changes 172–173
biography 89–97
dismissal 89, 97–98, 169, 173
formality 277
joining staff 97
meeting with Hale 96
nova discoveries 494
opinions of 168–169
optics skills 161
role 85–86
work at Mount Wilson 88–89
Yerkes Mount Wilson Station 83
Ritchey–Chrétien type telescope 89
Ritter, A. 538
roads, all-weather 194
Roberts, Morton 543
Robertson, Howard P.
Robinson, Howard P.
expanding universe 501–502
Roman, Nancy 349
Rosenfeld, L.
Rosse, Lord 161
Russel, Lord 161
Sears, Sven 431–432, 441
Rowland, Henry 16
diffraction gratings 419
tables of solar Fraunhofer lines 60, 67, 130, 131
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>619</td>
<td>at Palomar 114</td>
</tr>
<tr>
<td></td>
<td>in southern hemisphere 114</td>
</tr>
<tr>
<td></td>
<td>southern Shapley–Ames galaxies 492</td>
</tr>
<tr>
<td></td>
<td>stellar evolution calculations 548–549</td>
</tr>
<tr>
<td></td>
<td>work under Baade 541–547</td>
</tr>
<tr>
<td></td>
<td>Sanford, Roscoe Frank 198, 280, 282</td>
</tr>
<tr>
<td></td>
<td>biography 279–281</td>
</tr>
<tr>
<td></td>
<td>clouds in interstellar space 472, 475</td>
</tr>
<tr>
<td></td>
<td>Galactic spiral arms 464–465</td>
</tr>
<tr>
<td></td>
<td>interstellar gas 451–455</td>
</tr>
<tr>
<td></td>
<td>RR Lyrae variable stars 274–275</td>
</tr>
<tr>
<td></td>
<td>radial velocities 273, 279</td>
</tr>
<tr>
<td></td>
<td>southern stars 264</td>
</tr>
<tr>
<td></td>
<td>variable-star survey 269–270</td>
</tr>
<tr>
<td></td>
<td>Saunders, F. A. 432–433</td>
</tr>
<tr>
<td></td>
<td>Schlesinger, Frank 231</td>
</tr>
<tr>
<td></td>
<td>Schmidt, Berhard 387</td>
</tr>
<tr>
<td></td>
<td>Southern Sky Survey 375, 376</td>
</tr>
<tr>
<td></td>
<td>Schmidt, Maarten 158–157</td>
</tr>
<tr>
<td></td>
<td>Schmidt 18-inch optical system 387</td>
</tr>
<tr>
<td></td>
<td>Schmidt camera 403</td>
</tr>
<tr>
<td></td>
<td>development 461–462</td>
</tr>
<tr>
<td></td>
<td>interstellar gas composition 462</td>
</tr>
<tr>
<td></td>
<td>Schirmann, M. 547</td>
</tr>
<tr>
<td></td>
<td>Schirmann/Chandrasekhar limit, circumventing 547, 548–549</td>
</tr>
<tr>
<td></td>
<td>Schrödinger, Erwin 452</td>
</tr>
<tr>
<td></td>
<td>Schuster, A. 277</td>
</tr>
<tr>
<td></td>
<td>Schwarzschild, Karl 213, 219</td>
</tr>
<tr>
<td></td>
<td>Delta Cepheid variable stars 395</td>
</tr>
<tr>
<td></td>
<td>Schwarzschild, Martin 156</td>
</tr>
<tr>
<td></td>
<td>solar granule velocity 314</td>
</tr>
<tr>
<td></td>
<td>stellar evolution 547–549</td>
</tr>
<tr>
<td></td>
<td>Sculptor constellation 373–374, 375, 377</td>
</tr>
<tr>
<td></td>
<td>Scutum star cloud 259–300</td>
</tr>
<tr>
<td></td>
<td>The Searchers (Stromberg) 330</td>
</tr>
<tr>
<td></td>
<td>Sears, Frederick Hanley 198, 216</td>
</tr>
<tr>
<td></td>
<td>appointment 85, 217, 238</td>
</tr>
<tr>
<td></td>
<td>biography 217–238</td>
</tr>
<tr>
<td></td>
<td>RS Boots color variation 397</td>
</tr>
<tr>
<td></td>
<td>catalog corrections 220–221</td>
</tr>
<tr>
<td></td>
<td>Cepheid variables spectral types 396</td>
</tr>
<tr>
<td></td>
<td>Computing Division 205</td>
</tr>
<tr>
<td></td>
<td>deviation from mean distribution 225</td>
</tr>
<tr>
<td></td>
<td>duties at Observatory 228</td>
</tr>
<tr>
<td></td>
<td>Galaxy surface brightness calculation 229</td>
</tr>
<tr>
<td></td>
<td>Kapteyn photometric program 220–221</td>
</tr>
<tr>
<td></td>
<td>marriage to Mary Joyner 229</td>
</tr>
<tr>
<td></td>
<td>Mount Wilson Catalogue of Selected Areas 229</td>
</tr>
<tr>
<td></td>
<td>peer-referencing 197</td>
</tr>
<tr>
<td></td>
<td>photometry 215–216</td>
</tr>
<tr>
<td></td>
<td>photodetector 449</td>
</tr>
<tr>
<td></td>
<td>retirement 207</td>
</tr>
<tr>
<td></td>
<td>Shapley working with 287</td>
</tr>
<tr>
<td></td>
<td>stellar-concentration index 222–223</td>
</tr>
<tr>
<td></td>
<td>Sun’s magnetic field 117, 121</td>
</tr>
<tr>
<td></td>
<td>Sears International Scale 439, 440</td>
</tr>
<tr>
<td></td>
<td>Seale, Leonid 535–536</td>
</tr>
</tbody>
</table>
Secchi 231, 232
late-type giants 270
“seeing” bad 68
galactic 69
Selected Areas program see Kapteyn Selected Areas program; Mount Wilson Catalogue of Selected Areas
selection bias 361
selective scattering 357
Shapley, Harlow 307
Shane, Donald 170
Shapley, Harlow 68–77, 287–288, 298
66-inch telescope use 307
all-sky survey 491–492
appointment 288
Baade scandal 295
biography 307–311
RS Bootis color variation 307
Delta Cephei spectral changes 307
Cepheid variables spectral types 396
pulsation 397
classification of galaxies 488–489
color coefficient 296–297
color–magnitude of stars 369
correspondence with Baade 381
Director of Observatory 288
dwarf E galaxies 373–374
galactic system 306–307
galaxy terminology 487
giant stars, calibration of 25 brightest 302–303
globular clusters 223–224, 289
angular diameter–distance relation 302–303
angular size–parallax 299
color–magnitude diagrams 373
destruction in galactic plane 306–307
giant branch 350–370
methods for finding differences 300–303
Paper II 290–291, 293–294, 297–298
Paper III 298–299
Paper IV 299–300
Paper V 299–300
Paper VI 300–301
Paper VII 303–307
IAU Commission 28 on Nebulae 486
journalism interests 287
liking for Humason 496
M31 galactic cluster 299–300
M31 plates 495–498
M67 galactic cluster 298–299
color–magnitude diagram 510
meeting with Bailey 288–289
Milky Way size 297
nongalactic nebulae 493–494
personality 309–310
P–L relation calibration 302
pulsation identification 396–397
spectral-line profiles 499–507
response to Hubble’s expanding universe publication 301, 305
rivalry with Hubble 499
Scutum star cloud 299–300
variable stars velocity variation binary hypothesis refutation 391–396
zero absorption 305
see also M31 globular cluster
Shapley, Martha Bent 306
Shapley–Ames Catalog 402
Hubble and Humason’s use 508
redshift determinations 514
sharp-line A stars, magnetic fields 401
Sharpless, Stewart 464
sidereal time 189–190
Siding Spring Observatory (Australia) 314
Sierra Madre Trail 66, 17
astronomers on 21
usage 19
widening 22
Silberstein, L. 500–501
Simon, George 72, 415
Sirius 349
ground-state line velocity anomalies 407
position change 339–340
Slipher, Vesto M. 440, 470, 477
galaxy velocities 460
opposition to Hubble’s classification proposal 486
Small Magellanic Cloud, Cepheid variables 300, 361
color–period relation 300
period–luminosity relation 302
Shapley’s P–L relation calibration 302
Smith, Sinclair 349
Smithsonian Astrophysical Observatory visiting program 86–87
Snow telescope 45–46
24-inch mirror 49
approval for placing on Mount Wilson 46
Arcutus studies 62
autocollimating lens 56
Betelgeuse studies 61
building 56
coolstar mirrors 48–49
construction 47
diffraction spectograph 15, 56
discoveries 67
Ison 41–46
optical arrangement 46
problems in use 67–69
solar disk spectra and sunspot differences 60
sunsprts
intensities 60–61
observations 57
spectra 59, 60
sunspots 194–195
sodium-doublet ratio 453
solar atmosphere 77–78
absorption coefficient for opacity 64
chemical abundance 436
determination 435–436
chemical composition 434
Doppler motions 139–140
five-minute oscillation 415–416
formation heights for lines 139–140
gas pressure measurement 129
general magnetic field height 120, 122
height 121
motions in 414–416
multiplet intensities 444–445
Russell mixture 436
spectra 58
sunsot line behavior 62
velocity fields over sunspots 142
solar constant 9, 31, 35
Langley’s plans for observatory 36
measurement 86–87
monitoring 86–87
solar disk
spectra 58
sunsot differences 59–60, 59, 66, 67, 72
temperature 57
solar granules 145–156
solar group 410–411
solar irradiance, variation measurement 36
solar magnetic cycle 112–113
solar motion 314–317, 100, 101
asymmetric drift 319–320
asymmetry 315–317
direction 310–311
group motions and velocity dispersions 135
interstellar lines 451
kinematic problem 502
size 330–335
statistical parallaxes 339–360
variation 369
solar observations, time-lapse photography 151–153
solar oscillations, five-minute 72
solar physics 25
astronomers 198
solar polar magnetic fields 410–413
north pole reversal 411–412
solar power 87
solar program, Hale’s 19
solar prominences 143–146
composition 147–148
ejecta 147
eruptive 149, 149–150, 150, 151
kinematics 131
latitude 144–146
migration 145, 146
Möller’s model 148
Pettit’s studies 146–147
photographs 141
prominance patrols 143, 144
spectroheliograms 144
type-forms 147
solar radiation 36
center-to-limb variations 64
variations 39
solar research 39
solar spectrgrams
center and near the limb comparisons 65
low-dispersion 31
solar spectrum, Fraunhofer helmeter 52
solar system, heliocentric 357
solar vortices 64–66, 71
Sommerville, Arnold 452
The Soul of the Universe (Stromberg) 359
space curvature 314–315
correct equations 198–199
incorrect expression for distance 539
space motion, total 267
spectral analysis 44, 412–435
alternating voltage 63
differing temperature regimes 62–63
splitting of lines 77
spectral classification 231–232
60-inch spectra 236
space curvature 314–315
dispersion between Mount Wilson and Victoria 255
Draper system 331–332
Harvard–Draper system 236–237
simplification 254–255
slit spectra 236–237
spectral lines 38
alternating voltage 63
formation 443
wavelengths 454
spectral measurement 237
Mount Wilson classification 238–239
spectral resolution, high-dispersion 39
spectral series 38
spectral types, measured 238
spectrographs 32
30-foot 69–72
75-foot 115
sunsot spectral line Zeeman displacements 117
80-foot 81–82
coudé focus 265–269
clouds in interstellar space 452
interstellar gas 457–458
diffraction 51–56
diffraction-grating 55
Fraunhofer’s 51
Hale’s designs 54

spectrographs (cont.)
high-dispersion 46
intermediate-dispersion for Cassegrain
focus 261
long focal length 30, 69–70, 81–82
long-range radial velocity programs 267
low-dispersion 39
Mills 263–264, 276
optical arrangement 52
reduction 205–206
reduction-to-the-Sun calculation 205–206
slit 236–237
solar
center and near the limb comparisons 65
spectral differences 58–59
ultraviolet capability 418
vertical- Pit 69–72, 81–82, 114
varying time-dispersion 39
see also Littrow self-collimating spectrograph
spectrohelioscope, hydrogen Balmer lines
spectroscopic parallaxes
spectroscope
spectrohelioscope, hydrogen Balmer lines
spectrohelioscopes 32, 33
development 32–33
Hale’s invention 90
solar five-minute oscillations 72
solar prominences 644
photographs 143
solar surface 66
sunspots 74
very-large-dispersion 39
spectroheliographs, hydrogen Balmer lines
64–67
spectroheliographs, Copernicus space-satellite 463, 467
spectroscope
height-Moon conditions 162
Fraunhofer’s slit 52
slit 52
spectroscopic parallaxes 239, 244–250, 361–362
absolute magnitudes 245, 247, 248
subgiant 219
Adams and Joy program 245, 249, 540
bias problems 367
Curtis’s HR diagram 246
error problems 367
Joy’s work 258
Mount Wilson method 239–240
expansion 244–251
Russell’s work 431
systematic errors 254
spectroscopy
absolute magnitudes 94, 245, 247, 248,
252–253, 370
1935 catalog 249
disparity between Mount Wilson and
Victoria 253
lack of acknowledgment 256
subgiant 219
galactic nebulae 484
interstellar matter 448

Index

Joy’s work 258–259
photographic 263
speed of light see light, velocity of
Spence, B. J. 63
Spence, E. F. 20, 24–25
Spence Observatory 20, 24–25
spiral arm, local 225
Spitzer, Lyman 406, 446–447, 451
Spoerer, Gustav Friedrich William 112
Spoerer’s law 112
St. John, Charles 209
appointment 81, 216–217
biography 208–211
collaboration with Babcock 107
Einstein’s visit 140–141, 144, 145, 204
ever-drift experiment 417
Everesh effect 154–155
formalism 257
Fraunhofer line absolute wavelengths 157
gravitational redshift 155–156
Mount Wilson Revised Rowland Tables 152
velocity field above sunspot 156, 247
Staats, William R. 24, 25
stars absolute magnitudes
distribution 164
Ko to K4 stars 165
tree range 162
angular diameter calculation 401
annual parallactic motion of nearer 357
chemical composition differences 356
chromospheric activity cycles 473
clusters 541
color–magnitude diagrams 294, 369, 542
clusters 541
M3 cluster 293
common epoch data 339
coordinates 338, 339, 342
counts 220–222
diameter determination 410
distribution in space 223–223
drift velocity 316, 320
eclipsing binaries 410
elliptic coordinates 206
emission-line 259
escape velocity 408
evolution with aging 548
true range 362
emission 400–402
formation I
heat 363
variation 397
high-velocity 321, 359
asymmetric drift 269, 370
asymmetry in space motions 312–313
high-velocity field 542
HR diagram 295
hydrogen-burning shell 548, 550
hydrogen-line widths 534
kinematic effects 314
<table>
<thead>
<tr>
<th>Index</th>
<th>643</th>
</tr>
</thead>
<tbody>
<tr>
<td>local maximum to density 225</td>
<td></td>
</tr>
<tr>
<td>local system 223, 225</td>
<td></td>
</tr>
<tr>
<td>magnetic fields 431–444</td>
<td></td>
</tr>
<tr>
<td>cyclic variation 414</td>
<td></td>
</tr>
<tr>
<td>magnitude measurement 32</td>
<td></td>
</tr>
<tr>
<td>mass determination 430</td>
<td></td>
</tr>
<tr>
<td>mean surface distribution 223–225, 226</td>
<td></td>
</tr>
<tr>
<td>deviations from 223–227</td>
<td></td>
</tr>
<tr>
<td>motions 268, 342</td>
<td></td>
</tr>
<tr>
<td>negative velocity in northern hemisphere 267</td>
<td></td>
</tr>
<tr>
<td>observations</td>
<td></td>
</tr>
<tr>
<td>publication 339</td>
<td></td>
</tr>
<tr>
<td>reduced to true position 338</td>
<td></td>
</tr>
<tr>
<td>positions 342</td>
<td></td>
</tr>
<tr>
<td>fundamental 38</td>
<td></td>
</tr>
<tr>
<td>radial velocities 259, 261, 316, 322</td>
<td></td>
</tr>
<tr>
<td>Joy’s studies 243, 322–334, 345</td>
<td></td>
</tr>
<tr>
<td>variation 326</td>
<td></td>
</tr>
<tr>
<td>radiation from 397–402</td>
<td></td>
</tr>
<tr>
<td>right ascension and declination 271, 397</td>
<td></td>
</tr>
<tr>
<td>stability 159</td>
<td></td>
</tr>
<tr>
<td>stream movements 212–213, 213, 213–214</td>
<td></td>
</tr>
<tr>
<td>temperature scale 397</td>
<td></td>
</tr>
<tr>
<td>velocity increase with spectral type 333–334</td>
<td></td>
</tr>
<tr>
<td>statistical astronomy 211, 360</td>
<td></td>
</tr>
<tr>
<td>true range of absolute magnitude of stars 362</td>
<td></td>
</tr>
<tr>
<td>statistical parallaxes 310–360</td>
<td></td>
</tr>
<tr>
<td>master tables of parameters 367</td>
<td></td>
</tr>
<tr>
<td>Stebbins, Joel</td>
<td></td>
</tr>
<tr>
<td>B stars</td>
<td></td>
</tr>
<tr>
<td>color anomalies 437–438</td>
<td></td>
</tr>
<tr>
<td>reddening 438</td>
<td></td>
</tr>
<tr>
<td>globular cluster reddening 438</td>
<td></td>
</tr>
<tr>
<td>Lack Observatory 441–442</td>
<td></td>
</tr>
<tr>
<td>Photoelectric photometry 439–440</td>
<td></td>
</tr>
<tr>
<td>six-colour 440–441</td>
<td></td>
</tr>
<tr>
<td>research associate visits 422, 436–442</td>
<td></td>
</tr>
<tr>
<td>end of 442</td>
<td></td>
</tr>
<tr>
<td>Stebbins–Whitford effect 440</td>
<td></td>
</tr>
<tr>
<td>stellar aberration 357–358</td>
<td></td>
</tr>
<tr>
<td>corrections 358</td>
<td></td>
</tr>
<tr>
<td>ellipse 367–368</td>
<td></td>
</tr>
<tr>
<td>parallactic 358</td>
<td></td>
</tr>
<tr>
<td>stellar atmospheres</td>
<td></td>
</tr>
<tr>
<td>absorption coefficient of blockage of passage 341–342</td>
<td></td>
</tr>
<tr>
<td>chemical abundance 436</td>
<td></td>
</tr>
<tr>
<td>determinations 442</td>
<td></td>
</tr>
<tr>
<td>ionization equilibria 311</td>
<td></td>
</tr>
<tr>
<td>stellar-concentration index 222</td>
<td></td>
</tr>
<tr>
<td>Seares’ 222–223</td>
<td></td>
</tr>
<tr>
<td>Turner’s 222</td>
<td></td>
</tr>
<tr>
<td>stellar evolution 1, 2, 35, 38, 159</td>
<td></td>
</tr>
<tr>
<td>calculations 458–459</td>
<td></td>
</tr>
<tr>
<td>Hale’s desire to solve 352–354</td>
<td></td>
</tr>
<tr>
<td>Hertzsprung–Russell (HR) diagram 292–292, 339</td>
<td></td>
</tr>
<tr>
<td>M67 cluster color–magnitude diagram 350</td>
<td></td>
</tr>
<tr>
<td>M92 and M3 main sequences 347</td>
<td></td>
</tr>
<tr>
<td>observational approach 358–359, 359</td>
<td></td>
</tr>
<tr>
<td>observatory for study 38</td>
<td></td>
</tr>
<tr>
<td>Pickering’s support 46</td>
<td></td>
</tr>
<tr>
<td>Russell’s scheme 159</td>
<td></td>
</tr>
<tr>
<td>Schwarzschild’s work 247–249</td>
<td></td>
</tr>
<tr>
<td>star chemical composition differences 356</td>
<td></td>
</tr>
<tr>
<td>subgiant 399–440</td>
<td></td>
</tr>
<tr>
<td>theoretical approach 358</td>
<td></td>
</tr>
<tr>
<td>stellar interferometers 199</td>
<td></td>
</tr>
<tr>
<td>stellar interferometry 421–426</td>
<td></td>
</tr>
<tr>
<td>stellar interiors 421–422</td>
<td></td>
</tr>
<tr>
<td>stellar kinematics 370–372</td>
<td></td>
</tr>
<tr>
<td>stellar motion asymmetry 267–268, 369</td>
<td></td>
</tr>
<tr>
<td>Stellar Motions (Campbell) 310</td>
<td></td>
</tr>
<tr>
<td>stellar photography 40, 199</td>
<td></td>
</tr>
<tr>
<td>stellar physics 1</td>
<td></td>
</tr>
<tr>
<td>stellar populations 214, 227, 218, 268</td>
<td></td>
</tr>
<tr>
<td>field variable stars 270</td>
<td></td>
</tr>
<tr>
<td>variable stars 274</td>
<td></td>
</tr>
<tr>
<td>stellar seismology 416</td>
<td></td>
</tr>
<tr>
<td>stellar spectra, comparison with Sun 236</td>
<td></td>
</tr>
<tr>
<td>stellar spectroscopy</td>
<td></td>
</tr>
<tr>
<td>astronomers 199</td>
<td></td>
</tr>
<tr>
<td>reduction of spectrogram 205–206</td>
<td></td>
</tr>
<tr>
<td>Stenflo, Jan</td>
<td></td>
</tr>
<tr>
<td>Stromberg, Gustav 436</td>
<td></td>
</tr>
<tr>
<td>Stromgren 198, 245–247, 228</td>
<td></td>
</tr>
<tr>
<td>absolute magnitude distribution 364, 365, 366</td>
<td></td>
</tr>
<tr>
<td>appointment to Observatory 327</td>
<td></td>
</tr>
<tr>
<td>biography 316–331</td>
<td></td>
</tr>
<tr>
<td>calibration skills 328–339, 362, 367</td>
<td></td>
</tr>
<tr>
<td>drift velocity 365</td>
<td></td>
</tr>
<tr>
<td>field RR Lyrae stars 371</td>
<td></td>
</tr>
<tr>
<td>high-velocity stars space motion asymmetry 313–317</td>
<td></td>
</tr>
<tr>
<td>long-period variables 361–362</td>
<td></td>
</tr>
<tr>
<td>observed distribution of absolute</td>
<td></td>
</tr>
<tr>
<td>luminosities 162–167</td>
<td></td>
</tr>
<tr>
<td>publications 127–129</td>
<td></td>
</tr>
<tr>
<td>radial velocity distributions 267</td>
<td></td>
</tr>
<tr>
<td>resignation 350, 351</td>
<td></td>
</tr>
<tr>
<td>selection bias 161</td>
<td></td>
</tr>
<tr>
<td>solar motion 314–317, 350, 451</td>
<td></td>
</tr>
<tr>
<td>asymmetry 315–317</td>
<td></td>
</tr>
<tr>
<td>space motion 313</td>
<td></td>
</tr>
<tr>
<td>high-velocity tail asymmetry 314</td>
<td></td>
</tr>
<tr>
<td>spectroscopic parallaxes 361–362, 367</td>
<td></td>
</tr>
<tr>
<td>spectral sequence 313–314</td>
<td></td>
</tr>
<tr>
<td>statistical astronomy 360</td>
<td></td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Entries</th>
</tr>
</thead>
</table>
| 644 | Stromberg, Gustav (cont.)
statistical parallaxes
master tables of parameters 167
observed distribution of absolute luminosities 162–167
subgiants 265, 266–267, 354–359
detached sequence 140
trigonometric parallaxes 167
Stromberg asymmetric drift 219, 314
Strömgren, Bengt 241, 243
Struef, Otto 380
|
| | color anomalies in B stars 417
continuum-sheet model 451
Galactic-rotation double-sine-wave signal 422–423
interstellar dust 416
interstellar lines 451
The Study of Stellar Evolution (Hale) 392–394
subgiants 253, 293, 363–367
circumventing Schnberg/Chandrasekhar limit 148–148
detached sequence 140
field-star sequence 149
M67 cluster 152
main-sequence 154
metallicity effects on color 149
population I 159–160
Russell scheme 159
separate class 540–541
stellar evolution 350–359, 459–467
Stromberg’s work 265, 365, 366
trigonometric parallaxes 540–541
Yerkes spectral classification 541
Sun
daily photographs 99
expected Zeeman patterns 116
global magnetic field 114–115, 117
height 220
measuring variation 122
measuring 122
visual measurements 122
visual measurements 122

| | heliocentric Universe 213
interior magnetic field 76
magnetic models 422–423
mini-bombs 115–116
offset from center of cluster 303–304
photographing 32–33
polar coronal streamers 72–73, 114–115
position in Galactic system 225
radioactive decay 540–540
rotation 67
velocity difference 261
study of 38, 39
The Sun (Abetti) 112
sunspot zone, solar prominences 144–146
sunspots 24
22-year magnetic cycle 112, 113
absorption hypothesis 61
 |
| | bipolar groups 75, 77
cause 76
daily observations 112
early views 57–58
fibers 75
lines 62
enhanced 60–61
relative intensity 62
splats 76
widening 73–76
Zeeman displacements 17–118
magnetic fields 65–65, 72–77
polarity 76–76, 113, 114
outflow of matter 133
polarity law 422
polarization spectrum 82, 83
solar disk spectra differences 59–60
solar latitude 112–113
spectra 39, 58–59, 66, 67, 72
hydrogen bombs 134, 133–134
polarization 73–76
spectroheliogram 74
study of 39
temperature 57, 61, 62–64
velocity fields 118
above 203
near 133–135
over 227
very-high-dispersion spectromgrams 39
vortices 75
weaker lines 60–61
supergiants 270, 365
absorption line 448–448
angular diameters 244–245
emission-line doubling 406
line-shifts 407–408
shock waves from runaway velocity 406–407
supernovae 493
surface brightness 520
Swings, Pol 462
Swope, Henrietta 381–381, 420–421
technetium, S-type stars 272, 284
telescope(s) 40–inch lenses 25
300-inch 203
aviary 32
Becker 16-inch refractor 373–374
cage changing 177–178, 185–187
Carnegie funding 42
Cassgravin focus 60-inch reflector 166–166, 403
Joy’s fall 260
nightfall 191
soup kitchen 191
60-inch reflector 166–166
Dunham’s work 408
Schmidt cameras 406–406

focusing for photography 190
Hale's designs 34
McDonald 82-inch reflector 419
Newtonian focus 66-inch reflector 161–163
100-inch reflector 178
midnight lunch break 191
nighttime 2, 170
optics 173
permanent on Mount Wilson site 45–46
reflecting 39
roof 273
setting 189–190
spectrographs 31
Willows eclipse photographic 32
Yorkes Observatory 92
see also coelostat telescopes; lenses; mirrors;
Okott Circle; Snow telescope 60-inch 79, 88, 169, 160–161
60-foot tower 78, 71, 71–72
mounting 69
carving onto mountain 165
Cassegrain focus 163–162, 403
commencing use 169
commissioning 161
completion 268
construction 166, 164–166
coudé focus 165–163
coudé spectrograph 438
deficiency correction in use 545
downstream mirror reflections 162
external platform 162–163
final assembly 168
focus positions 161–162
Hale's program for 211
Kapteyn Selected Areas program 216
commitment to 214–215
Mez observation 544–547
mounting 164–165
design 166–169
Newtonian cages 163–164, 544–545
Newtonian focus 161–163
night assistants 164
 Ritchey's photographic plates 169
Shapley's use 307
stellar spectra comparison with Sun 236
temporary erecting shed 167–168
tube length 164
telescope, 200-inch 2, 88, 89, 97, 119
20-foot interferometer 424–425
150-foot tower 86, 79–80, 88, 84, 114
focal plane 282
planning 169–170
sunspot spectral line Zeeman displacements 117
aerial view 177
cage changing 177–178
Cassegrain spectrograph 260
Cassegrain cage 323, 444–445
completion 175, 176
construction 175
coudé focus 282
coudé spectrographs 403, 444, 458
crossing meridian with cage south 378
declination limit 376–379
dome mechanism design 177–178
enclosure 173
finishing touches 173–176
focal position change 177
Hubble's use 443, 518
Humason's use 508
layers 172
mercury–flotation bearings 173
mirror blank 171–173
mounting 173
Newtonian focus 178
observing at Newtonian focus with cage north 177–180
observing stations 177–178
planning 169–171
platforms 178
 Ritchey's work 89
yoke erected in the dome 74
telescope, 202-inch at Palomar 159, 444, 512
mirror correction by Hendrix 477, 532
project 461, 531
squeeze lever design 518
stellar evolution 543
use of 512
Thackeray, A. David 277, 444–445
galactic rotation 327–328
supergiant M star emission/absorption differences 406
thermopiles, thermoelectric 388–399
titanium absorption line 462
titanium oxide flutings, M-type stars 270, 271
Toll Road 222–224
widening for 60-inch telescope building 265
Tolman, Richard 331
redshift distance incorrect assumption 508–519
surface brightness 120
Toomey, Juri 416
Townes, Charles 425–426, 469
trigonometric parallaxes 388, 399
bias problems 167
color–magnitude diagrams 542
error problems 167
proper motions 199
Russell's work 241, 242, 431
subhalos 140–151
Trumpler, R. J. 417
Tucker, R. H. 341
Turner, H. H. 222
Ulrich, Roger 415–416
ultra-high dispersion survey programs 156
646

Union Iron Works (San Francisco) 167
universe
expanding 501–502
proof with surface brightness tests 520
Unseld, Albrecht 443–444, 452
intercloud medium 467
Ursa Major Cluster 349
vacuum-pipe experiment 429
speed of light measurement 426–427
van den Bergh, S. 490
van Maanen, Adriaan 87–88, 118, 226, 298
appointment 127
biography 125–129
darkroom incident with Baade 522–523
deviation curve 219
disagreement with Hubble 128
Monastery dining room incident with Hubble 533–534
parallax studies 359
measurement 127–128
proper motion
measurements 128
rotation 495
relationship with Hubble 537–539
van Rhijn, P. J.
deviation from mean distribution 235–237
heliocentric Universe 213
interstellar gas intensity–distance relation 456
RR Lyrae variable stars absolute magnitude 304
star surface density tables 124
vanadium spectra 62–63
variable stars
pulsation theory 395–397
radial velocities 268–270
stellar populations 274
velocity variation binary hypothesis 395–396
see also long-period variables (LPV)
Varnum, W. B. 343
Vaughan, Arthur 181
appointment 553–556
vector atoms, term splitting of energy levels 213
Vega parallax 358
velocity ellipsoid 223
W Virginis spectrum 371–373
two-component lines 406
visiting-astronomer program 86–87
visitors 260–265
short-term 444–447
visual magnitudes 218–219
Vogel, Hermann 232
Doppler effect 262
radial velocities 263–265
Secchi classification 270

Index

Vogel classification 335
Vrbaec, Dale 48–49
Wadesboro coolstar 46
Wallcott, Charles D. 31
Wallace, Robert 65
Wans, Louise 26–207
water rights 45
wavelengths
differences 263
splitting 77
weather conditions 8
Webster, Larry 183
Wesemann, Edward 58
Wesselink, Adrian 277–278
Weymann, Ray 410
white dwarfs 1
van Maanen’s discovery 128
Wharford, Albert
B star reddening 438–439
color anomalies in B stars 437–438
globular cluster reddening 438
photoclectric photometry 439–440
six-colour 440–441
research associate visits 436–442
Wharford reddening curve 438–439
wildlife on the mountain 193, 195
Wild, Rupert 446
Wilkins, A. 196
Williams, Ewan Gwyn 213, 422–433
interstellar dust 416
Willows eclipse photographic telescope 22
Wilson, Benjamin 15–17
Wilson, Olin C. 198, 207, 286, 442, 446, 472
Ab collaboration 431
appointment to Observatory 470, 472
Zeta Auriga eclipse 404
biography 470–474
clouds in interstellar space 432, 435
diffuse interstellar bands 463–464
doubler ratio 453, 455
expanding atmosphere 397
interstellar gas 453–455
meeting Bowen 472
microphotometer 452–453
observing schedule 473–474
retirement 474
stellar chromospheric activity cycles 473
Wilson, Ralph Elmer 298, 315, 317
Astronomical Journal associate editor 355
convergent point extended region 349–350
Dudley Observatory 314
Geodell Observatory 333
high-velocity stars space motion
asymmetry 373
Lick Observatory 353
long-period variables 356–361

© Cambridge University Press

www.cambridge.org
Index

RR Lyrae star velocities 271
Mills expedition to Chile 353–354
Mount Wilson Observatory 354–355
Popular Astronomy editor 355, 355–356
radial velocities
catalog 276–278, 355
southern stars 264
retirement 356
solar motion 350–351
statistical astronomy 360
Wilson Trail or Sierra Madre Trail
Wirtz, C. W. 396
Wolf, Max 483
Wolf-Rayet stars 253, 455
binary character 473
Wollaston, William 51–53
Woollery, Richard van der Riet 444–445
Wright, Thomas 221–222
Wright, Walter S. 24
Wright, William 264
Year Book (1902)
Astronomy Advisory Committee report
35–40
essays 35–40
preface 35–36
Year Book 2.41
Committee on Observatories complete
report 41
Yerkes, Charles T. 34
Yerkes Expedition 13

Yerkes Observatory 1, 7–8
40-inch lenses for telescope 25
dedication 92
Hale as director 34, 160
subgiants spectral classification 541
telescope 92
weather conditions 8
Young, Charles 58, 59
Zeeman, Pieter 72–73, 78
Zeeman effect 32, 66, 72–73, 77–79
anomalous 77–78
displacement curves 117–118, 120
deviation 119, 121
doublets 82
displacement of centers 117
Leighton’s magnetograph 445
patterns 77–79
problems with 115–112
separation measurement 112
doublets 82
solar global magnetic field 415
splitting determination 67
stellar magnetic fields 413
sunspots
magnetic fields 76, 83
spectral line displacement 117–118
Zimmer, Meade L. 344
zirconium oxide 272, 274
Zirin, Harold 467
Zwicky, Fritz 511

© Cambridge University Press

www.cambridge.org