
Cambridge University Press & Assessment
978-0-521-83047-8 — Symmetrization in Analysis
Albert Baernstein II
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction

This is a book primarily about symmetrization of real-valued functions and

sets. Many extremal problems in mathematics and physics have symmetric

solutions, the quintessential example being the isoperimetric inequality (see

Chapter 4) that among all sets with given volume, the ball possesses minimal

surface area. The book develops and applies symmetrization techniques for

problems in geometry, partial differential equations, and complex analysis.

Other treatments of symmetrization with applications to analysis and partial

differential equations can be found in the works of Bandle (1980), Bennett

and Sharpley (1988), Kawohl (1985), Kesavan (2006), Lieb and Loss (1997),

and Pólya and Szegő (1951). For applications to complex analysis see Duren

(1983), Hayman and Kennedy (1976), Hayman (1989, 1994), and Dubinin

(2014). For applications to Fourier analysis and hyperbolic geometry, one may

consult Beckner (1995).

Each chapter ends with Notes that contain historical remarks and additional

information.

Chapter 1 presents the theory of rearrangements of functions, where one

compares a real-valued function f on a measure space (X,M, μ) with another

function g, defined on a possibly different measure space, such that f and

g have the same “size.” The notion of size corresponds to the distribution

function λf (t) = μ( f > t). To avoid technical difficulties with infinity, we

always assume that λf (t) < ∞, for every t > ess inf f . We consider f and g

to have the same size if they have the same distribution function, in which

case f and g are called rearrangements of each other. We would like to find a

rearrangement g that has “more symmetry” than f .

The simplest case (§1.2) is the decreasing rearrangement of f , denoted f ∗,

which is a decreasing one-variable function defined on the interval [0, μ(X)].

Next in simplicity is the symmetric decreasing rearrangement on R
n (§1.6),

written f #(x). It has the property that ( f # > t) is a ball centered at
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2 Introduction

the origin. Before studying f # prerequisites in measure theory are covered

(§§1.3–1.4) in order to present a general version of Ryff’s factorization

theorem (1970). Ryff’s theorem asserts that if (X,M, μ) is a nonatomic

measure space with μ(X) < ∞ and f : X → R is M measurable, then

a measure preserving transformation T : X → [0, μ(X)] exists such that

f = f ∗ ◦ T for almost every x ∈ X. Note that if T is measure preserving,

then f and f ◦ T have the same distribution function. A particular case is

when T(x) = αn|x|
n, with αn the volume of the unit ball in R

n. In that case

f # = f ∗◦T (see §1.6), which connects the symmetric decreasing rearrangement

to the decreasing rearrangement through the change of variable T .

Another type of rearrangement central to this book is the polarization

of f with respect to an affine hyperplane H ⊂ R
n, denoted by fH (§1.7).

Polarization involves moving the larger values of f preferentially to one side of

the hyperplane. Polarization with respect to all hyperplanes that do not contain

the origin yields the symmetric decreasing rearrangement f #.

The chapter ends with convergence theorems for f ∗ and f #, covering the

cases of almost everywhere convergence and convergence in measure.

Examples and graphs are included throughout the chapter, in line with the

author’s pedagogical intentions. Some new notions are introduced first in the

discrete case, where functions are just finite sequences and all calculations can

be carried out explicitly.

Chapter 2 covers the foundational inequalities for integrals of functions on

R
n. In Baernstein’s approach a key notion is that of an AL function �(x, y),

which generalizes the condition of nonnegative mixed partials �xy ≥ 0. The

two key results in this chapter are that symmetric decreasing rearrangement

of a continuous function decreases its modulus of continuity, and that certain

integral expressions increase when functions are replaced by their symmetric

decreasing rearrangements.

The proof presented for the decrease of modulus of continuity

(Theorem 2.12) is based on elementary polarization inequalities and the

Arzelà–Ascoli theorem, and does not rely on other inequalities such as the

isoperimetric or Brunn–Minkowski type inequalities.

Given nonnegative functions f , g, along with a nonnegative kernel K and an

AL function � : R+ × R
+ → R

+, the basic inequality in Theorem 2.15 says

that a certain integral expression increases under symmetrization:

∫

R2n

�( f (x), g(y))K(|x − y|) dx dy ≤

∫

R2n

�( f #(x), g#(y))K(|x − y|) dx dy.

The proof is presented in stages. First, an analogous inequality is proved in

the simple case of a space consisting of two points (Theorem 2.8), and then
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Introduction 3

for the case of polarization with respect to an affine subspace (Theorem 2.9),

and finally for the symmetric decreasing rearrangement (Theorem 2.15). This

structured approach permits easy modification later (Chapter 7) to spheres and

hyperbolic spaces. The proof is done first in the case of continuous �, which

is the most important case for applications, and completed in §§2.8–2.9 for

general AL functions.

In §2.7 many direct consequences of Theorem 2.15 are presented, including

the classical Hardy–Littlewood inequality
∫

Rn

fg dx ≤

∫

Rn

f #g# dx, =

∫

R+

f ∗g∗ dx,

as well as the contractivity of rearrangement in the L∞-norm (Corollary 2.23).

Chapter 3 develops the basic Dirichlet integral inequalities for symmetric

decreasing rearrangement. The main result is the inequality
∫

Rn

|∇f #|p dx ≤

∫

Rn

|∇f |p dx, 1 ≤ p < ∞,

for f ∈ Lip(Rn,R) satisfying λf (t) < ∞ for all t > inf f (Theorem 3.7) and its

extension to f ∈ W1,p(Rn,R+) (Theorem 3.20). The inequality when p = ∞

is easier, ‖∇f #‖L∞(Rn) ≤ ‖∇f ‖L∞(Rn), and follows from the monotonicity of

the modulus of continuity (Theorem 3.6). Background on Lipschitz functions

is given in §3.1. The proof of Theorem 3.7 (the Lipschitz case) is in §3.2,

ultimately based on the basic inequality in Theorem 2.15. Various comments

are made on the equality case. This section also includes a version valid for

nonnegative functions on a domain � ⊂ R
n (Corollary 3.9), assuming the

function vanishes on the boundary.

Section 3.3 presents a more general inequality for �-Dirichlet integrals
∫

Rn

�(|∇f #|) dx ≤

∫

Rn

�(|∇f |) dx,

where � : R+ → R
+ is convex and increasing with �(0) = 0. The proof

is again based on Theorem 2.15. Another approach due to Dubinin based on

polarization is included too.

Sections 3.4 and 3.5 include background material on Sobolev spaces and

functional analysis needed to extend the Dirichlet integral inequality to

functions in the Sobolev space W1,p(Rn,R+). The extension is presented in

§3.6. The chapter ends with §3.7, discussing the continuity of the rearrange-

ment operator f → f # in various situations. The operator is continuous in

Lp(Rn,R+), continuous at the zero function in W1,p(Rn,R+), and continuous

everywhere in W1,p(R,R+) (dimension n = 1), but is discontinuous at a

general Sobolev function when n ≥ 2. The condition for continuity at f , the
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4 Introduction

coarea regularity condition discovered by Almgren and Lieb, is presented in

this section.

Chapter 4 is devoted to the isoperimetric inequality and sharp Sobolev

inequalities. It begins with a review of geometric measure theory tools

(Hausdorff measures, area formula, and Gauss–Green theorem) used in this

and later chapters. The convention of Evans and Gariepy (1992) is followed in

this chapter: “measure” means “outer measure.”

Three isoperimetric inequalities are presented: for perimeters (Theorem

4.10), for Hausdorff measures (Corollary 4.13), and for Minkowski content

(Theorem 4.16). If E ⊂ R
n with finite perimeter, finite measure, or finite

Minkowski content, one has

P(E) ≥ P(E#),

Hn−1(∂E) ≥ Hn−1(∂(E#)),

Mn−1
∗ (∂E) ≥ Mn−1(∂(E#)),

where P(E#) = Hn−1(∂(E#)) = Mn−1(∂(E#)) = nα
1/n
n Ln(E)

n−1
n , and E#

is a ball of the same volume as E. (Here Ln is the n-dimensional Lebesgue

measure.) All three isoperimetric inequalities are deduced from the fact that

symmetrization decreases the Dirichlet integral (Theorem 3.7) or the variation

of a function (Theorem 4.8).

Additional facts from geometric measure theory (the coarea formula and

polar coordinates) are stated in §4.5. This section also shows that the coarea

formula and the isoperimetric inequality for perimeter together imply decrease

of the Dirichlet integral under symmetrization.

Section 4.6 presents the proof of the sharp Sobolev embedding inequalities

for f ∈ BV(Rn), n ≥ 2, which is

‖f ‖ n
n−1

≤ n−1α−1/n
n V( f ).

Equality holds when f = χB for some ball B ⊂ R
n. The proof is reduced to

the radial case by symmetrization. Another proof based on the isoperimetric

inequality and the coarea formula is also included. This shows that the sharp

Sobolev inequality in BV(Rn) is indeed equivalent to the sharp isoperimetric

inequality. Section 4.7 gives the corresponding sharp result for W1,p(Rn) when

1 < p < n, n ≥ 2:

‖f ‖p∗ ≤ (nα1/n
n )−1(p∗/p′)1/p′

(

p′

n

�(n)

�(n/p)�(n/p′)

)1/n

‖∇f ‖p,

where p∗ = np/(n − p) is the Sobolev conjugate of p, and p′ = p/(p − 1)

is the Hölder conjugate, and � is the Gamma function. Equality holds for

gn,p(x) = (1 + |x|p
′
)−n/p∗

. The proof of this inequality starts with a
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Introduction 5

symmetrization to reduce to radial functions, and then follows a constructive

version of the strategy of the proof by Cordero-Erausquin, Nazaret and

Villani (2004) based on Monge–Kantorovich mass transportation ideas. The

point is that in this proof, the transport map is explicitly constructed.

The last part of the chapter, §4.8, deals with the cases p = n (Moser’s

theorem) and p > n (Morrey’s embedding theorem). Sharp inequalities are

not known in the latter case, while partial results are available in the former.

Chapter 5 covers three classical topics in symmetrization, and includes

historical remarks as well as the needed background in physics to guide the

reader. The first result is that symmetrizing a fixed membrane into a disk of

the same area decreases its principal frequency (the first eigenvalue of the

Laplacian with Dirichlet boundary conditions), as conjectured by Rayleigh in

1877 and proved independently by Faber (1923) and Krahn (1925). The second

result is that symmetrization increases the torsional rigidity of a planar domain,

as conjectured by St Venant in 1856 and proved by Pólya (1948). Lastly, a

closed ball in R
3 is shown to have the smallest Newtonian capacity among all

compact sets with the same volume. This conjecture was raised by Poincaré in

1887 and proved by Szegő (1930). The proofs depend on the decrease of the

Dirichlet integral under symmetric decreasing rearrangement of the function.

Background on weak solutions and spectral theory for the Laplace operator

is presented in §§5.1–5.2 with all details carefully presented. In §5.3 we reach

the proof of the Faber–Krahn theorem: when � is a bounded open set in R
n

and �# is a ball of the same volume, the first eigenvalue λ1 of the Laplacian is

smallest for the ball: λ1(�) ≥ λ1(�
#). The proof relies on expressing the first

eigenvalue as the minimum value of the Rayleigh quotient, by

λ1(�) = min
u

∫

�
|∇u|2 dx

∫

�
u2 dx

,

where the minimum is over all u ∈ W
1,2
0 (�) with u �≡ 0.

Two useful domain approximation lemmas are proved in §5.4, and then

the Newtonian capacity of a compact set is developed from Coulomb’s

inverse square law in electrostatics, in §5.5. Szegő’s Theorem’s follows from

the variational characterization of Newtonian capacity in terms of Dirichlet

integrals:

Cap(K) = inf

{

1

4π

∫

R3
|∇v|2 dx : v ∈ A(K)

}

where the class of admissible functions is

A(K) = {v ∈ Lip(R3) : 0 ≤ v ≤ 1 in R
3, v = 1 on K, lim

|x|→∞
v(x) = 0}.
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6 Introduction

The key point is that if v is admissible for K then v# is admissible for the

symmetrized set K#. Extensions to variational p-capacities, Riesz α-capacities,

and logarithmic capacities are considered in §5.6.

The torsional rigidity of a bounded open set � ⊂ R
n is the quantity

T(�) = 2

∫

�

u(x) dx,

where u satisfies �u = −2 in � with u = 0 in ∂�. It turns out that u(x)

can also be interpreted as the expected lifetime of Brownian motion starting

at x ∈ � and that T(�)/2|�| equals the average lifetime of a particle born

somewhere in �. The key result of §5.7 is that symmetrization increases both

quantities, that is,

T(�) ≤ T(�#).

Chapter 6 discusses Steiner symmetrization. The Steiner symmetrization

of a set or function on R
n = R

k × R
m is obtained by performing symmetric

decreasing rearrangement on the k-dimensional slice Rk×{z}, for each z ∈ R
m.

Basic properties of symmetric decreasing rearrangement that were devel-

oped in Chapter 1 are adapted to Steiner symmetrization in §6.2, and properties

of polarization are adapted in §6.3. Then Theorem 6.8 is an analogue of the

main inequality (Theorem 2.15), taking the form

∫

�( f (x), g(x̄))K(|x − x̄|) dx dx̄ ≤

∫

�( f #(x), g#(x̄))K(|x − x̄|) dx dx̄.

In §6.5 we see Steiner symmetrization decreases the modulus of continuity

(Theorem 6.10) and the diameter (Theorem 6.12), and acts contractively on

L∞(X) (Theorem 6.14).

When considering the effect of Steiner symmetrization on Dirichlet integrals

(§6.6), one first splits the gradient as

∇f (x) =
(

∇yf (x), ∇z f (x)
)

where x = (y, z). Applying on each slice the result for symmetric decreasing

rearrangement from Chapter 3, we find under suitable conditions on f that

∫

�(|∇yf #(y, z)|) dy ≤

∫

�(|∇yf (y, z)|) dy

for each z. Integrating over z gives

∫

�(|∇yf #(x)|) dx ≤

∫

�(|∇yf (x)|) dx.
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Introduction 7

The corresponding inequalities for the transverse gradient ∇z f and full gradient

∇f are obtained in Theorem 6.16:

∫

�(|∇zf
#(y, z)|) dy ≤

∫

�(|∇zf (y, z)|) dy

and
∫

�(|∇f #(y, z)|) dy ≤

∫

�(|∇f (y, z)|) dy

for each z. Once again, integrating over z yields inequalities on all of Rn.

While the above statements are simple, the proofs requires a technical

lemma postponed to §6.7. In §6.8 the case of p-Dirichlet integrals is considered

for Sobolev functions (Theorem 6.19). The case p > 1 follows from Theorem

6.16, but the case p = 1 needs additional work.

Steiner symmetrization decreases perimeter and Minkowski content, but in

general it is not known whether it decreases the (n−1)-dimensional Hausdorff

measure (§6.9). Steiner symmetrization also decreases the principal frequency

and various capacities, and increases the torsional rigidity and mean lifetime

of a Brownian particle (§6.10).

Chapter 7 covers symmetrization in the sphere Sn, hyperbolic space Hn, and

Gauss space, and includes as an application a landmark theorem of Gehring on

quasiconformal mappings.

Spheres and hyperbolic spaces have a canonical distance and measure,

and possess rich isometry groups of measure preserving mappings. There are

plenty of hyperplanes in which to polarize, and so most of the theory from

Chapters 2–6 can be extended.

Sections 7.1 and 7.2 introduce the distance and measure on the sphere. The

distance d(x, y) is the length of the shortest circular arc joining points x and y,

and so 0 ≤ d(x, y) ≤ π . The measure σn is the restriction of the n-dimensional

Hausdorff measure Hn to S
n. The unit vector e1 plays the role of origin, in the

sphere, and the metric balls centered at this origin are the open spherical caps

K(θ) = {x ∈ S
n : d(x, e1) < θ}, θ ≤ π .

Hyperplanes in S
n are given by the intersection of the sphere with hyperplanes

in R
n+1 that pass through the origin. Hence the polarization theory from §1.7

carries over to the sphere. Symmetric decreasing rearrangement for sets and

functions extends to the sphere also, using spherical caps rather than Euclidean

balls.

Spherical analogs of inequalities from Chapters 1 and 2 are developed in

§7.3. The basic polarization inequality is Theorem 7.2, and the foundational
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8 Introduction

inequality for integrals of functions on S
n under symmetric decreasing rear-

rangement is Theorem 7.3. The proofs are somewhat simpler than in Euclidean

space, due to compactness of the sphere. In §7.4 one finds the decrease of

spherical Dirichlet integrals under symmetric decreasing rearrangement on the

sphere (Theorem 7.4) and the spherical isoperimetric inequality for Minkowski

content (Theorem 7.5).

Cap symmetrization on R
n is presented in §7.5, where spherical (k, n)-

cap symmetrization corresponds to (k, n)-Steiner symmetrization except now

rearranging on k-spheres rather than k-planes. For example, circular sym-

metrization in the complex plane is exactly (1, 2)-cap symmetrization, with

the function made symmetric decreasing about the positive real axis, on each

circle centered at the origin.

Section 7.6 is devoted to symmetrization in the hyperbolic space H
n, which

is modeled by the unit ball Bn endowed with the hyperbolic metric

ds =
2

1 − |x|2
|dx|,

where |dx| is the Euclidean length element. The corresponding hyperbolic

measure has density 2n(1 − |x|2)−n. Polarization is defined in terms of

hyperbolic hyperplanes, and hyperbolic symmetric decreasing rearrangement

is constructed in terms of balls centered at the origin, but with respect to

the hyperbolic measure rather than Euclidean measure. The majority of the

symmetrization results from Chapters 1–5 are shown to hold for hyperbolic

symmetric decreasing rearrangement.

Section 7.7 presents a brief discussion of symmetrization in the Gauss

space (Rn, dμ), where dμ = (2π)−n/2e−|x|2/2 dx. Here sets and functions

are rearranged with respect to the measure dμ. The lack of appropriate

hyperplanes makes the theory quite different from Euclidean, spherical, or

hyperbolic symmetrization. A version of the isoperimetric inequality for the

Gaussian Minkowski content can be proved by using the fact that Gauss space

is the limit of spheres of increasing radius and dimension going to infinity; see

Corollary 7.12.

In the final section, §7.8, the basic theory of quasiconformal mappings

in R
n is discussed, including the equivalence of the analytic and geometric

definitions of quasiconformality (Theorem 7.15). The sharp Hölder continuity

exponent 1/K for K-quasiconformal mappings is obtained by using (n − 1, n)-

cap symmetrization, in Theorem 7.16 and Corollary 7.17. This is a celebrated

theorem of Gehring (1962).

Chapter 8 studies symmetrization and convolution. The Riesz–Sobolev

convolution theorem for nonnegative functions f , g, h on R
n asserts that the

triple convolution
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Introduction 9
∫

Rn

∫

Rn

f (−x)g(y)h(x − y) dxdy = f ∗ g ∗ h(0)

increases when f , g, h are replaced by their symmetric decreasing rearrange-

ments. The theorem is proved for functions on the circle S1 in §8.1, using ideas

suggested by the star function in Chapter 9. The version on the circle implies

the version on the real line (§8.2), which in turn implies the version in R
n (§8.3)

for symmetric decreasing rearrangement and (k, n)-Steiner symmetrization.

The Brunn–Minkowski inequality is proved in §8.4 as an application of Riesz–

Sobolev.

A significant extension of the Riesz–Sobolev inequality, valid for multiple

integrals with arbitrarily many functions, is the Brascamp–Lieb–Luttinger

inequality proved in §8.5. It implies that the Dirichlet heat kernel increases

under symmetrization (§8.6). On a bounded open set � ⊂ R
n the Dirichlet

Laplacian has eigenvalues 0 < λ1 ≤ λ2 ≤ . . ., and by writing the heat kernel

K(x, y, t) as an eigenfunction series one arrives at the heat trace

Tr(t, �) =

∫

�

K(x, x, t) dx =

∞
∑

j=1

e−λjt.

Luttinger’s Theorem 8.9 says the heat trace increases under rearrangement:

Tr(t, �) ≤ Tr(t, �#),

where �# denotes the symmetric decreasing rearrangement or (k, n)-Steiner

symmetrization of the domain.

The Hardy–Littlewood–Sobolev inequality
∫

R2n

f (x)g(y)|x − y|−λ dxdy ≤ C‖f ‖p‖g‖q

holds when p > 1, q > 1, 0 < λ < n. Section 8.7 presents a result of Lieb that

determines the sharp constants for certain special values of the parameters.

A key ingredient is to observe the conformal invariance of the integral

(Proposition 8.12). Theorem 8.15 presents the sharp version (best constant)

of the Hardy–Littlewood–Sobolev inequality for 1 < p < 2 and λ = 2n/p′.

In this case the extremals are constant multiples of (a2 + |x − v|2)−n/p, where

a > 0 and v ∈ R
n.

In §8.8 and §8.10 the endpoint cases λ → n and λ → 0 are investigated,

following ideas of Beckner. The first case yields Gross’s logarithmic Sobolev

inequality (8.62, 8.63), as an infinite dimensional version of Beckner’s loga-

rithmic Sobolev inequality in S
n (Theorem 8.17). The second case gives sharp

inequalities for exponential integrals known as the Lebedev–Milin inequality

(8.69) and Onofri’s inequality (8.70). In §8.9 Beckner’s logarithmic Sobolev
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10 Introduction

inequality is used to establish the hypercontractivity of the Poisson semigroup

in a sharp range.

Chapter 9 marks the debut of the star function in the book. Each type of

rearrangement u# has an associated star function u�, which is an indefinite

integral of u#. This chapter proves “subharmonicity” theorems for the star

function, expressing the fact that if u satisfies a Poisson-type partial differential

equation then u� satisfies a related differential inequality. In the simplest case

of a function u in the plane, subject to circular symmetrization, the result says

that if u is subharmonic then so is u�/r. Subharmonicity yields comparison

theorems for solutions of partial differential equations (Chapter 10), and

extremal results in complex analysis (Chapter 11). Recall the complex plane

with circular symmetrization is where the star function first made an impact.

Section 9.1 defines the star function in terms of the decreasing rearrange-

ment on a general measure space, by

u�(x) =

∫ x

0

u∗(s) ds = sup

{∫

E

u dμ : μ(E) = x

}

.

This formula motivates the star function definition for each of the specific

geometries considered later in the chapter: spherical shells, spheres, Euclidean

domains, and so on. Section 9.2 provides an overview of the chapter, and the

next section establishes some facts on measurability.

The Laplacian is usually regarded as a differential operator, but it is more

convenient in §9.4 to formulate the Laplacian as a limit of integral operators,

so that later we can apply rearrangement results for convolutions. Specifically,

the Laplacian at a point equals the difference between the average value of the

function over a small neighborhood and its value actually at the point, as made

precise by Lemma 9.5 for functions and Lemma 9.6 for measures.

The theory of the star function is easiest to grasp in the case of (n−1, n)-cap

symmetrization on a spherical shell, because no boundary conditions need be

imposed. Accordingly, we start with that case in §9.5. Given a measure with

decomposition

dμ = f dLn + dτ − dη

where the function f is locally integrable, Ln is Lebesgue measure and τ and

η are nonnegative measures, the cap symmetrization of μ is defined by

dμ# = f #dLn + dτ # − dη#.

Here f # is symmetric decreasing on each sphere centered at the origin, τ #

is the measure obtained by sweeping the mass of τ on each sphere to the

positive x1-axis, and η# is obtained by spherically sweeping the mass of η
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