
Chapter 1

Four examples and a metaphor

Robert Peters (Peters 1991) – who (like Robert MacArthur) tragically

died much too young – told us that theory is going beyond the data.

I thoroughly subscribe to this definition, and it shades my perspective

on theoretical biology (Figure 1.1). That is, theoretical biology begins

with the natural world, which we want to understand. By thinking about

observations of the world, we conceive an idea about how it works. This

is theory, and may already lead to predictions, which can then flow back

into our observations of the world. Theory can be formalized using

mathematical models that describe appropriate variables and processes.

The analysis of such models then provides another level of predictions

which we take back to the world (from which new observations may

flow). In some cases, analysis may be insufficient and we implement the

models using computers through programming (software engineering).

These programs may then provide another level of prediction, which

can flow back to the models or to the natural world. Thus, in biology

there can be many kinds of theory. Indeed, without a doubt the greatest

theoretician of biology was Charles Darwin, who went beyond the data

by amassing an enormous amount of information on artificial selection

and then using it to make inferences about natural selection. (Second

place could be disputed, but I vote for Francis Crick.) Does one have to

be a great naturalist to be a theoretical biologist? No, but the more you

know about nature – broadly defined (my friend Tim Moerland at

Florida State University talks with his students about the ecology of

the cell (Moerland 1995)) – the better off you’ll be. (There are some

people who will say that the converse is true, and I expect that they

won’t like this book.) The same is true, of course, for being able to
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develop models and implementing them on the computer (although, I

will tell you flat out right now that I am not a very good programmer –

just sufficient to get the job done). This book is about the middle of

those three boxes in Figure 1.1 and the objective here is to get you to be

good at converting an idea to a model and analyzing the model (we will

discuss below what it means to be good at this, in the same way as what

it means to be good at opera).

On January 15, 2003, just as I started to write this book, I attended a

celebration in honor of the 80th birthday of Professor Joseph B. Keller.

Keller is one of the premier applied mathematicians of the twentieth

century. I first met him in the early 1970s, when I was a graduate

student. At that time, among other things, he was working on mathe-

matics applied to sports (see, for example, Keller (1974)). Joe is fond of

saying that when mathematics interacts with science, the interaction is

fruitful if mathematics gives something to science and the science gives

something to mathematics in return. In the case of sports, he said that

what mathematics gained was the concept of the warm-up. As with

athletics, before embarking on sustained and difficult mathematical

exercise, it is wise to warm-up with easier things. Most of this chapter

is warm-up. We shall consider four examples, arising in behavioral and

evolutionary ecology, that use algebra, plane geometry, calculus, and a

tiny bit of advanced calculus. After that, we will turn to two metaphors

about this material, and how it can be learned and used.

Foraging in patchy environments

Some classic results in behavioral ecology (Stephens and Krebs 1986,

Mangel and Clark 1988, Clark and Mangel 2000) are obtained in the

Natural world: 
Observations An idea of how the world works: 

Theory and predictions

Variables, processes: 
Mathematical models

Analysis of the models:
A second level of prediction

Implementation of 
the models: 

Software engineering

A third level of 
prediction

Figure 1.1. Theoretical biology

begins with the natural world,

which we want to understand.

By thinking about observations

of the world, we begin to

conceive an idea about how it

works. This is theory, and may

already lead to predictions,

which can then flow back into

our observations of the world.

The idea about how the world

works can also be formalized

using mathematical models

that describe appropriate

variables and processes. The

analysis of such models then

provides another level of

predictions which we can take

back to the world (from which

new observations may flow).

In some cases, analysis may

be insufficient and we choose

to implement our models

using computers through

programming (software

engineering). These programs

then provide another level of

prediction, which can also flow

back to the models or to the

natural world.
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study of organisms foraging for food in a patchy environment

(Figure 1.2). In one extreme, the food might be distributed as individual

items (e.g. worms or nuts) spread over the foraging habitat. In another,

the food might be concentrated in patches, with no food between the

patches. We begin with the former case.

The two prey diet choice problem (algebra)

We begin by assuming that there are only two kinds of prey items (as

you will see, the ideas are easily generalized), which are indexed by

i¼ 1, 2. These prey are characterized by the net energy gain Ei from

consuming a single prey item of type i, the time hi that it takes to handle

(capture and consume) a single prey item of type i, and the rate li at
which prey items of type i are encountered. The profitability of a single

prey item is Ei/hi since it measures the rate at which energy is accumu-

lated when a single prey item is consumed; we will assume that prey

(a) (b)

(c)

Figure 1.2. Two stars of foraging experiments are (a) the great tit, Parus major, and (b) the common starling Sturnus

vulgaris (compliments of Alex Kacelnik, University of Oxford). (c) Foraging seabirds on New Brighton Beach,

California, face diet choice and patch leaving problems.

Foraging in patchy environments 3
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type 1 is more profitable than prey type 2. Consider a long period of

time T in which the only thing that the forager does is look for prey

items. We ask: what is the best way to consume prey? Since I know the

answer that is coming, we will consider only two cases (but you might

want to think about alternatives as you read along). Either the forager

eats whatever it encounters (is said to generalize) or it only eats prey

type 1, rejecting prey type 2 whenever this type is encountered (is said

to specialize). Since the flow of energy to organisms is a fundamental

biological consideration, we will assume that the overall rate of energy

acquisition is a proxy for Darwinian fitness (i.e. a proxy for the long

term number of descendants).

In such a case, the total time period can be divided into time spent

searching, S, and time spent handling prey, H. We begin by calculating

the rate of energy acquisition when the forager specializes. In search

time S, the number of prey items encountered will be l1S and the time

required to handle these prey items is H¼ h1(l1S ). According to our

assumption, the only things that the forager does is search and handle

prey items, so that T¼ SþH or

T ¼ S þ h1l1 S ¼ Sð1þ l1h1Þ (1:1)

We now solve this equation for the time spent searching, as a

fraction of the total time available and obtain

S ¼ T

1þ l1h1
(1:2)

Since the number of prey items encountered is l1S and each item

provides net energy E1, the total energy from specializing is E1l1S, and
the rate of acquisition of energy will be the total accumulated energy

divided by T. Thus, the rate of gain of energy from specializing is

Rs ¼ E1l1
1þ h1l1

(1:3)

An aside: the importance of exercises

Consistent with the notion of mathematics in sport, you are developing a

set of skills by reading this book. The only way to get better at skills is

by practice. Throughout the book, I give exercises – these are basically

steps of analysis that I leave for you to do, rather than doing them here.

You should do them. As you will see when reading this book, there is

hardly ever a case in which I write ‘‘it can be shown’’ – the point of this

material is to learn how to show it. So, take the exercises as they come –

in general they should require no more than a few sheets of paper – and

really make an effort to do them. To give you an idea of the difficulty of
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exercises, I parenthetically indicate whether they are easy (E), of med-

ium difficulty (M), or hard (H).

Exercise 1.1 (E)

Repeat the process that we followed above, for the case in which the forager

generalizes and thus eats either prey item upon encounter. Show that the rate of

flow of energy when generalizing is

Rg ¼ E1l1 þ E2l2
1þ h1l1 þ h2l2

(1:4)

We are now in a position to predict the best option: the forager is

predicted to specializewhen the flow of energy from specializing is greater

than the flow of energy from generalizing. This will occur when Rs>Rg.

Exercise 1.2 (E)

Show that Rs>Rg implies that

l1 >
E2

E1h2 � E2h1
(1:5)

Equation (1.5) defines a ‘‘switching value’’ for the encounter rate

with the more profitable prey item, since as l1 increases from below to

above this value, the behavior switches from generalizing to speciali-

zing. Equation (1.5) has two important implications. First, we predict

that the foraging behavior is ‘‘knife-edge’’ – that there will be no partial

preferences. (To some extent, this is a result of the assumptions. So if

you are uncomfortable with this conclusion, repeat the analysis thus far

in which the forager chooses prey type 2 a certain fraction of the time, p,

upon encounter and compute the rateRp associatedwith this assumption.)

Second, the behavior is determined solely by the encounter rate with the

more profitable prey item since the encounter rate with the less profitable

prey item does not appear in the expression for the switching value.

Neither of these could have been predicted a priori.

Over the years, there have been many tests of this model, and much

disagreement about what these tests mean (more on that below). My

opinion is that the model is an excellent starting point, given the simple

assumptions (more on these below, too).

The marginal value theorem (plane geometry)

Wenow turn to the second foragingmodel, inwhich theworld is assumed

to consist of a large number of identical and exhaustible patches contain-

ing only one kind of food with the same travel time between them

Foraging in patchy environments 5
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Figure 1.3. (a) A schematic of the situation for which the marginal value theorem applies. Patches of food

(represented here in metaphor by filled or empty patches) are exhaustible (but there is a very large number of them)

and separated by travel time � . (b) An example of a gain curve (here I used the function G(t)¼ t/(tþ3), and (c) the

resulting rate of gain of energy from this gain curve when the travel time � ¼3. (d) The marginal value construction

using a tangent line.
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(Figure 1.3a). The question is different: the choice that the forager faces is

how long to stay in the patch. We will call this the patch residence time,

and denote it by t. The energetic value of food removed by the forager

when the residence time is t is denoted by G(t). Clearly G(0)¼ 0 (since

nothing can be gained when no time is spent in the patch). Since the patch

is exhaustible, G(t) must plateau as t increases. Time for a pause.

Exercise 1.3 (E)

One of the biggest difficulties in this kind of work is getting intuition about

functional forms of equations for use in models and learning how to pick them

appropriately. Colin Clark and I talk about this a bit in our book (Clark and

Mangel 2000). Two possible forms for the gain function areG(t)¼ at/(bþ t) and

G(t)¼ at2/(bþ t2). Take some time before reading on and either sketch these

functions or pick values for a and b and graph them. Think about what the

differences in the shapes mean. Also note that I used the same constants (a and

b) in the expressions, but they clearly must have different meanings. Think

about this and remember that we will be measuring gain in energy units (e.g.

kilocalories) and time in some natural unit (e.g. minutes). What does this imply

for the units of a and b, in each expression?

Back to work. Suppose that the travel time between the patches

is � . The problem that the forager faces is the choice of residence in the

patch – how long to stay (alternatively, should I stay or should I go

now?). To predict the patch residence time, we proceed as follows.

Envision a foraging cycle that consists of arrival at a patch, resi-

dence (and foraging) for time t and then travel to the next patch, after

which the process begins again. The total time associated with one

feeding cycle is thus tþ � and the gain from that cycle is G(t), so that

the rate of gain is R(t)¼G(t)/(tþ �). In Figure 1.3, I also show an

example of a gain function (panel b) and the rate of gain function

(panel c). Because the gain function reaches a plateau, the rate of gain

has a peak. For residence times to the left of the peak, the forager is

leaving too soon and for residence times to the right of the peak the

forager is remaining too long to optimize the rate of gain of energy.

The question is then: how do we find the location of the peak, given

the gain function and a travel time? One could, of course, recognize that

R(t) is a function of time, depending upon the constant � and use

calculus to find the residence time that maximizes R(t), but I promised

plane geometry in this warm-up. We now proceed to repeat a remark-

able construction done by Eric Charnov (Charnov 1976). We begin by

recognizing that R(t) can be written as

RðtÞ ¼ GðtÞ
t þ �

¼ GðtÞ � 0

t � ð��Þ (1:6)

Foraging in patchy environments 7
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and that the right hand side can be interpreted as the slope of the line that

joins the point (t, G(t)) on the gain curve with the point (�� , 0) on the

abscissa (x-axis). In general (Figure 1.3d), the line between (�� , 0) and

the curve will intersect the curve twice, but as the slope of the line

increases the points of intersection come closer together, until they meld

when the line is tangent to the curve. From this point of tangency, we

can read down the optimal residence time. Charnov called this the

marginal value theorem, because of analogies in economics. It allows

us to predict residence times in a wide variety of situations (see the

Connections at the end of this chapter for more details).

Egg size in Atlantic salmon and parent–offspring
conflict (calculus)

We now come to an example of great generality – predicting the size of

propagules of reproducing individuals – done in the context of a specific

system, the Atlantic salmon Salmo salar L. (Einum and Fleming 2000).

As with most but not all fish, female Atlantic salmon lay eggs and the

resources they deposit in an egg will support the offspring in the initial

period after hatching, as it develops the skills needed for feeding itself

(Figure 1.4). In general, larger eggs will improve the chances of off-

spring survival, but at a somewhat decreasing effect. We will let x

denote the mass of a single egg and S(x) the survival of an offspring

through the critical period of time (Einum and Fleming used both 28 and

107 days with similar results) when egg mass is x. Einum and Fleming

chose to model S(x) by

SðxÞ ¼ 1� xmin

x

� �a

(1:7)

where xmin¼ 0.0676 g and a¼ 1.5066 are parameters fit to the data.

We will define c¼ (xmin)
a so that S(x)¼ 1� cx�a, understanding that

S(x)¼ 0 for values of x less than the minimum size. This function is

shown in Figure 1.5a; it is an increasing function of egg mass, but has a

decreasing slope. Even so, from the offspring perspective, larger eggs

are better.

However, the perspective of the mother is different because she has

a finite amount of gonads to convert into eggs (in the experiments of

Einum and Fleming, the average female gonadal mass was 450 g).

Given gonadal mass g, a mother who produces eggs of mass x will

make g/x eggs, so that her reproductive success (defined as the expected

number of eggs surviving the critical period) will be

Rðg; xÞ ¼ g

x
SðxÞ ¼ g

x
ð1� cx�aÞ (1:8)
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and we can find the optimal egg size by setting the derivative of R(g, x)

with respect to x equal to 0 and solving for x.

Exercise 1.4 (M)

Show that the optimal egg size based on Eq. (1.8) is xopt ¼ fcðaþ 1Þg1=a and
for the values from Einum and Fleming that this is 0.1244 g. For comparison, the

observed egg size in their experiments was about 0.12 g.

(c)

(b)(a) Figure 1.4. (a) Eggs, (b) a nest,

and (c) a juvenile Atlantic

salmon – stars of the

computation of Einum and

Fleming on optimal egg size.

Photos complements of Ian

Fleming and Neil Metcalfe.
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In Figure 1.5b, I show R(450, x) as a function of x; we see the peak

very clearly. We also see a source of parent–offspring conflict: from the

perspective of the mother, an intermediate egg size is best – individual

offspring have a smaller chance of survival, but she is able to makemore

of them. Since she is making the eggs, this is a case of parent–offspring

conflict that the mother wins with certainty.

A calculation similar to this one was done by Heath et al. (2003), in

their study of the evolution of egg size in Atlantic salmon.

Extraordinary sex ratio (more calculus)

We now turn to one of the most important contributions to evolutionary

biology (and ecology) in the last half of the twentieth century; this is

the thinking by W.D. Hamilton leading to understanding extraordinary

sex ratios. There are two starting points. The first is the argument by

R. A. Fisher that sex ratio should generally be about 50:50 (Fisher

1930): imagine a population in which the sex ratio is biased, say towards

males. Then an individual carrying genes that will lead to more daugh-

ters will have higher long term representation in the population, hence

bringing the sex ratio back into balance. The same argument applies if

the sex ratio is biased towards females. The second starting point is the

observation that in many species of insects, especially the parasitic

wasps (you’ll see some pictures of these animals in Chapter 4), the

0.050
0

0.2

0.4

S
ur

vi
va

l,
S

(x
)

0.6

0.8

1

(a)

0.1 0.15

Egg size, x

0.2 0.050
0

500

1000

R
ep

ro
du

ct
iv

e 
su

cc
es

s,
 R

(4
50

,x
)

1500

2000

2500

(b)

0.1 0.15

Egg size, x
0.2

Figure 1.5. (a) Offspring survival as a function of egg mass for Atlantic salmon. (b) Female reproductive success for

an individual with 450g of gonads.
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