EROSION AND SEDIMENTATION, SECOND EDITION

Praise for the First Edition:

"... (presents) the mechanics of sediment motion alongside those subjects in fluid mechanics that are fundamental to understanding sediment transport. The interweaving of the two subjects is carried out particularly well ... Each topic is covered clearly, with many carefully designed figures, examples, and exercises ... an excellent primer on both fundamental concepts of sediment-transport theory and methods for practical applications ... well written, and nicely illustrated, and it will serve as either a handbook for workers in the field or a textbook for beginning students of the subject. Julien has done a truly admirable job in making ... (a) difficult subject much more accessible to beginning Earth scientists and engineers."

JONATHAN NELSON, Journal of Hydraulic Engineering

"... this well-written text can be equally useful to undergraduates, graduates, geologists and geophysicists ..."

CHRISTOPHER KENDALL, The Leading Edge

"... a welcome addition ... logically planned out, well written with clear explanations" R. L. SOULSBY, *Journal of Fluid Mechanics*

"... clearly and concisely written, covers not only the theory but also measurement methods and also provides many worked examples. It will serve well its primary purpose as a textbook for post-graduate courses on erosion and sedimentation ... thoroughly recommended." IAN R. CALDER, *Hydrology and Earth System Sciences*

"... an excellent and accessible treatment of the 'classic' engineering approach to erosion and sedimentation ... a worthy primer for those requiring mastery over the essential technicalities of hydraulic analysis."

NICHOLAS J. CLIFFORD, Progress in Physical Geography

The new edition of Pierre Julien's acclaimed textbook brings the subject of sedimentation and erosion completely up-to-date. The structure of the first edition is essentially unchanged, but all the chapters have been updated, with several chapters reworked and expanded significantly. Examples of the new additions include the Modified Einstein Procedure, sediment transport by size fractions, sediment transport of sediment mixtures, the concept of added mass, and new solutions to the Einstein Integrals. Many new examples and exercises have been added. *Sedimentation and Erosion* is an essential textbook for students in civil and environmental engineering as well as the geosciences, and also as a handbook for researchers and professionals in engineering, the geosciences, and the water sciences.

PIERRE Y. JULIEN is Professor of Civil and Environmental Engineering at Colorado State University. He has co-authored more than 400 scientific publications including two textbooks, 20 lecture manuals and book chapters, 145 refereed journal articles, 130 professional presentations, 150 conference papers, and 100 technical reports. As a Professional Engineer, he has completed projects and assignments for at least 50 different agencies and consulting firms world-wide. He is member of 12 professional societies and served as Editor of the ASCE *Journal of Hydraulic Engineering*. He has delivered numerous keynote addresses at international conferences. In 2004, he received the H.A. Einstein Award for his outstanding contributions to sedimentation and river mechanics. He is also the author of the textbook *River Mechanics* (2002, Cambridge University Press).

EROSION AND SEDIMENTATION

2nd Edition

PIERRE Y. JULIEN Colorado State University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United Kingdom by Cambridge University Press, UK

www.cambridge.org Information on this title: www.cambridge.org/9780521830386

© Pierre Y. Julien 1995, 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1995 Second edition 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Julien, Pierre Y. Erosion and sedimentation / Pierre Y. Julien. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-0-521-83038-6 – ISBN 978-0-521-53737-7 (pbk.) 1. Erosion. 2. Sedimentation and deposition. I. Title. QE571.J85 2010 551.3'53-dc22 2010017821

> ISBN 978-0-521-83038-6 Hardback ISBN 978-0-521-53737-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Helga and Patrick

Contents

Preface page			page xi
List of symbols			xiii
1	Introduction		
2	Physical properties and dimensional analysis		4
	2.1	Dimensions and units	4
	2.2	Physical properties of water	7
	2.3	Physical properties of sediment	10
	2.4	Dimensional analysis	19
3	Mech	hanics of sediment-laden flows	28
	3.1	Kinematics of flow	28
	3.2	Equation of continuity	30
	3.3	Equations of motion	37
	3.4	Euler equations	41
	3.5	Bernoulli equation	45
	3.6	Momentum equations	47
	3.7	Power equation	54
4	Parti	cle motion in inviscid fluids	64
	4.1	Irrotational flow around a circular cylinder	66
	4.2	Irrotational flow around a sphere	74
5	Particle motion in Newtonian fluids		84
	5.1	Navier–Stokes equations	84
	5.2	Newtonian flow around a sphere	88
	5.3	Drag force on a sphere	90
	5.4	Drag coefficient and fall velocity	94
	5.5	Rate of energy dissipation	100
	5.6	Laboratory measurements of particle size	103

viii		Contents	
6	Turbulent velocity profiles		113
	6.1	Logarithmic velocity profiles	115
	6.2	Smooth and rough plane boundaries	117
	6.3	Resistance to flow	120
	6.4	Deviations from logarithmic velocity profiles	126
	6.5	Open-channel flow measurements	132
7	Incipient motion		143
	7.1	Angle of repose	143
	7.2	Submerged incipient motion	146
	7.3	Moment stability analysis	155
	7.4	Simplified stability analysis	162
8	Bedfo	orms	170
	8.1	Mechanics of bedforms	170
	8.2	Bedform classification and geometry	174
	8.3	Resistance to flow with bedforms	183
	8.4	Field observations of bedforms	188
9	Bedlo	bad	195
	9.1	Bedload equations	196
	9.2	Bed layer characteristics	202
	9.3	Bed sediment sampling	203
	9.4	Bedload measurements	206
10	Suspended load		216
	10.1	Sediment concentration	216
	10.2	Advection-diffusion equation	218
	10.3	Turbulent mixing of washload	221
	10.4	Suspended sediment concentration profiles	229
	10.5	Suspended load	236
	10.6	Hyperconcentrations	239
	10.7	Field measurements of suspended sediment	254
11	Total	load	264
	11.1	Sediment transport capacity	266
	11.2	Sediment-rating curves	290
	11.3	Short- and long-term sediment load	296
	11.4	Sediment sources and sediment yield	301
12	Reservoir sedimentation		319
	12.1	Incoming sediment load	320
	12.2	Reservoir hydraulics	320
	12.3	Trap efficiency and aggradation	322
	12.4	Dry specific weight of sediment deposits	325
	12.5	Life expectancy of reservoirs	327

Cambridge University Press		
978-0-521-83038-6 - Erosion and Sedimentation	, 2nd	Edition
Pierre Y. Julien		
Frontmatter		
More information		

	Contents	ix
10 (220
12.6	Density currents	328
12.7	Reservoir sedimentation surveys	332
12.8	Control measures	333
Appendix .	A: Einstein's Sediment Transport Method	339
Appendix B: Useful mathematical relationships		350
Bibliography		354
Index		365

Preface

This textbook has been prepared for graduate students and professionals keeping up with recent technological developments in the field of sedimentation engineering. This text is not a voluminous encyclopedia; it is rather a concise digest to be found in the briefcases of students and professionals. It scrutinizes selected methods that meet learning objectives, underlining theory and field applications.

The material can be covered within a regular forty-five-hour graduate-level course at most academic institutions. Colorado State University offers several graduate courses in hydraulics, sedimentation and river engineering, and stream rehabilitation. Two advanced courses CIVE716 Erosion and Sedimentation and CIVE717 River Mechanics are offered in sequence. This book has been prepared for the first course and the author's companion book entitled *River Mechanics*, at Cambridge University Press, has been tailored to the needs of the second course. The prerequisites include undergraduate knowledge of fluid mechanics and basic understanding of partial differential equations.

The chapters of this book contain a variety of exercises, examples, problems, computer problems, and case studies. Each type illustrates a specific aspect of the profession from theoretical derivations through exercises and derivations, to practical engineering solutions through the analysis of simple examples and complex case studies. Most problems can be solved with a few algebraic equations; a few require the use of a computer. Problems and equations marked with a single diamond (\blacklozenge) are important; those with a double diamond (\blacklozenge) are considered most important. The answers to some problems are provided to check calculations. Tests and homework assignments can include problems without answers.

Recent technological developments in engineering encourage the use of computers for quantitative analyses of erosion, transport, and sedimentation. Numerous algorithms in this text can be easily programmed. No specific computer code or language is emphasized or required. Instead of using old software packages, the

xii

Preface

textbook promotes student creativity in developing their own tools and programs with the best software available at any given time.

This second edition has been significantly revised and improved. Specific goals with the revisions have been twofold: (1) clarify and reinforce the most important concepts and principles through added explanations, figures, examples, and new homework problems; and (2) expand and update the technical content in the light of recent developments in the literature and engineering practice. Throughout the revisions, the main objectives have been to keep this text: (1) concise and effective when learning new concepts and derivations; and (2) helpful as a reference for future use in engineering practice. A major concern throughout the revisions has been to keep this textbook light and affordable.

I am grateful to my own teachers and professors at Laval University, and particularly to my advisors M. Frenette, J.L. Verrette, Y. Ouellet and B. Michel. I am also grateful to my mentors at Colorado State University, and specifically to D.B. Simons, H. Rouse, E. V. Richardson, and my esteemed colleagues. Many graduate students offered great suggestions for improvement to this textbook. Jenifer Davis diligently typed successive drafts of the manuscript and Jean Parent prepared professional figures. Finally, it has been a great pleasure to collaborate with the Cambridge University Press production staff.

Symbols

Symbols

a, a_x	acceleration
a	thickness of the bed layer
Α	surface area
A_T, A_U, A_G, A_B	gross, upland, gully, and bank erosion
A_t	basin drainage area
В	constant of the resistance formula
В	bulking factor
c_{Δ}	bedform celerity
c_0	integration constant
C_{Bd}, C_{cl}	coefficients
С	Chézy coefficient
C_a	near-bed sediment concentration
$\mathrm{Co} = l_c / \sqrt{l_a l_b}$	Corey particle shape factor
$C_v, C_w, C_{ppm}, C_{mg/l}$	sediment concentration by volume, weight, in parts per
	million, and milligrams per liter
C_t, C_{\forall}, C_f	time-, spatial-, and flux-averaged concentration
C_D, C_E	drag and expansion coefficients
\hat{C}	cropping-management factor of the USLE
d_{10}, d_{50}	grain size with 10%, or 50%, of the material finer by weight
d_s	sediment size
d_*	dimensionless particle diameter
D	molecular diffusion coefficient
е	void ratio
e_B	Bagnold coefficient
Ε	specific energy
E_b	near-bed particle pick-up rate
f	Darcy–Weisbach friction factor $E = 2 d_s / h$

xiv	List of symbols
F	force
Fr	Froude number
Fr_d	densimetric Froude number
$F_1, F_2, J_1, J_2, I_1, I_2$	components of the Einstein integrals
g	gravitational acceleration
G	specific gravity
Gr	gradation coefficient
h	flow depth
h_c, h_n	critical and normal flow depth
Н	Bernoulli sum
He	Hedstrom number
i	rainfall intensity
Ι	universal soil-loss equation rainfall intensity
k_s, k'_s	boundary and grain roughness height
Κ	consolidation coefficient
Ŕ	soil erodibility factor of the USLE
K_d	dispersion coefficient
l	liter
ℓ_a,ℓ_b , ℓ_c	particle dimensions
ℓ_1 , ℓ_2 , ℓ_3 , ℓ_4	moment arms for particle stability analysis
ℓ_m	mixing length
l,L	lengths
L_b, L_s, L_t	bedload, suspended load, total load
\hat{L}	field length factor of the USLE
m, M	mass
M,N	particle stability coefficients
M'_D, M''_D	moments
n	Manning <i>n</i>
\vec{n}	vector normal to a surface
р	pressure
p_0	porosity
Р	wetted perimeter
\hat{P}	conservation practice factor
q	unit discharge
q_b, q_s, q_t	unit sediment discharge (bed, suspended, total)
Q	total discharge
Q_b, Q_s, Q_t	sediment discharge (bed, suspended, total)
r	radial coordinate
R	radius of a sphere
Â	rainfall erosivity factor of the USLE
R_T	sampler lowering rate

List of symbols

Reynolds numbers Re, Re_B, Re_d, Re_p $\operatorname{Re}_* = \frac{u_* d_s}{v}$ grain shear Reynolds number $R_h = A/P$ hydraulic radius Ro Rouse number Sh Shen-Hung parameter $S_p = (\ell_b \ell_c / \ell_a^2)^{1/3}$ sphericity of a particle S_0, S_f, S_w bed, friction, and water surface slopes Ŝ slope steepness factor of the USLE SF particle stability factor sediment-delivery ratio S_{DR} t, Ttime dispersion, transversal, and vertical time scales t_d, t_t, t_v Т sediment transport parameter consolidation time T_c trap efficiency T_E life expectancy of a reservoir T_R wave period T_w $T^{\circ}_{C}, T^{\circ}_{F}$ temperature in degrees Celsius and Fahrenheit velocity u, v_x, v_y, v_z shear velocity u^* depth-averaged flow velocity VA volume W channel width coordinates *x*,*y*,*z* settling distance X_C total rate of energy dissipation X_D runoff length X_r Y sediment yield î. upward vertical direction bed elevation Z_b elevation where the velocity is zero z_0 Ζ dependent variable

Greek symbols

α_e	energy correction factor
β, δ, λ, θ	angles of the particle stability analysis
β_m	momentum correction factor
β_s	ratio of sediment to momentum exchange coefficient
γ	specific weight

хv

xvi	List of symbols
Г	circulation
δ	laminar sublayer thickness
∂	partial derivative
∇^2	Laplacian
Δ, Λ	dune height and wavelength
Δp_i	sediment size fraction
ε	turbulent mixing coefficients
ε_m	eddy viscosity
ζ	turbulent-dispersive parameter
η_0, η_1	particle stability number
θ	angular coordinate
Θ	angle
θ	mixing stability parameter
κ	von Kármán constant
λ, δ, β	angles of particle stability analysis
λ	linear concentration
μ	dynamic viscosity
υ	kinematic viscosity
$\xi = z/z_m$	normalized depth
ρ, ρ_s	mass density of water and sediment
П	dimensionless parameter
Π_W	wake strength
σ	normal stress components
σ	standard deviation for sediment diffusion
σ_g	gradation coefficient
σ_t	mixing width
$ au_{yx}$	shear stress in x direction from gradient in y
$\tau_{0,}\tau_{c}$	bed shear stress and critical shear stress
$ au^*$	Shields parameter
τ_y, τ_d	yield and dispersive stresses
ϕ	angle of repose
Φ, Ψ	potential and stream functions
χ	rate of work done per unit mass
χD	dissipation function
$\odot, \ominus, \oslash, \bigotimes$	modes of deformation
ω	settling velocity
ω_f	flocculated settling velocity
ώ	vorticity
Ω_e , Ω_g	elastic energy and gravitation potential
A	volume

List of symbols

xvii

Superscripts and diacriticals

a,b,\hat{a},\hat{b}	coefficient and exponent of resistance formula
$(\hat{v}), \bar{v}, v^+$	fluctuating, average and time velocity
F'_D, F''_D	surface and form drag
τ', τ"	grain and form resistance
$ ilde{E}, ilde{H}$	integrated value
\dot{m}, \dot{C}_v	point source
$\tilde{u}=v_x/u_*$	relative velocity

Subscripts

a, C_a, v_a	bed layer characteristics
a_x, a_y, a_z	x, y, z acceleration components
C_0, C_1, C_2	concentration at different times
$d_i, \tau_{ci}, \tau^*_{ci}, \Delta p_i$	characteristics of size fraction i
d_s, ρ_s, γ_s	sediment properties
E_{min}	minimum specific energy
f_b, f_w	bed and wall friction factor
f_p, h_p, T_p	upper-regime plane bed parameters
F_{D}, C_{D}	drag force and coefficient
F_H, F_V	horizontal and vertical forces
F_W, F_B, F_D, F_L	weight, buoyant, drag, and lift forces
h_c, h_n	critical and normal flow depth
h_d, V_d, f_d, α_d	densimetric values
L_b, L_s	bedload, suspended load
L_m, L_u	measured, unmeasured load
L_w, L_{bm}	washload, bed material load
M_w, M_s, M_T	mass of water, solids, and total
p_r	relative pressure
q_{bv}, q_{bm}, q_{bw}	unit sediment discharge by volume, mass, and weight
S_0, S_f, S_w	bed slope, friction slope, and water surface slope
$T^{\circ}_{F}, T^{\circ}_{C}$	temperature in °F and °C
u_{∞}, p_{∞}	velocity and pressure infinitely far
v_a	near-bed particle velocity
v_r, v_p	reference velocity and velocity against a particle
W, W_L, W_p, W_s	water content, liquid, plastic, and shrinkage limits
X_d, X_t, X_v	lengths for dispersion, transversal, and vertical mixing
ρ_{md}, γ_{md}	dry specific mass and weight of a mixture
$ ho_m, u_m$, μ_m	properties of a water-sediment mixture
$ au_c, au_c^*$	critical shear stress and critical Shields parameter
τ_0, τ_b, τ_s	boundary shear stress, at the bed, and on the side slope
τ^*, d^*	dimensionless sedimentation parameters