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Electromagnetic field theory

1.1 Introduction
.................................

What is a field? Is it a scalar field or a vector field? What is the nature
of a field? Is it a continuous or a rotational field? How is the magnetic
field produced by a current-carrying coil? How does a capacitor store
energy? How does a piece of wire (antenna) radiate or receive signals?
How do electromagnetic fields propagate in space?What really happens
when electromagnetic energy travels from one end of a hollow pipe
(waveguide) to the other? The primary purpose of this text is to answer
some of these questions pertaining to electromagnetic fields.
In this chapter we intend to show that the study of electromagnetic

field theory is vital to understanding many phenomena that take place
in electrical engineering. To do so we make use of some of the concepts
and equations of other areas of electrical engineering. We aim to shed
light on the origin of these concepts and equations using electromagnetic
field theory.
Before we proceed any further, however, we mention that the devel-

opment of science depends upon some quantities that cannot be defined
precisely.We refer to these as fundamental quantities; they aremass (m),
length (�), time (t), charge (q), and temperature (T ). For example,
what is time? When did time begin? Likewise, what is temperature?
What is hot or cold? We do have some intuitive feelings about these
quantities but lack precise definitions. To measure and express each of
these quantities, we need to define a system of units.
In the International System of Units (SI for short), we have adopted

the units of kilogram (kg) for mass, meter (m) for length, second (s)
for time, coulomb (C) for charge, and kelvin (K) for temperature. Units
for all other quantities of interest are then defined in terms of these
fundamental units. For example, the unit of current, the ampere (A), in
terms of the fundamental units is coulombs per second (C/s). Therefore,
the ampere is a derived unit. The newton (N), the unit of force, is also
a derived unit; it can be expressed in terms of basic units as 1 N =
1 kg ·m/s2. Units for some of the quantities that we will refer to in this
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2 1 Electromagnetic field theory

Table 1.1. Derived units for some electromagnetic quantities

Symbol Quantity Unit Abbreviation

Y admittance siemen S
ω angular frequency radian/second rad/s
C capacitance farad F
ρ charge density coulomb/meter3 C/m3

G conductance siemen S
σ conductivity siemen/meter S/m
W energy joule J
F force newton N
f frequency hertz Hz
Z impedance ohm �

L inductance henry H
F magnetomotive force ampere-turn A◦t
µ permeability henry/meter H/m
ε permittivity farad/meter F/m
P power watt W
R reluctance henry−1 H−1

Table 1.2. Unit conversion factors

From Multiply by To obtain

gilbert 0.79577 ampere-turn (At)
ampere-turn/cm 2.54 ampere-turn/inch
ampere-turn/inch 39.37 ampere-turn/meter
oersted 79.577 ampere-turn/meter
line (maxwells) 1 × 10−8 weber (Wb)
gauss (lines/cm2) 6.4516 line/inch2

line/inch2 0.155× 10−4 Wb/m2 (tesla)
gauss 10−4 Wb/m2

inch 2.54 centimeter (cm)
foot 30.48 centimeter
meter 100 centimeter
square inch 6.4516 square cm
ounce 28.35 gram
pound 0.4536 kilogram
pound-force 4.4482 newton
ounce-force 0.278 01 newton
newton-meter 141.62 ounce-inch
newton-meter 0.73757 pound-feet
revolution/minute 2π/60 radian/second

text are given in Tables 1.1 and 1.3. Since English units are still being
used in the industry to express some field quantities, it is necessary to
convert from one unit system to the other. Table 1.2 is provided for this
purpose.
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3 1.2 Field concept

Table 1.3. A partial list of field quantities

Variable Definition Type Unit

A� magnetic vector potential vector Wb/m
B� magnetic flux density vector Wb/m2 (T)
D� electric flux density vector C/m2

E� electric field intensity vector V/m
F� Lorentz force vector N
I electric current scalar A
J� volume current density vector A/m2

q free charge scalar C
S� Poynting vector vector W/m2

u� velocity of free charge vector m/s
V electric potential scalar V

Table 1.4. A partial list of relationships between various field quantities

D� = εE� permittivity (ε)
B� = µH� permeability (µ)
J� = σE� conductivity (σ ), Ohm’s law
F� = q(E� + u� × B�) Lorentz force equation

∇ · D� = ρ Gauss’s law (Maxwell’s equation)
∇ · B� = 0 Gauss’s law (Maxwell’s equation)

∇ · J� = −∂ρ

∂t
continuity equation

∇ × E� = −∂B�
∂t

Faraday’s law (Maxwell’s equation)

∇ × H� = J� + ∂D�
∂t

Ampère’s law (Maxwell’s equation)

1.2 Field concept
.................................

Prior to undertaking the study of electromagnetic fields we must define
the concept of a field. When we define the behavior of a quantity in a
given region in terms of a set of values, one for each point in that region,
we refer to this behavior of the quantity as a field. The value at each
point of a field can be either measured experimentally or predicted by
carrying out certain mathematical operations on some other quantities.
From the study of other branches of science, we know that there

are both scalar and vector fields. Some of the field variables we use in
this text are given in Table 1.3. There also exist definite relationships
between these field quantities, and some of these are given in Table 1.4.
The permittivity (ε) and the permeability (µ) are properties of the

medium. When the medium is a vacuum or free space, their values are

µ0 = 4π × 10−7 H/m

ε0 = 8.851× 10−12 ≈ 10−9/36π F/m
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4 1 Electromagnetic field theory

From the equations listed in Table 1.4, Maxwell was able to predict
that electromagnetic fields propagate in a vacuum with the speed of
light. That is,

c = (µ0ε0)
−1/2 m/s

1.3 Vector analysis
.................................

Vector analysis is the language used in the study of electromagnetic
fields. Without the use of vectors, the field equations would be quite
unwieldy to write and onerous to remember. For example, the cross
product of two vectors A� and B� can be simply written as

A� × B� = C� (1.1)

where C� is another vector. When expressed in scalar form, this equation
yields a set of three scalar equtions. In addition, the appearance of these
scalar equations depends upon the coordinate system. In the rectangular
coordinate system, the previous equation is a concise version of the
following three equations:

Ay Bz − Az By = Cx (1.2a)

Az Bx − Ax Bz = Cy (1.2b)

Ax By − Ay Bx = Cz (1.2c)

You can easily see that the vector equation conveys the sense of a
cross product better than its three scalar counterparts. Moreover, the
vector representation is independent of the coordinate system. Thus,
vector analysis helps us to simplify and unify field equations.
By the time a student is required to take the first course in electromag-

netic theory, he/she has had a very limited exposure to vector analysis.
The student may be competent to perform such vector operations as the
gradient, divergence, and curl, but may not be able to describe the sig-
nificance of each operation. The knowledge of each vector operation is
essential to appreciate the development of electromagnetic field theory.
Quite often, a student does not know that (a) the unit vector that

transforms a scalar surface to a vector surface is always normal to the
surface, (b) a thin sheet (negligible thickness) of paper has two surfaces,
(c) the direction of the line integral along the boundary of a surface
depends upon the direction of the unit normal to that surface, and (d)
there is a difference between an open surface and a closed surface.
These concepts are important, and the student must comprehend the
significance of each.
There are two schools of thought on the study of vector analysis.

Some authors prefer that each vector operation be introduced only when
it is needed, whereas others believe that a student must gain adequate
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5 1.4 Differential and integral formulations

proficiency in all vector operations prior to exploring electromagnetic
field theory. We prefer the latter approach and for this reason have
devoted Chapter 2 to the study of vectors.

1.4 Differential and integral formulations
.................................

Quite often a student does not understand why we present the same
idea in two different forms: the differential form and the integral form.
It must be pointed out that the integral form is useful to explain the
significance of an equation, whereas the differential form is convenient
for performing mathematical operations. For example, we express the
equation of continuity of current in the differential form as

∇ · J� = −∂ρ

∂t
(1.3)

where J� is the volume current density and ρ is the volume charge
density. This equation states that the divergence of current density at a
point is equal to the rate at which the charge density is changing at that
point. The usefulness of this equation lies in the fact that we can use it
to calculate the rate at which the charge density is changing at a point
when the current density is known at that point. However, to highlight
the physical significance of this equation, we have to enclose the charge
in a volume v and perform volume integration. In other words, we have
to express (1.3) as∫

v

∇ · J� dv = −
∫

v

∂ρ

∂t
dv (1.4)

We can now apply the divergence theorem to transform the volume
integral on the left-hand side into a closed surface integral. We can
also interchange the operations of integration and differentiation on the
right-hand side of equation (1.4). We can now obtain∮
s

J� · ds�= − ∂

∂t

∫
v

ρ dv (1.5)

This equation is an integral formulation of (1.3). The integral on the
left-hand side represents the net outward current I through the closed
surface s bounding volume v. The integral on the right-hand side yields
the charge q inside the volume v. This equation, therefore, states that
the net outward current through a closed surface bounding a region is
equal to the rate at which the charge inside the region is decreasing
with time. In other words,

I = −dq
dt

(1.6)

which is awell-knowncircuit equationwhen thenegative sign is omitted.
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6 1 Electromagnetic field theory

The details of the preceding development are given in Chapter 4. We
used this example at this time just to show that (1.3) and (1.5) are the
same and that they embody the same basic idea.

1.5 Static fields
.................................

Once again we face the dilemma of how to begin the presentation of
electromagnetic field theory. Some authors believe in starting with the
presentation ofMaxwell’s equations as a basic set of postulates and then
summarizing the results of many years of experimental observations of
electromagnetic effects. We, however, think that the field theory should
always be developed by making maximum possible use of the concepts
previously discussed in earlier courses in physics. For this reason we
first discuss static fields.
In the study of electrostatics, or static electric fields, we assume that

(a) all charges are fixed in space, (b) all charge densities are constant in
time, and (c) the charge is the source of the electric field. Our interest is
to determine (a) the electric field intensity at any point, (b) the potential
distribution, (c) the forces exerted by the charges on other charges, and
(d) the electric energy distribution in the region. We will also explore
how a capacitor stores energy. To do so, we will begin our discussion
with Coulomb’s law and Gauss’s law and formulate such well-known
equations as Poisson’s equation and Laplace’s equation in terms of po-
tential functions. We will show that the electric field at any point is
perpendicular to an equipotential surface and emphasize its ramifica-
tions. Some of the equations pertaining to electrostatic fields are given
in Table 1.5 (see below).

Table 1.5. Electrostatic field equations

Coulomb’s law: F� = qE�
Electric field: E� = Qa�R

4πεR2
or E� = 1

4πε

∫
v

ρa�R
R2

dv

Gauss’s law: ∇ · D� = ρ or
∮
s

D� · ds�= Q

Conservative E� field: ∇ × E� = 0 or
∮
c

E� · d��= 0

Potential function: E� = −∇V or Vba = −
∫ b

a
E� · d��

Poisson’s equation: ∇2V = −ρ

ε
Laplace’s equation: ∇2V = 0
Energy density: we = 1

2D� · E�

Constitutive relationship: D� = εE�
Ohm’s law: J� = σE�
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7 1.6 Time-varying fields

Table 1.6. Magnetostatic field equations

Force equation: F� = qu�× B� or dF�= I d��× B�

Biot–Savart law: dB�= µ

4π

I d��×a�r
r 2

Ampère’s law: ∇ × H� = J� or
∮
c

H� · d��= I

Gauss’s law: ∇ · B� = 0 or
∮
s

B� · ds�= 0

Magnetic vector potential: B� = ∇ × A� or A� = µ

4π

∫
c

I d��
r

Magnetic flux: � =
∫
s

B� · ds� or � =
∮
c

A� · d��

Magnetic energy: wm = 1
2B� · H�

Poisson’s equation: ∇2A� = −µJ�
Constitutive relationship: B� = µH�

We already know that a charge in motion creates a current. If the
movement of the charge is restricted in such a way that the resulting
current is constant in time, the field thus created is called a magnetic
field. Since the current is constant in time, the magnetic field is also
constant in time. The branch of science relating to constant magnetic
fields is called magnetostatics, or static magnetic fields. In this case, we
are interested in the determination of (a) magnetic field intensity, (b)
magnetic flux density, (c) magnetic flux, and (d) the energy stored in the
magnetic field. To this end we will begin our discussion with the Biot-
Savart law and Ampère’s law and develop all the essential equations.
From time to time we will also stress the correlation between the static
electric and magnetic fields. Some of the important equations that we
will either state or formulate in magnetostatics are given in Table 1.6.
There are numerous practical applications of static fields. Both static

electric and magnetic fields are used in the design of many devices. For
example, we can use a static electric field to accelerate a particle and
a static magnetic field to deflect it. This scheme can be employed in
the design of an oscilloscope and/or an ink-jet printer. We have devoted
Chapter 6 to address some of the applications of static fields. Once a
student has mastered the fundamentals of static fields, he/she should be
able to comprehend their applications without further guidance from the
instructor. The instructor may decide to highlight the salient features of
each application and then treat it as a reading assignment. The discussion
of real-life applications of the theory makes the subject interesting.

1.6 Time-varying fields
.................................

In the study of electric circuits, you were introduced to a differential
equation that yields the voltage drop v(t) across an inductor L when
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8 1 Electromagnetic field theory

it carries a current i(t). More often than not, the relationship is stated
without proof as follows:

v = L di
dt

(1.7)

Someone with a discerning mind may have wondered about the ori-
gin of this equation. It is a consequence of a lifetime of work byMichael
Faraday (1791–1867) toward an understanding of a very complex phe-
nomenon called magnetic induction.
We will begin our discussion of time-varying fields by stating

Faraday’s law of induction and then explain how it led to the de-
velopment of generators (sources of three-phase energy), motors (the
workhorses of the industrialized world), relays (magnetic controlling
mechanisms), and transformers (devices that transfer electric energy
from one coil to another entirely by induction). One of the four well-
known Maxwell equations is, in fact, a statement of Faraday’s law of
induction. At this time it will suffice to say that Faraday’s law relates
the induced electromotive force (emf) e(t) in a coil to the time-varying
magnetic flux �(t) linking that coil as

e = −d�
dt

(1.8)

The significance of the negative sign (Lenz’s law) and the derivation
of (1.7) from (1.8) will be discussed in detail in this text.
We will also explain why Maxwell felt it necessary to modify

Ampère’s law for time-varying fields. The inclusion of displacement
current (current through a capacitor) enabled Maxwell to predict that
fields should propagate in free space with the velocity of light. The
modification of Ampère’s law is considered to be one of the most sig-
nificant contributions by James Clerk Maxwell (1831–1879) in the area
of electromagnetic field theory.
Faraday’s law of induction, the modified Ampère law, and the two

Gauss laws (one for the time-varying electric field and the other for
the time-varying magnetic field) form a set of four equations; these
are now called Maxwell’s equations. These equations are given in
Table 1.4. Evident from these equations is the fact that time-varying
electric and magnetic fields are intertwined. In simple words, a time-
varyingmagnetic field gives rise to a time-varying electric field and vice
versa.
The modification of Ampère’s law can also be viewed as a conse-

quence of the equation of continuity or conservation of charge. This
equation is also given in Table 1.4.
When a particle having a charge q is moving with a velocity u� in a

region where there exist a time-varying electric field (E�) and a magnetic
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9 1.7 Applications of time-varying fields

field (B�), it experiences a force (F�) such that

F� = q(E�+ u�× B�) (1.9)

We will refer to this equation as the Lorentz force equation.
With the help of the four Maxwell equations, the equation of conti-

nuity, and the Lorentz force equation we can now explain all the effects
of electromagnetism.

1.7 Applications of time-varying fields
.................................

Among the numerous applications of electromagnetic field theory, we
will consider those pertaining to the transmission, reception, and prop-
agation of energy. This selection of topics is due to the fact that the
solution of Maxwell’s equations always leads to waves. The nature of
the wave depends upon the medium, the type of excitation (source), and
the boundary conditions.
The propagation of a wave may either be in an unbounded region

(fields exist in an infinite cross section, such as free space) or in a
bounded region (fields exist in a finite cross section, such as awaveguide
or a coaxial transmission line).
Although most of the fields transmitted are in the form of spheri-

cal waves, they may be considered as plane waves in a region far away
from the transmitter (radiating element, such as an antenna). How far
“far away” is depends upon the wavelength (distance traveled to com-
plete one cycle) of the fields. Using plane waves as an approximation,
we will derive wave equations from Maxwell’s equations in terms of
electric and magnetic fields. The solution of these wave equations will
describe the behavior of a planewave in an unboundedmedium.Wewill
simplify the analysis by imposing restrictions such that (a) the wave is
a uniform plane wave, (b) there are no sources of currents and charges
in the medium, and (c) the fields vary sinusoidally in time. We will then
determine (i) the expressions for the fields, (ii) the velocity with which
they travel in a region, and (iii) the energy associated with them.Wewill
also show that the medium behaves as if it has an impedance; we refer
to this as intrinsic impedance. The intrinsic impedance of free space is
approximately 377 �.
Our discussion of uniform plane waves will also include the effect

of interface between two media. Here we will discuss (a) how much of
the energy of the incoming wave is transmitted into the second medium
or reflected back into the first medium, (b) how the incoming wave and
reflected wave combine to form a standing wave, and (c) the condition
necessary for total reflection.
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10 1 Electromagnetic field theory

We devote Chapter 9 to the discussion of transmission of energy from
one end to the other via a transmission line. We will show that when
one end of the transmission line is excited by a time-varying source, the
transmission of energy is in the form of a wave. The wave equations
in this case will be in terms of the voltage and the current at any point
along the transmission line. The solution of these wave equations will
tell us that a finite time is needed for the wave to reach the other end, and
for practical transmission lines, the wave attenuates exponentially with
the distance. The attenuation is due to the resistance and conductance
of the transmission line. This results in a loss in energy along the entire
length of the transmission line. However, at power frequencies (50 or
60 Hz) there is a negligible loss in energy due to radiation because the
spacing between the conductors is extremely small in comparison with
the wavelength.
As the frequency increases so does the loss of signal along the length

of the transmission line. At high frequencies, the energy is transmitted
from one point to another viawaveguides. Although any hollow conduc-
tor can be used as a waveguide, the most commonly used waveguides
have rectangular or circular cross sections. We will examine the nec-
essary conditions that must be satisfied for the fields to exist, obtain
field expressions, and compute the energy at any point inside the wave-
guide. The analysis involves the solution of the wave equation inside
the waveguide subjected to external boundary conditions. The analysis
is complex; thus, we will confine our discussion to a rectangular wave-
guide. Although the resulting equations appear to be quite involved and
difficult to remember, we must not forget that they are obtained by sim-
ply applying the boundary conditions to a general solution of the wave
equation.
A transmission line can be used to transfer energy from very low

frequencies (even dc) to reasonably high frequencies. The waveguide,
on the other hand, has a lower limit on the frequency called the cutoff
frequency. The cutoff frequency depends upon the dimensions of the
waveguide. Signals below the cutoff frequency cannot propagate in-
side the waveguide. Another major difference between a transmis-
sion line and a waveguide is that the transmission line can support
the transverse electromagnetic (TEM) mode. In practice, both co-
axial and parallel wire transmission lines use the TEM mode. How-
ever, such a mode cannot exist inside the waveguide. Why this is so
will be explained in Chapter 10. The waveguide can support two dif-
ferent modes, the transverse electric mode and the transverse magnetic
mode. The conditions for the existence of these modes will also be
discussed.
The last application of Maxwell’s equations that we will discuss in

this text deals with electromagnetic radiation produced by time-varying
sources of finite dimensions. The very presence of these sources adds
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