
1 Classical mechanics vs. quantum
mechanics

What is quantum mechanics and what does it do?

In very general terms, the basic problem that both classical Newtonian mechanics

and quantum mechanics seek to address can be stated very simply: if the state of a

dynamic system is known initially and something is done to it, how will the state of the

system change with time in response?

In this chapter, we will give a brief overview of, first, how Newtonian mechanics

goes about solving the problem for systems in the macroscopic world and, then, how

quantummechanics does it for systems on the atomic and subatomic scale. We will see

qualitatively what the differences and similarities of the two schemes are and what the

domain of applicability of each is.

1.1 Brief overview of classical mechanics

To answer the question posed above systematically, we must first give a more rigorous

formulation of the problem and introduce the special language and terminology (in

double quotation marks) that will be used in subsequent discussions. For the macro-

scopic world, common sense tells us that, to begin with, we should identify the

‘‘system’’ that we are dealing with in terms of a set of ‘‘static properties’’ that do not

change with time in the context of the problem. For example, the mass of an object

might be a static property. The change in the ‘‘state’’ of the system is characterized by a

set of ‘‘dynamic variables.’’ Knowing the initial state of the system means that we can

specify the ‘‘initial conditions of these dynamic variables.’’ What is done to the system

is represented by the ‘‘actions’’ on the system. How the state of the system changes

under the prescribed actions is then described by how the dynamic variables change

with time. This means that there must be an ‘‘equation of motion’’ that governs the

time-dependence of the state of the system. The mathematical solution of the equation

of motion for the dynamic variables of the system will then tell us precisely the state of

the system at a later time t> 0; that is to say, everything about what happens to the

system after something is done to it.

For definiteness, let us start with the simplest possible ‘‘system’’: a single particle, or

a point system, that is characterized by a single static property, its massm. We assume

that its motion is limited to a one-dimensional linear space (1-D, coordinate axis x, for

example). According to Newtonian mechanics, the state of the particle at any time t is
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completely specified in terms of the numerical values of its position x(t) and velocity

vx(t), which is the rate of change of its position with respect to time, or vx(t)¼ dx(t)/dt.

All the other dynamic properties, such as linear momentum px(t)¼mvx, kinetic energy

T ¼ ðmv2xÞ=2, potential energy V(x), total energy E¼ (TþV), etc. of this system

depend only on x and vx. ‘‘The state of the system is known initially’’ means that the

numerical values of x(0) and vx(0) are given. The key concept of Newtonianmechanics

is that the action on the particle can be specified in terms of a ‘‘force’’, Fx, acting on the

particle, and this force is proportional to the acceleration, ax¼ d2x / dt2, where the

proportionality constant is the mass, m, of the particle, or

Fx ¼ max ¼ m
d2x

dt2
: (1:1)

This means that once the force acting on a particle of known mass is specified, the

second derivative of its position with respect to time, or the acceleration, is known

from (1.1). With the acceleration known, one will know the numerical value of vx(t) at

all times by simple integration. By further integrating vx(t), one will then also know the

numerical value of x(t), and hence what happens to the particle for all times. Thus, if

the initial conditions on x and vx are given and the action, or the force, on the particle

is specified, one can always predict the state of the particle for all times, and the

initially posed problem is solved.

The crucial point is that, because the state of the particle is specified by x and its first

time-derivative vx to begin with, in order to know how x and vx change with time, one

only has to know the second derivative of x with respect to time, or specify the force.

This is a basic concept in calculus which was, in fact, invented by Newton to deal with

the problems in mechanics.

A more complicated dynamic system is composed of many constituent parts, and

its motion is not necessarily limited to any one-dimensional space. Nevertheless, no

matter how complicated the system and the actions on the system are, the dynamics of

the system can, in principle, be understood or predicted on the basis of these same

principles. In the macroscopic world, the validity of these principles can be tested

experimentally by direct measurements. Indeed, they have been verified in countless

cases. The principles of Newtonianmechanics, therefore, describe the ‘‘laws of Nature’’

in the macroscopic world.

1.2 Overview of quantum mechanics

What about the world on the atomic and subatomic scale? A number of fundamental

difficulties, both experimental and logical, immediately arise when trying to extend the

principles of Newtonian mechanics to the atomic and subatomic scale. For example,

measurements on atomic or subatomic particles carried out in the macroscopic world

in general give results that are statistical averages over an ensemble of a large number

of similarly prepared particles, not precise results on any particular particle. Also, the
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resolution needed to quantify or specify the properties of individual systems on the

atomic and subatomic scale is generally many orders of magnitude finer than the

scales and accuracy of any measurement process in the macroscopic world. This

makes it difficult to compare the predictions of theory with direct measurements for

specific atomic or subatomic systems. Without clear direct experimental evidence,

there is no a priori reason to expect that it is always possible to specify the state of an

atomic or subatomic particle at any particular time in terms of a set of simultaneously

precisely measurable parameters, such as the position and velocity of the particle, as in

the macroscopic world. The whole formulation based on the deterministic principles

of Newtonianmechanics of the basic problem posed at the beginning of this discussion

based on simultaneous precisely measurable position and velocity of a particular

particle is, therefore, questionable. Indeed, while Newtonian mechanics had been

firmly established as a valid theory for explaining the behaviors of all kinds of dynamic

systems in the macroscopic world, experimental anomalies that could not be explained

by such a theory were also found in the early part of the twentieth century. Attempts to

explain these anomalies led to the development of quantum theory, which is a totally

new way of dealing with the problems of mechanics and electrodynamics in the atomic

and subatomic world.

A brief overview of the general approach of the theory in contrast to classical

Newtonian mechanics is given here. All the assertions made in this brief overview

will be explained and justified in detail in the following chapters. The purpose of the

qualitative discussion in this chapter is simply to give an indication of the things

to come, not a complete picture. A more formal description of the basic

postulates and methodology of quantum mechanics will be given in the following

chapter.

To begin with, according to quantum mechanics, the ‘‘state’’ of a system on the

atomic and subatomic scale is not characterized by a set of dynamic variables each

with a specific numerical value. Instead, it is completely specified by a ‘‘state function.’’

The dynamics of the system is described by the time dependence of this state function.

The relationship between this state function and various physical properties of the

dynamic system that can be measured in the macroscopic world is also not as direct as

in Newtonian mechanics, as will be clarified later.

The state function is a function of a set of chosen variables, called ‘‘canonic

variables,’’ of the system under study. For definiteness, let us consider again, for

example, the case of a particle of mass m constrained to move in a linear space

along the x axis. The state function, which is usually designated by the arbitrarily

chosen symbolC, is a function of x. That is, the state of the particle is specified by the

functional dependence of the state function C(x) on the canonic variable x, which is

the ‘‘possible position’’ of the particle. It is not specified by any particular values of x

and vx as in Newtonian mechanics. How the state of the particle changes with time is

specified by C(x, t), or how C(x) changes explicitly with time, t. C(x, t) is often also

referred to as the ‘‘wave function’’ of the particle, because it often has properties similar

to those of a wave, even though it is supposed to describe the state of a ‘‘particle,’’ as will

be shown later.
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The state function can also be expressed alternatively as a function of another

canonic variable ‘‘conjugate’’ to the position coordinate of the system, the linear

momentum of the particle px, or C(px, t). The basic problem of the dynamics of the

particle can be formulated in either equivalent form, or in either ‘‘representation.’’ If

the formC(x, t) is used, it is said to be in the ‘‘Schrödinger representation,’’ in honor of

one of the founders of quantum mechanics. If the form C(px, t) is used, it is in the

‘‘momentum representation.’’ That the same state function can be expressed as a

function of different variables corresponding to different representations is analogous

to the situation in classical electromagnetic theory where a time-dependent electrical

signal can be expressed either as a function of time, "(t), or in terms of its angular-

frequency spectrum, "(!), in the Fourier-transform representation. There is a unique

relationship between C(x, t) and C(px, t), much as that between "(t) and "(!). Either

representation will eventually lead to the same results for experimentally measurable

properties, or the ‘‘observables,’’ of the system. Thus, as far as interpreting experi-

mental results goes, it makes no difference which representation is used. The choice is

generally dictated by the context of the problem or mathematical expediency. Most of

the introductory literature on the quantum theory of electronic and optical devices

tends to be based on the Schrödinger representation. That is what will be mostly used

in this book also.

The ‘‘statistical,’’ or probabilistic, nature of the measurement process on the atomic

and subatomic scale is imbedded in the physical interpretation of the state function.

For example, the wave function C(x, t) is in general a complex function of x and t,

meaning it is a phasor of the form Y ¼ Yj j ei� with an amplitude Yj j and a phase �.

The magnitude of the wave function, jYðx, tÞj, gives statistical information on the

results of measurement of the position of the particle. More specifically, ‘‘the particle’’

in quantum mechanics actually means a statistical ‘‘ensemble,’’ or collection, of

particles all in the same state, C, for example. jYðx, tÞj2dx is then interpreted as the

probability of finding a particle in the ensemble in the spatial range from x to xþ dx at

the time t. Unlike in Newtonian mechanics, we cannot speak of the precise position of

a specific atomic or subatomic particle in a statistical ensemble of particles. The

experimentally measured position must be viewed as an ‘‘expectation value,’’ or the

average value, of the probable position of the particle. An explanation of the precise

meanings of these statements will be given in the following chapters.

The physical interpretation of the phase of the wave function is more subtle. It

endows the particle with the ‘‘duality’’ of wave properties, as will be discussed later.

The statistical interpretation of the measurement process and the wave–particle

duality of the dynamic system represent fundamental philosophical differences

between the quantum mechanical and Newtonian descriptions of ‘‘dynamic systems.’’

For the equation of motion in quantum mechanics, we need to specify the ‘‘action’’

on the system. In Newtonian mechanics, the action is specified in terms of the

force acting on the system. Since the force is equal to the rate of decrease of

the potential energy with the position of the system, or ~F ¼ �rVð~r Þ, the action

on the system can be specified either in terms of the force acting on the system

or the potential energy of the particle as a function of position Vð~r Þ. In quantum
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mechanics, the action on the dynamic system is generally specified by a physically

‘‘observable’’ property corresponding to the ‘‘potential energy operator,’’ say V̂ð~r Þ,
as a function of the position of the system. For example, in the one-dimensional

single-particle problem, V̂ in the Schrödinger representation is a function of the

variable x, or V̂ðxÞ. Since the position of a particle in general does not have a unique

value in quantum mechanics, the important point is that V̂ðxÞ gives the functional

relationship between V̂ and the position variable x. The force acting on the system

is simply the negative of the gradient of the potential with respect to x; therefore, the

two represent the same physical action on the system. Physically, V̂ðxÞ gives, for

example, the direction in which the particle position must change in order to lower

its potential energy; it is, therefore, a perfectly reasonable way to specify the action on

the particle.

In general, all dynamic properties are represented by ‘‘operators’’ that are functions

of x and p̂x. As a matter of notation, a ‘hat ^’ over a symbol in the language of

quantum theory indicates that the symbol is mathematically an ‘‘operator,’’ which in

the Schrödinger representation can be a function of x and/or a differential operator

involving x. For example, the operator representing the linear momentum, p̂x, in the

Schrödinger representation is represented by an operator that is proportional to the

first derivative with respect to x:

p̂x ¼ �i �h
@

@ x
; (1:2)

where �h is the Planck’s constant h divided by 2p. h is one of the fundamental constants

in quantum mechanics and has the numerical value h¼ 6.626� 10�27 erg-s. The

reason for this peculiar equation, (1.2), is not obvious at this point. It is related to

one of the basic ‘‘postulates’’ of quantum mechanics and one of its implications is the

all-important ‘‘Heisenberg’s uncertainty principle,’’ as will be discussed in detail in

later chapters.

The total energy of the system is generally referred to as the ‘‘Hamiltonian,’’ and

usually represented by the symbol Ĥ, of the system. It is the sum of the kinetic energy

and the potential energy of the system as in Newtonian mechanics:

Ĥ ¼ p̂2x
2m

þ V̂ðxÞ ¼ � �h2

2m

@2

@x2
þ V̂ðxÞ; (1:3)

with the help of Eq. (1.2). The action on the system is, therefore, contained in the

Hamiltonian through its dependence on V̂.

The total energy, or the Hamiltonian, plays an essential role in the equation of

motion dealing with the dynamics of quantum systems. Because the state of the

dynamic system in quantum mechanics is completely specified by the state function, it

is only necessary to know its first time-derivative, @Y@t , in order to predict howC will vary

with time, starting with the initial condition on C. The key equation of motion as

postulated by Schrödinger is that the time-rate of change of the state function is

proportional to the Hamiltonian ‘‘operating’’ on the state function:

1.2 Overview of quantum mechanics 5
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i �h
@Y
@ t

¼ ĤY: (1:4)

In the Schrödinger representation for the one-dimensional single particle system, for

example, it is a partial differential equation:

i �h
@Y
@ t

¼
�
� �h2

2m

@2

@x2
þ V̂ðxÞ

�
Y; (1:5)

by substituting Eq. (1.3) into Eq. (1.4). The time-dependent Schrödinger’s equation,

Eq. (1.4), or more often its explicit form Eq. (1.5), is the basic equation of motion in

quantum mechanics that we will see again and again later in applications. Solution of

Schrödinger’s equation will then describe completely the dynamics of the system.

The fact that the basic equation of motion in quantum mechanics involves only the

first time-derivative of something while the corresponding equation in Newtonian

mechanics involves the second time-derivative of some key variable is a very interesting

and significant difference. It is a necessary consequence of the fundamental difference

in how the ‘‘state of a dynamic system’’ is specified in the two approaches to begin with.

It also leads to the crucial difference in how the action on the system comes into play in

the equations of motion: the total energy, Ĥ, in the former case, in contrast to the

force, ~F, in the latter case.

Schrödinger’s equation, (1.4), in quantum mechanics is analogous to Newton’s

equation of motion, Eq. (1.1), in classical mechanics. It is one of the key postulates

that unlocks the wonders of the atomic and subatomic world in quantum mechanics.

It has been verified with great precision in numerous experiments without exception. It

can, therefore, be viewed as a law of Nature just as Newton’s equation – ‘F equalsm a ’ –

for the macroscopic world.

The problem is now reduced to a purely mathematical one. Once the initial condi-

tionC(x, t= 0) and the action on the system are given, the solution of the Schrödinger

equation gives the state of the system at any time t. KnowingC(x, t) at any time t also

means that we can find the expectation values of all the operators corresponding to the

dynamic properties of the system. Exactly how that is done mathematically will be

described in detail in the following chapters. Since the state of the system is completely

specified by the state function, the time dependent state function Yð~r, tÞ contains all
the information on the dynamics of the system that can be obtained by experimental

observations. This is how the problem is formulated and solved according to the

principles of quantum mechanics.

Further reading

For further studies at a more advanced level of the topics discussed in this and the

following chapters of this book, we recommend the following.
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On fundamentals of quantum mechanics

Bethe and Jackiw (1986); Bohm (1951); Cohen-Tannoudji, Diu and Laloë (1977);

Dirac (1947).

On quantum theory of radiation

Glauber (1963); Heitler (1954).

On generalized angular momentum

Edmonds (1957); Rose (1956).

On atomic spectra and atomic structure

Condon and Shortley (1963); Herzberg (1944).

On molecules and molecular-orbital theory

Ballhausen and Gray (1964); Coulson (1961); Gray (1973); Pauling (1967).

On lasers and photonics

Siegman (1986); Shen (1984); Yariv (1989).

On solid state physics and semiconductor electronics

Kittel (1996); Smith (1964); Streetman (1995).
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2 Basic postulates and
mathematical tools

Basic scientific theories usually start with a set of hypotheses or ‘‘postulates.’’ There is

generally no logical reason, apart from internal consistency, that can be given to justify

such postulates absolutely. They come from ‘revelations’ in the minds of ‘geniuses,’

most likely with hints from Nature based on extensive careful observations. Their

general validity can only be established through experimental verification. If numerous

rigorously derived logical consequences of a very small set of postulates all agree with

experimental observations without exception, one is inclined to accept these postulates

as correct descriptions of the laws of Nature and use them confidently to explain and

predict other natural phenomena. Quantum mechanics is no exception. It is based on a

few postulates. For the purpose of the present discussion, we begin with three basic

postulates involving: the ‘‘state functions,’’ ‘‘operators,’’ and ‘‘equations of motion.’’

In this chapter, this set of basic postulates and some of the corollaries and related

definitions of terms are introduced and discussed. We will first simply state these

postulates and introduce some of the related mathematical tools and concepts that are

needed to arrive at their logical consequences later. To those who have not been

exposed to the subject of quantum mechanics before, each of these postulates taken

by itself may appear puzzling and meaningless at first. It should be borne in mind,

however, that it is the collection of these postulates as a whole that forms the founda-

tions of quantummechanics. The full interpretation, and the power and glory, of these

postulates will only be revealed gradually as they are successfully applied to more

realistic and increasingly complicated physical problems in later chapters.

2.1 State functions (Postulate 1)

The first postulate states that the state of a dynamic system is completely specified by a

state function.

Even without a clear definition of what a state function is, this simple postulate

already makes a specific claim: there exists an abstract state function that contains all

the information about the state of the dynamic system. For this statement to have

meaning, we must obviously provide a clear physical interpretation of the state

function, and specify its mathematical properties. We must also give a prescription

of how quantitative information is to be extracted from the state function and

compared with experimental results.
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The state function, which is often designated by a symbol such as C, is in general

a complex function (meaning a phasor, Yj j ei�, with an amplitude and a phase).

In terms of the motion of a single particle in a linear space (coordinate x), for

example, Yj j and � in the Schrödinger representation are functions of the canonical

variable x.

A fundamental distinction between classical mechanics and quantum mechanics is

that, in classical mechanics, the state of the dynamic system is completely specified by

the position and velocity of each constituent part (or particle) of the system. This

presumes that the position and velocity of a particle can, at least in principle, be

measured and specified precisely at each instant of time. The position and velocity of

the particle at one instant of time are completely determined by the position and velocity

of the particle at a previous instant. It is deterministic. That one can specify the state of a

particle in the macroscopic world in this way is intuitively obvious, because one can see

and touch such a particle. It is intuitively obvious that it is possible to measure its

position and velocity simultaneously. And, if two particles are not at the same place or

not moving with the same velocity, they are obviously not in the same state.

What about in the world on the atomic and subatomic scale where we cannot see or

touch any particle directly? There is no assurance that our intuition on how things

work in our world can be extrapolated to a much smaller world in which we have no

direct sensorial experience. Indeed, in quantum mechanics, no a priori assumption is

made about the possibility of measuring or specifying precisely the position and the

velocity of the particle at the same time. In fact, as will be discussed in more detail

later, according to ‘‘Heisenberg’s uncertainty principle,’’ it is decidedly not possible

to have complete simultaneous knowledge of the two; a complete formulation of

this principle will be given in connection with Postulate 2 in Section 2.2 below.

Furthermore, quantummechanics does not presume that measurement of the position

of a particle will necessarily yield a particular value of x predictably. Knowing the

particle is in the state C, the most specific information on the position of the particle

that one can hope to get by any possible means of measurement is that the probability

of getting the value x1 relative to that of getting the value x2 is Yðx1Þj j2: Yðx2Þj j2.
In other words, the physical interpretation of the amplitude of the state function is

that YðxÞj j2dx is, in the language of probability theory, proportional to the prob-

ability of finding the particle in the range from x to x+dx in any measurement of the

position of the particle. If it is known for certain that there is one particle in the spatial

range from x = 0 to x = L, then the probability distribution function YðxÞj j2
integrated over this range must be equal to 1 and the wave function is said to be

‘‘normalized’’:

1¼
Z L

0

YðxÞ�YðxÞdx¼
Z L

0

YðxÞj j2dx: (2:1)

If the wave function is normalized, the absolute value of the probability of finding the

particle in the range from x to x + dx is YðxÞj j2dx. Accordingly, there is also an

2.1 State functions (Postulate 1) 9
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average value, hxiY, of the position of the particle in the state C, which is called the

‘‘expectation value’’ of the position of the particle. It is an ordinary number given by:

hxiY ¼
Z L

0

Y�ðxÞ xYðxÞ dx¼
Z L

0

x YðxÞj j2dx: (2:2)

A ‘‘mean square deviation,’’ �x2, from the average of the probable position of the

particle can also be defined:

�x2 ¼
Z L

0

YðxÞ�ðx� hxiYÞ2YðxÞdx¼
Z L

0

ðx� hxiYÞ2 YðxÞj j2dx; (2:3)

which gives a measure of the spread of the probability distribution function, YðxÞj j2, of
the position around the average value. In the language of quantum mechanics,

�x �
ffiffiffiffiffiffiffiffiffi
�x2

p
as defined in (2.3) is called the ‘‘uncertainty’’ in the position x of the particle

when it is in the stateC(x). The definitions of the ‘‘average value’’ and the ‘‘mean square

deviation,’’ or ‘‘uncertainty,’’ can also be generalized to any function of x, such as any

operator in the Schrödinger representation, as will be discussed in Section 2.3.

A more detailed explanation of the above probabilistic interpretation of the ampli-

tude of the state function is in order at this point. ‘‘ YðxÞj j2 is the probability distribu-

tion function of the position of the particle’’ implies the following. If there are a large

number of particles all in the same state C in a statistical ensemble and similar

measurement of the position of the particles is made on each of the particles in the

ensemble, the result of the measurements is that the ratio of the number of times a

particle is found in the range from x to x+dx, Nx, to the total number of measure-

ments, N, is equal to YðxÞj j2dx. Stating it in another way, the number of times a

particle is found in the differential range from x1 to x1+dx to that in the range from

x2 to x2+dx is in the ratio of Nx1: Nx2 ¼ Yðx1Þj j2: Yðx2Þj j2. The expectation value of

the position of the particle, hxiY, is the average of the measured positions of the

particles:

hxiY ¼ x1
Nx1

N
þ x2

Nx2

N
þ x3

Nx3

N
þ � � � ¼

Z L

0

x YðxÞj j2dx;

as given by Eq. (2.2). The uncertainty, �x, is the spread of the measured positions

around the average value:

�x2 ¼ðx1 � hxiYÞ2
Nx1

N
þ ðx2 � hxiYÞ2

Nx2

N

þ ðx3 � hxiYÞ2
Nx3

N
þ � � �

¼
ZL

0

ðx� hxiYÞ2 YðxÞj j2dx;

as given by Eq. (2.3).
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