
1 Controlling complexity

Technical skill is mastery of complexity while creativity is mastery of simplicity.
E. Christopher Zeeman, Catastrophe Theory, 1977

The goal of this text is to teach you how to design a processor from scratch. In a
step-by-step process, we will teach you how to specify, design, and test a processor
as an example of a complex digital system. We will use the commercially important
Verilog hardware description language (HDL) as the basis for this design process.

In particular, we will develop the VeSPA (Very Small Processor Architecture)
processor as a vehicle for demonstrating the overall design process. We show how
the instruction set for this processor is defined, how to build an assembler for the
processor, how to develop a behavioral simulator in Verilog to test the instruction
set and the assembler, and how to develop a complete Verilog structural model of a
pipelined implementation of the processor. We also describe the synthesis process for
automatically translating this structural model into a real piece of silicon hardware.
We end by demonstrating several techniques that can be used to verify the correctness
of the processor design.

1.1 Hierarchical design flow

The development of any type of digital computing system is fundamentally a problem
of controlling complexity. The designer of a large-scale digital system, such as a
processor, begins with a high-level idea of what tasks the system is to perform.
To realize this system in some physical technology, such as a collection of VLSI
(Very Large-Scale Integrated circuit) silicon chips, the designer must determine how
millions of individual transistors should be interconnected to perform the desired
operations. The need to translate from a high-level conceptual view of the system to
a specification of the complex interconnections among a virtual sea of transistors is
referred to as the designer’s abstraction gap, as suggested in Figure 1.1.

To bridge this gap between system concept and physical realization, we can use the
hierarchical design flow process shown in Figure 1.2. The instruction set architecture
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2 Controlling complexity

Sea of transistors on VLSI chips

Digital
system

Abstraction gap

for i = 1,n
a[i]  = b[i] * c[i]
 x[i] = a[i]/y[i]
 ...
 ...

Figure 1.1. The need to translate from the high-level conceptual view of a digital system, such as
a processor capable of executing the program shown above, to its physical realization in VLSI
chips leads to the designer’s abstraction gap.
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Figure 1.2. The hierarchical design flow used to bridge the abstraction gap between the high-level
view of a digital system and its physical realization in VLSI chips.

(ISA) specification at the highest level in this design hierarchy provides an abstract
description of what functions the system is capable of performing. In the case of the
design of a processor, this level specifies the instructions available to the assembly
language programmer and the programmer-visible architectural storage elements,
such as the general-purpose registers, the program counter, and the processor status
register. This level of the hierarchy is typically described using a written assembly
language programmer’s manual.
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Hierarchical design flow 3

The behavioral level of the design hierarchy is a logical refinement of the ISA
specification. This level provides precise functional information about how the
system’s state is affected by each of the operations specified in the ISA. The beha-
vioral Verilog model developed in this step can actually execute machine language
programs written for the processor. However, it typically contains no timing inform-
ation showing how long each instruction takes to execute, nor does it specify how the
operations are implemented. It is used to verify that the ISA is defined correctly, and
to provide a simulator on which programmers, such as compiler writers and operating
system programmers, can begin developing and testing their code.

This behavioral level in the design hierarchy is sometimes referred to as the
register-transfer level (RTL) since it describes transformations that occur to the
contents of registers as they are moved among the storage elements defined by
the ISA. However, it does not typically specify how the transformation itself is
implemented. For instance, the subtraction of the contents of register rs2 from the
contents of register rs1 with the results stored in register rdst may be specified at
this level in Verilog as R[‘rdst] = R[‘rs1] − R[‘rs2]. This RTL or behavioral
description shows what happens in a subtraction operation, but it does not specify
how it happened or how much time was required.

The next level in the design hierarchy is the structural level. This level begins to
answer the questions of how a function is actually implemented. It also begins to
define the number of cycles required to execute each operation, the number of buses
that interconnect registers and functional units, the size of internal memory buffers,
and so forth. This level represents a mapping of the behavioral model into a more
specific implementation. For example, this level defines how the subtractor actually
performs a subtraction operation.

Finally, the physical design level specifies the detailed chip-level floor-planning,
layout, and transistor-level timing. It defines a mapping of the structural level descrip-
tion on to a specific technology, such as a CMOS application-specific integrated circuit
(ASIC). This final stage in the design hierarchy often can be produced automatically
from the structural Verilog description using an appropriate logic synthesis design auto-
mation tool. The designer may choose to translate certain portions of the design from
the behavioral or structural level to the next level by hand, however, to optimize specific
design criteria, such as power consumption, chip area, or signal delays, for instance.

Since each level in this design hierarchy is an incremental refinement of the
previous level, this hierarchical design flow provides a technique for managing the
complexity of designing a large digital system. The hardware description language
is a means for precisely capturing the details at the behavioral and structural levels
of the design hierarchy. These behavioral and structural models can be compiled and
simulated to verify the correctness of the design at each level. The structural model
then provides the input for a synthesis tool that will make the final transformation of
the hardware description language model into a piece of silicon.
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4 Controlling complexity

1.2 Designing hardware with software

Using the above design flow, it can often seem that designing a processor is very
much like writing a piece of software. Indeed, both the behavioral and structural
models of a processor are written in the hardware description language and can be
changed, compiled, and executed (actually, simulated) in a manner very similar to
writing, compiling, and executing a program written in a high-level programming
language, such as C, C++, Java, or Fortran, for instance. However, it is important
to distinguish the fundamental differences in this hardware design process from the
process of writing software to run on a processor.

Figure 1.3 shows how a hardware designer begins with the ISA, develops a
functional and behavioral model, refines these models into a structural model, and,
finally, synthesizes that model into the actual processor. This processor consists of
hardware storage elements for the ISA-defined registers, logic circuits that implement
the ISA-specified instructions, and the memory system. In the final step, it is a real,
tangible piece of hardware. To change the processor, for instance, to add a new
instruction, every step in this chain of events must be repeated. The result is a
new silicon chip with the additional logic circuits necessary to implement this new
instruction. While it may be quite simple to make the changes necessary to implement
this new instruction in the ISA specification manual and the Verilog models, it can
be a slow and expensive process to actually fabricate the new chip.

The analogous process for compiling and executing a program written in a
high-level language is compared to this hardware design process in Figure 1.4.
A programmer begins with a logical description of the task to be accomplished by
the program. This description is refined into an algorithm that describes the steps

Physical implemenation
(Full custom/ASIC/FPGA implementation)

Structural description
(Translation to a gate-level description)

Functional description
(ISA verification)

Processor specification 
(ISA, High-level specifications)

Behavioral description
(High-level tradeoffs for timing/power)

Figure 1.3. The process of refining the behavioral and structural models in a hardware description
language to produce a new processor.
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Designing hardware with software 5

Software compilation Hardware compilation

Processor specification
(ISA, High-level specifications)

Functional description
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Assembly to machine language
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Figure 1.4. The process of compiling and executing a program to run on an existing processor
has strong similarities to the process of designing a digital system using a hardware description
language. However, the final results of the two processes are quite different.

necessary to complete the desired task. This algorithm then is written in a textual
format in the syntax of some high-level language, such as C/C++. A compiler reads
this text file and transforms the program into another text file containing an equi-
valent program in the target processor’s assembly language. Finally, this text file is
read by an assembler and converted into a string of bits that can be linked with other
precompiled library functions and loaded into the processor’s memory. At this point,
the processor can execute the program stored in its memory.

Changing anything in the program requires each of these steps to be repeated
beginning with the text file that contains the modified high-level program. However,
in contrast to the need to produce a new silicon chip, the recompiled program can
simply be loaded into the processor’s memory where it is ready to be re-executed.
While the steps required to produce the processor chip are analogous to those required
to compile and execute a program, the last step in each process produces completely
different results. The software compilation process produces a string of bits that
are stored in the processor’s memory. The hardware development process, however,
ultimately produces a new artifact in the form of a new piece of silicon.
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6 Controlling complexity

1.3 Summary

While shrinking process technologies have permitted the possibility of building large
integrated circuits, they have also forced designers to battle with the task of managing
this complexity under pressing time-to-market constraints on the design cycle. As a
natural result, there has been an increased amount of automation throughout the entire
design process. One manifestation of this change has been an evolution from building
circuits at the gate or transistor level to developing an ability to specify circuits at
a reasonably high level, from where a circuit implementation can be obtained in a
push-button manner. Interestingly, a similar evolution was seen in software: in the
early years, software was written at the assembler level, but as programs became
more complex, there was a move towards writing programs in a high-level language
that could be translated by a compiler into machine code.

HDLs have played an important role in this process, as they represent a medium
for designers to specify a circuit at a level that is comparable to a high-level language.
Once a design is specified in such a standardized format, there are a number of
computer-aided design (CAD) tools that will compile this code to translate the
specification into a hardware implementation. In today’s world, Verilog and VHDL
are the two most widely used HDLs. Since the subject of which of these is the better
language can prompt fierce partisan reactions among the believers of either sect, we
will prudently avoid that debate.1 In this book, we use the Verilog HDL as a vehicle
for processor design, and our rationale for this choice is threefold. Firstly, we feel that
Verilog, being more C-like, is easier for the novice to learn, and is less encumbered
with syntactic niceties than VHDL. Secondly, it is arguably the most widely used
HDL in industry today. Thirdly, and we believe, most convincingly, learning Verilog
provides an easy path to learning any other HDL, and the major goal of this book is
to profess the ideas behind processor design using HDLs, rather than to evangelize
any specific HDL.

1 A third prong to the debate may be added in the near future with the advent of newer hardware
description languages based on C, although these are in the early stages of use at this time.
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2 A Verilogical place to start

Let’s start at the very beginning.
A very good place to start.
When you read, you begin with A-B-C,
when you sing, you begin with Do-Re-Mi.

from Rogers and Hammerstein’s The Sound of Music

In this chapter, we will present an elementary introduction to Verilog, with the
primary aim of permitting the reader to learn enough of the language to carry out a
competent design. Due to the scope of this text, we do not attempt to present complete
coverage of the language; for example, we will not cover switch-level modeling
concepts that are typically at the transistor-level, since the design of our processor
does not require that level of design detail. For these and other details, the interested
reader may refer to sources such as those shown in the Further reading section at
the end of this chapter.

2.1 My Veri first description

In teaching an English-speaker a new tongue such as Spanish or Japanese or Marathi,
two extreme approaches may be attempted. A more structured approach would lead
the student through a rigorous path that first teaches the alphabet, followed by words,
sentences and grammar; an alternative ‘immersive’ or ‘communicative’ approach
places the student in an environment where the language is extensively spoken, in the
hope that this may motivate learning in a more natural environment. In practice, of
course, an intermediate approach is often the most effective, and we will use a similar
philosophy in presenting a first exposition to the admittedly nonhuman language that
is Verilog.

In this section, we will present a simple Verilog description of a very simple
module. The module that we present is a full adder that inputs three bits, the addend
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8 A Verilogical place to start

bits, a and b, and the input carry bit, cin. The full adder outputs two bits, the sum bit,
s, and the output carry bit, cout, and these are related by the elementary equations

s = a⊕b⊕ cin

cout = a ·b+a · cin+b · cin
A Verilog description is shown in Figure 2.1, and is fairly self-explanatory. The
description is encapsulated within a module that is parameterized by its ports,
or connections to the external world. The body of the module first declares these
parameters as inputs or outputs, followed by a description that defines the functionality
of the module in terms of its logic equations; note that the symbols ˆ , & and � refer
to the XOR, AND and OR logical operators, respectively.

module full_adder(a,b,cin,s,cout);

input a,b,cin; // declaration of the list of inputs
output s, cout; // declaration of the list of outputs

assign s = a ˆ b ˆ cin;
assign cout = (a & b) | (a & cin) | (b & cin);

endmodule

Figure 2.1. Verilog module for a full adder.

This module may be used as a building block for the hierarchical description of a
more complex module, such as the four-bit ripple carry adder of Figure 2.2 whose
Verilog description is shown in Figure 2.3. As before, the module description begins
with a listing and then a declaration of all inputs and outputs. An interesting feature
is in the definition of several vectors. For instance, the inputs p and q are defined
as four-bit vectors, with bit 3 being the most significant bit; alternatively, if ‘[3:0]’
were to be substituted by ‘[0:3]’, then bit 0 would be the most significant bit. The
next declaration of a wire corresponds, in this example, to an internal connection
within the module. Finally, the description of the adder instantiates four copies of
full_adder defined in Figure 2.1. Note that the order of the port connections
corresponds exactly to the order used in the definition of full_adder1.

Through the examples shown above, it is easy to see that the specification of the
adder is very similar to writing a program in a high-level programming language.
A Verilog compiler has the capability of translating this description to a hardware

1 Verilog does indeed permit an out-of-order specification of the list of ports, but we prefer to
avoid its use in this book.
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A more formal introduction to the basics 9
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Figure 2.2. Schematic of a four-bit ripple-carry adder.

module RCA(p,q,ci,r);

input [3:0] p, q; // Declaration of two four-bit inputs
input ci; // and the one-bit input carry

output [4:0] r; // Declaration of the five-bit outputs

wire [2:0] carry; // Declaration of internal carry wires

full_adder fa0(p[0],q[0],ci,r[0],carry[0]);

full_adder fa1(p[1],q[1],carry[0],r[1],carry[1]);

full_adder fa2(p[2],q[2],carry[1],r[2],carry[2]);

full_adder fa3(p[3],q[3],carry[2],r[3],r[4]);

endmodule

Figure 2.3. Verilog module for a four-bit ripple-carry adder.

implementation to a specified target. This target could be a field programmable gate
array (FPGA) implementation or a semicustom implementation using a standard cell
library.

2.2 A more formal introduction to the basics

2.2.1 Modules and ports

As exemplified by the discussion in Section 2.1, a typical Verilog description is
contained within a module, and this module may instantiate one or more copies of
other modules. The body of each module contains a list of port declarations, followed
by the description of the module, and terminated by the keyword endmodule.
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10 A Verilogical place to start

The ports of the module may be of type input, output, or inout, where the last
corresponds to a bidirectional connection.

2.2.2 Nets and registers

Apart from the port declarations, it is also possible to make declarations that are
entirely internal to the module. These declarations may correspond to:

Net variables correspond to structural connections between two or more elements
within the module. These are most often declared within a model using the
keyword wire. Alternative specifications of nets also exist to define, for
example, tristable nets (e.g., triand, trior), nets that can implement wired
AND or wired OR logic functions (e.g., wand, wor), and power/ground nets
(supply1 and supply0). The default value of a wire data type is the tristate
value z.

Register variables correspond to elements with memory that can store their value
until they are next updated. The most commonly used register data type is
denoted by the keyword reg, and its default value is the unknown value x.
The differences between a register declaration and a hardware implementation
of a register are subtle and include the fact that the former may or may not be
clocked and may be changed asynchronously. In many cases, though, there is a
one-to-one relationship between the two: the burden of ensuring this is placed
on the designer, who can force synchronicity by updating the register variable
in the Verilog description only on the onset of a clock.

Unless specified in terms of an array, both the wire and reg keywords represent a
single bit. Particularly in the case of stored variables, more compact representations
are often convenient. To facilitate this, Verilog permits register variables of type
integer and real to store integer and real variables, respectively. For example,
in specifying the value of a counter, an integer variable may be more convenient
to use, and may make the description more readable than the use of an array
of bits.

Another stored variable that is provided for convenience is the integer time
data type, which is most commonly used in conjunction with the system function
$time that provides the current time point of the simulation as an integer. A corres-
ponding data type realtime can be used to store time in the form of a real
number.

Verilog imposes stringent requirements on the mapping from the internals of
a module to its ports, and these are summarized below. Since a port defines the
connection to a module to the external world, it may be viewed from the inside of a
module as well as from the outside. For the example of the full adder module that was
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