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Overview

Although cosmology can trace its beginnings back to Einstein’s formulation of his
general theory of relativity in 1915, which enabled the first mathematically consis-
tent models of the Universe to be constructed, for most of the following century
there was much uncertainty and debate about how to describe our Universe. Over
those years the various necessary ingredients were introduced, such as the exis-
tence of dark matter, of the hot early phase of the Universe, of cosmological infla-
tion, and eventually dark energy. In the latter part of the last century, cosmologists
and their funding agencies came to realize the opportunity to deploy more ambi-
tious observational programmes, both on the ground and on satellites, which began
to bear fruit from 1990 onwards. The result is a golden age of cosmology, with the
creation and observational verification of the first detailed models of our Universe,
and an optimism that that description may survive far into the future. The objective,
often described as precision cosmology, is to pin down the Universe’s properties
as best as possible, in many cases at the percent or few percent level. In particular,
the landmark publication in 2003 of measurements of the cosmic microwave back-
ground by the Wilkinson Microwave Anisotropy probe (WMAP), seems certain to
be identified as the moment when the Standard Cosmological Model became firmly
established.

The key tool in understanding our Universe is the formation and evolution of
structure in the Universe, from its early generation as the primordial density per-
turbation to its gravitational collapse to form galaxies. As we already argued in
the introduction to our book Cosmological Inflation and Large-Scale Structure, the
complete theory of structure formation, starting with the quantum fluctuations of
a free field, continuing with general-relativistic gas dynamics, and ending with the
free fall of photons and matter, is perhaps one of the most beautiful and complete in
the entire field of physics. It has also demonstrated powerful predictive power, for
instance anticipating the oscillatory structure of the cosmic microwave anisotropy
spectrum more than twenty years before the anisotropies were measured in any
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2 Overview

form, and in detail making percent-level predictions that continue to be in accord
with what are now percent-level observations.

The purpose of this book is to give a detailed account of the physics of den-
sity perturbations in the Universe, focussed around the form and implications of
the primordial perturbation. We aim to describe the main astrophysical processes
which transform the initial density perturbation into observables, such as the cos-
mic microwave anisotropies, and to show how these observable consequences can
be tracked back to an origin which sheds light on fundamental physical processes
in the early Universe.

The book is divided into parts, as follows.

Part I: Relativity gives the basics of general relativity along with the applications
needed for cosmology, starting from a basic knowledge of special relativ-
ity.

Part II: The Universe after the first second concerns itself with the evolution of
perturbations, starting with a primordial density perturbation, whose exis-
tence is at this point taken for granted. After a brief overview of the theory
of the background (homogeneous) cosmology, density perturbations are
defined and characterized, and their evolution studied in both Newtonian
and relativistic frameworks. This evolution ultimately leads to the observ-
able consequences of the theory.

Part III: Field theory sets the context for explaining the origin of the primordial
density perturbation in terms of fundamental physics. It gives those aspects
of field theory that are needed for Part IV, starting from a basic knowledge
of quantum mechanics. Among the key ideas developed are scalar field
dynamics, internal symmetry, supersymmetry, and the quantization of free
fields.

Part IV: Inflation and the early Universe exploits these ideas to explain the lead-
ing theory for the origin of perturbations, cosmological inflation. We de-
scribe a number of variants on the basic inflationary theme. We conclude
by developing the observational consequences of a wide range of infla-
tionary scenarios, setting the challenge to distinguish amongst them using
future observations.

The reader will notice that many references are given for the chapters of Part IV
while very few are given for earlier chapters. This reflects a profound difference
between the material in Part IV and that in Parts I–III. The theories covered in the
first three parts have been around for at least several years, and in many cases for
far longer. It is true that Nature may have chosen not use some of them. There
may be no significant tensor or isocurvature perturbation, no supersymmetry, no
axion, and no seesaw mechanism for neutrino masses. But the theories themselves
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Overview 3

are well established. As a result, most of the additional material consulted by the
reader will consist of texts and reviews as opposed to topical research articles. The
most appropriate sources of that kind will depend on the reader’s background and
future intentions, and we mention only a few possibilities.

In contrast, the study of the very early Universe covered in Part IV is at the
cutting edge of current research. It is not covered in any text at present, and the
coverage of reviews is quite patchy. The situation is also quite complicated, with a
large menu of possibilities confronting many different kinds of observation. What
we have done in Part IV is to get the reader started on a study of the main possibil-
ities, pointing along the way to reviews and research papers that can be the basis
of further study.

Notes on exercises

Most chapters end with a few exercises to allow the reader to practice applying
the information given within the chapter. Several of these examples require some
simple numerical calculations for their solution; in cosmology these days, it is
practically impossible to avoid carrying out some numerical work at some stage. A
typical task is the numerical computation of an integral that cannot be done analyt-
ically, or the evaluation of some special functions. These can be done via specially
written programs, using library packages (e.g., Numerical Recipes [1], which is
also an invaluable source of general information on scientific computation), or a
computer algebra package such as Mathematica or Maple.

Units

In keeping with conventional notation in cosmology, we set the speed of light c

equal to one, so that all velocities are measured as fractions of c. Where relevant,
we also set the Planck constant h̄ to one, so that there is only one independent
mechanical unit. In particular, the phrases ‘mass density’ and ‘energy density’
become interchangeable. Often it is convenient to take this unit as energy, and
we usually set the Boltzmann constant kB equal to 1 so that temperature too is
measured in energy units. (In normal units kB = 8.618 × 10−5 eV K−1.)

Newton’s gravitational constant G can be used to define the reduced Planck
mass MPl = (8πG)−1/2. Thought of as a mass, MPl = 4.342 × 10−6 g, which
converts into an energy of 2.436× 1018 GeV. We use the reduced Planck mass
throughout, normally omitting the word ‘reduced’. It is a factor

√
8π less than

the alternative definition of the Planck mass, never used in this book, which gives
mPl = 1.22 × 1019 GeV. We use MPl and G interchangeably, depending on the
context. Inserting appropriate combinations of h̄ and c, we also can obtain the

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-82849-9 - The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure
David H. Lyth and Andrew R. Liddle
Excerpt
More information

http://www.cambridge.org/9780521828499
http://www.cambridge.org
http://www.cambridge.org


4 Overview

reduced Planck time TPl ≡ h̄/c2MPl = 2.70 × 10−43 s and reduced Planck length
LPl ≡ h̄/cMPl = 8.10 × 10−33 cm.

Reference

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Numerical
Recipes: The Art of Scientific Computation, 3rd edition (Cambridge: Cam-
bridge University Press, 2007).
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Part I

Relativity
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2

Special relativity

In this chapter we review the basic special relativity formalism, expressed in a way
that is readily extended to general relativity in the following chapter. We then study
the energy–momentum tensor, both for a generic fluid and for a gas.

2.1 Minkowski coordinates and the relativity principle

A starting point for relativity is provided by the interval ds2 between neighbouring
points of spacetime, known as events. The interval may be regarded as a given
concept, like the distance between two points in space.

Special relativity assumes the existence of coordinates in which

ds2 = −dt2 + dx2 + dy2 + dz2 . (2.1)

(In a different convention, the sign of ds2 is reversed.) Such coordinates are called
Minkowski coordinates. They are also referred to as an inertial frame. The spatial
coordinates are Cartesian, and the distance d� between two points in space with
same time coordinates is given by

d�2 = ds2 = dx2 + dy2 + dz2. (2.2)

It is convenient to use the index notation (x0, x1, x2, x3) ≡ (t, x, y, z), and to
denote a generic coordinate by xµ.1 We also use the notation xµ = (t,x). Then we
can define a metric tensor ηµν as the diagonal matrix with elements (−1, 1, 1, 1).
Using it, Eq. (2.1) can be written

ds2 = ηµν dxµdxν . (2.3)

We adopt the summation convention: that there is a sum over every pair of identical

1 We take Greek letters (µ, ν, . . . ) to run over the values 0, 1, 2, 3, and italic letters (i, j, . . . ) to run over the
values 1, 2, 3.
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8 Special relativity

spacetime indices. A summation of the above form, over the metric tensor, is called
a contraction. In this case, µ and ν are contracted.

As in this example, sums over spacetime indices involve one upper index and one
lower index, and spacetime coordinates always carry an upper index. In contrast, if
an expression involves purely spatial Cartesian coordinates, one can take all indices
as lower while still adopting the summation convention. In particular, the distance
d� between nearby points at a given time is given by

d�2 = ds2 = δijdxidxj, (2.4)

where δij is the Kronecker delta, equal to 1 for equal indices and to 0 for unequal
ones. (We will also denote it by δij or δi

j according to the context.)
A transformation taking us from one inertial frame to another preserves the form

of Eq. (2.3). The time-reversal transformation t′ = −t does this, but we fix the sign
of t so that it increases going from past to future. A parity transformation, changing
right-handedness to left-handedness, also does it, but we choose a right-handed
coordinate system. (The parity transformation can be taken as a reversal of all three
coordinates, or of just one of them.) With these restrictions, the transformations
preserving the form of Eq. (2.1) are a translation of the spacetime origin and/or a
Lorentz transformation. This is the Poincaré group of transformations.

A spacetime translation corresponds to new coordinates

x′µ = xµ + Xµ, (2.5)

with Xµ a constant. A Lorentz transformation corresponds to new coordinates

x′µ = Λµ
νx

ν , (2.6)

with Λµ
ν a constant matrix satisfying

Λα
µΛβ

νηαβ = ηµν . (2.7)

Note that

Λµ
ν =

∂x′µ

∂xν
. (2.8)

It is often convenient to consider an infinitesimal Lorentz transformation,

Λµ
ν = δµ

ν + ωµ
ν . (2.9)

Requiring that the form of Eq. (2.3) is preserved, one sees that this is a Lorentz
transformation if and only if the infinitesimal quantity ωµν ≡ ηµαωα

ν is antisym-
metric.

The most general Lorentz transformation is a rotation and/or a Lorentz boost. A
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2.1 Minkowski coordinates and the relativity principle 9

rotation changes just the space coordinates and preserves the form of Eq. (2.4). It
has the form

x′
i = Rijxj, (2.10)

where the rotation matrix is orthogonal (R−1 = RT). For a rotation through angle
φ about the z-axis,

Rij =

⎛
⎝

cos φ − sinφ 0
sinφ cos φ 0
0 0 1

⎞
⎠ . (2.11)

A Lorentz boost along (say) the x-axis mixes t and x components according to

x′ = γ(x − vt), t′ = γ(t − vx), (2.12)

where γ = (1 − v2)−1/2 (recall that we set c =1). The parameter v gives the
relative velocity of the old and new frames.

Allowing only boosts with v� 1 gives the Galilean transformation t′ = t and
x′ = x− vt. This is the Newtonian description of spacetime, in which there is a
universal time coordinate.

Special relativity ignores gravity and assumes the existence of Minkowski co-
ordinates, which define an inertial frame. According to the relativity principle
as originally formulated there is no preferred inertial frame, which means that the
form of the equations remains the same under every transformation from one set of
Minkowski coordinates to another. This was supposed to include time reversal (T)
t → −t, and the parity transformation (P) xi → −xi which reverses the handed-
ness of the coordinates. According to quantum field theory, these transformations
are related to charge conjugation (C), which interchanges particles with antipar-
ticles in such a way that the combined CPT invariance is guaranteed, and this is
verified by observation.

It was found in 1956 that the weak interaction is not invariant under the parity
transformation P, though it seemed to be invariant under CP or equivalently T.
In 1964 it was found that even these invariances are not exact. Therefore, at a
fundamental level, the relativity principle should be applied only after t has been
chosen to increase into the future, and (say) a right-handed coordinate system has
been specified. This turns out not to be an issue in the usual scenarios of the early
Universe perturbations, because in those scenarios there is no mechanism by which
the violation of T and P leads to an observable effect. Scenarios have been proposed
where that is not the case, so that for example the cosmic microwave background
has net left-handed circular polarization, but no such effect has been observed.
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10 Special relativity

2.2 Vectors and tensors with Minkowski coordinates

According to the relativity principle, the laws of physics should take on the same
form in every inertial frame. To achieve this, the equations are written in terms
of 4-scalars, 4-vectors and 4-tensors. These objects are invariant under spacetime
translations, and they transform linearly under the Lorentz transformation.

2.2.1 4-scalars and 4-vectors

A 4-scalar is specified by a single number, and is invariant under the Lorentz trans-
formation.2 A 4-vector Aµ is specified by four components, transforming like dxµ:

A′µ =
∂x′µ

∂xν
Aν . (2.13)

As with ordinary vectors one can use a symbol to denote the vector itself as opposed
to its components, such as �A. Also, one can define basis vectors �eµ such that

�A =
∑

µ

Aµ�eµ. (2.14)

In a given inertial frame, each 4-vector is of the form Aµ = (A0,A) = (A0, Ai)
where as usual A denotes a 3-vector. The inner product of two 4-vectors is de-
fined as ηµνA

µBν . It is a 4-scalar and the 4-vectors are said to be orthogonal if it
vanishes. From now on we generally refer to a 4-vector simply as a vector.

For any vector, it is useful to define the lower-component object

Aµ = ηµνA
ν , (2.15)

or more explicitly, A0 = −A0, Ai =Ai. It is called a covariant vector while Aµ is
called a contravariant vector (more properly one should talk about the covariant or
contravariant components of the same vector). The scalar product of two vectors
can be written AµBµ. Going to a new inertial frame,

A′
µB′µ = AµBµ. (2.16)

The transformation law for Aµ follows from this, remembering that B′µ is an arbi-
trary vector. Indeed, let us set every component of that object equal to zero except
for one component B′µ = 1 (with µ either 0, 1, 2 or 3). Inserting this on the
left-hand side and putting the transformed quantity Bν = (∂xν/∂x′µ)B′µ into the
right-hand side, we get

A′
µ =

∂xν

∂x′µ Aν . (2.17)

2 If we consider in addition the effect of a parity transformation, we need to distinguish between true scalars
(simply called scalars), which are invariant under the parity transformation, and pseudo-scalars which reverse
their sign. A similar distinction needs to be made for vectors and tensors. We shall have occasional need of
this distinction.
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2.2 Vectors and tensors with Minkowski coordinates 11

2.2.2 4-tensors

A second-rank 4-tensor is a sixteen-component object Cµν , which transforms like
a product AµBν of two vectors;

C ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν Cαβ. (2.18)

Third- and higher-rank 4-tensors are defined in the same way. We can lower any
component of a tensor with ηµν , for instance, Cµ

ν = ηνλCµλ. A tensor with all
lower indices transforms like a product of covariant vectors and a tensor with mixed
upper and lower indices transforms like a product of the appropriate mixture of
vectors.

It is often useful to regard 4-vectors and 4-scalars as, respectively, first- and
zeroth-rank tensors. Depending on the context, the term ‘tensor’ will either include
those, or will mean an object of rank ≥ 2.

As with vectors, one can denote (say) a second-rank tensor by �C. One can also
define basis tensors �eµ ⊗ �eν , such that

�C =
∑
µ,ν

Cµν�eµ ⊗ �eν . (2.19)

If we multiply two tensors and contract any number of indices we get another
tensor; for instance AµνB

µα is a tensor. An inverse of this statement is true; if the
multiplication and contraction of an object with an arbitrary tensor gives another
tensor, then that object is itself a tensor. We encountered a special case of this
‘quotient theorem’ in Eq. (2.16). As in that case, it can be proved simply by setting
in turn each component of the arbitrary tensor to 1 with the others zero.

From Eq. (2.7), the metric tensor ηµν is indeed a tensor, but a very special one.
Its components are the same in every inertial frame, and ηµ

ν = ην
µ = δµ

ν , where
δµ
ν is again the Kronecker delta. Also, ηµν has the same components as ηµν . The

Levi–Civita symbol εµναβ (totally antisymmetric with ε0123 = 1) also has the same
components in every frame. Any other tensor with the same components in every
frame has to be constructed by multiplying and/or contracting these two.

If the components of a 4-vector or 4-tensor vanish in one coordinate system, they
vanish in all coordinate systems. This means that a 4-vector or 4-tensor is defined
uniquely by giving its components in any coordinate system.

In order to satisfy the principle of relativity, laws of physics are written in the
form ‘tensor = tensor’, or in other words in the form ‘tensor = 0’. Such an equation
is said to be covariant; both sides transform in the same way. 3

3 At the quantum level one can also allow ‘spinor’ = 0, where the transformation of spinor components is given
by Eq. (15.48).
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