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Symmetry and physics

1.1 Introduction

The application of group theory to study physical problems and their solutions provides a

formal method for exploiting the simplifications made possible by the presence of symme-

try. Often the symmetry that is readily apparent is the symmetry of the system/object

of interest, such as the three-fold axial symmetry of an NH3 molecule. The symmetry

exploited in actual analysis is the symmetry of the Hamiltonian. When alluding to sym-

metry we usually include geometrical, time-reversal symmetry, and symmetry associated

with the exchange of identical particles.

Conservation laws of physics are rooted in the symmetries of the underlying space and

time. The most common physical laws we are familiar with are actually manifestations of

some universal symmetries. For example, the homogeneity and isotropy of space lead to

the conservation of linear and angular momentum, respectively, while the homogeneity of

time leads to the conservation of energy. Such laws have come to be known as universal

conservation laws. As we will delineate in a later chapter, the relation between these clas-

sical symmetries and corresponding conserved quantities is beautifully cast in a theorem

due to Emmy Noether.

At the day-to-day working level of the physicist dealing with quantum mechanics, the

application of symmetry restrictions leads to familiar results, such as selection rules and

characteristic transformations of eigenfunctions when acted upon by symmetry operations

that leave the Hamiltonian of the system invariant.

In a similar manner, we expect that when a physical system/object is endowed with

special symmetries, these symmetries forge conservation relations that ultimately deter-

mine its physical properties. Traditionally, the derivation of the physical states of a system

has been performed without invoking the symmetry properties, however, the advantage

of taking account of symmetry aspects is that it results in great simplification of the

underlying analysis, and it provides powerful insight into the nature and the physics of

the system. The mathematical framework that translates these symmetries into suitable

mathematical relations is found in the theory of groups and group representations. This

is the subject we will try to elucidate throughout the chapters of this book.

Let us begin with a tour de force, exploring the merits of invoking symmetry aspects

pertinent to familiar but simple problems. We start by reminding ourselves of the triv-

ial example of using symmetry, or asymmetry, to simplify the evaluation of an integral.
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2 Symmetry and physics

Consider
∫ +b

−b

sin x dx = 0.

We know this to be true because sin x is an odd function; sin(−x) = − sin(x). In evalu-

ating this integral, we have taken advantage of the asymmetry of its integrand. In order to

cast this problem in the language of symmetry we introduce two mathematical operations:

I, which we will identify later with the operation of inversion, and which, for now, changes

the sign of the argument of a function, i.e. I f(x) = f(−x); and E, which is an identity

operation, E f(x) = f(x). This allows us to write

∫ +b

−b

sin x dx =

∫ b

0

(E + I) sin(x) dx =

∫ b

0

(

1 + (−1)
)

sin(x) dx = 0.

Figure 1.1 shows schematically the plane of integration, with ⊕ and ⊖ indicating the sign

of the function sin x.

We may introduce a more complicated integrand function f(x, y), and carry the inte-

gration over the equilateral triangular area shown in Figure 1.2.

b
x
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y

Fig. 1.1. The asymmetric function sin x.
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x

Fig. 1.2. Integration domain.
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1.1 Introduction 3

Making use of the 3-fold symmetry of the triangle, which includes rotations by multiples

of 2π/3, as well as reflections shown in Figure 1.3, we write the integral in the form

∫

triangle

f(x, y) dx dy =

∫

wedge

(

E + O(2π/3) + O(4π/3) + σ1 + σ2 + σ3

)

× f(x, y) dx dy,

where the Os represent counterclockwise rotations by the angle specified in the suffix,

and the σs are defined in Figure 1.3. Now, if the function f(x, y) possesses a symmetry

which can be associated with that of the triangle, as for example shown in Figure 1.4, the

integral vanishes.

Later, we will see how to reach similar conclusions in the case of selection rules, for

example, where the situation may be much more complicated.

Next, we present a simple example to demonstrate how to invoke symmetry to sim-

plify the solution of dynamical problems. We consider a system of two masses and three

springs as illustrated in Figure 1.5. Assume both masses to be equal to m and that

all springs have the force constant κ. In that case, the Hamiltonian, which is the
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Fig. 1.3. Symmetry operations of an equilateral triangle.
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Fig. 1.4. Some possible symmetries of f(x, y) on an equilateral triangle.
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4 Symmetry and physics

x1 x2

Fig. 1.5. A two-mass system with inversion symmetry about the center point.

total energy of the system,

H =

2
∑

i=1

[

p2
i

2m
+

κ

2
x2

i

]

+
κ

2

(

x2 − x1

)2
,

is invariant under the operation of inversion. That is, an inversion of the system through

the mid-plane, which takes x1 �→ −x2 and x2 �→ −x1, leaves the Hamiltonian invariant.

A lengthy normal mode analysis shows that the energy eigenvectors are
(

1

1

)

and

(

1

−1

)

.

This means there are two distinct modes of vibration, one in which the masses move in

opposite directions and by equal amounts and one in which the masses move in the same

direction and by equal amounts.

We can exploit the symmetry of this problem to obtain the same result, but with

much less effort. Let I be the inversion operator. Since the Hamiltonian is invariant under

the inversion operation, I commutes with H and thus the eigenvectors of I are also the

eigenvectors of H. Writing the displacements x1 and x2 as the components of a vector u

we have

Iu = I

(

x1

x2

)

=

(

−x2

−x1

)

. (1.1)

If the vector u is an eigenvector of I then we have

Iu =

(

−x2

−x1

)

= λu, (1.2)

where λ is the eigenvalue, and applying the inversion operation once more we obtain

I2
u = λ2

u

= I(Iu) = I

(

−x2

−x1

)

=

(

x1

x2

)

= u. (1.3)

Thus λ2 = 1, and the eigenvalues of I are λ = ±1, with corresponding eigenvectors

u1 =

(

1

1

)

and u2 =

(

1

−1

)

, (1.4)

which are identical to those of the Hamiltonian. They describe the displacement amplitudes

of the masses during normal mode vibrations and are either even or odd with respect to

the inversion symmetry.
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1.2 Hamiltonians, eigenfunctions, and eigenvalues 5

We learn that for a classical system with a symmetric one-dimensional potential V (x),

the eigenfunctions are of either odd or even parity, and we have seen how this knowledge

can be used to simplify finding the solution to a problem. Quantum systems are generally

much more complicated. Except for a few important but relatively simple systems, such as

the hydrogen atom, the harmonic oscillator, and the Kronig–Penney model for a periodic

lattice, most problems in quantum mechanics must be solved numerically.

Because the calculations are often long and tedious, and much effort is devoted to

numerical methods, accuracy becomes a concern. Fortunately, some simplifications based

on symmetry can be rigorously made. These usually involve the construction of symmetry

projection operators, which are, in turn, based on the concept of irreducible representations

(Irreps) and their characters. We will develop the ideas of characters and representations

in Chapters 3–5. Here we state only that they play an all-important role in group theory.

We will present in Chapters 5 and 7 exact computational procedures for the calculation

of matrix Irreps and characters using a method proposed by John Dixon in 1967. However,

we stress here only that all the important quantitative symmetry information can be

obtained with the aid of simple computer calculations.

1.2 Hamiltonians, eigenfunctions, and eigenvalues

A typical problem in condensed matter physics involves the determination of the physical

states of a system given its Hamiltonian or its free energy. Consequently, the symmetry

we need to exploit is, generally, that of the Hamiltonian. The application of symmetry will

then require the definition of the corresponding operators and the specification of the rules

of the action of these operations. Since a Hamiltonian can be defined on the configuration

space of the physical system, we define a symmetry operation as a transformation effected

on this configuration space. An example is the inversion operator I, which effects a vector

transformation

r �→ −r.

Other typical operations are reflections, rotations, and translations. We write the trans-

formation involving a symmetry operator Ô as

Ô H Ô.

We start by collecting the symmetry operations that leave the Hamiltonian H invari-

ant, i.e. those whose action leaves H unchanged. We designate this set of operations the

symmetry group1 of H. If Ô is such an operator, then

Ô H Ô† = H (1.5)

or

Ô H = H Ô. (1.6)

Thus, if Ô leaves the Hamiltonian invariant, it must commute with the Hamiltonian. But

what is the effect on an eigenfunction belonging to H? We have

H Ψi = Ei Ψi (1.7)

1 The word group will be justified in Chapter 2.
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6 Symmetry and physics

y

x

+

–

py

Ĉ4
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Fig. 1.6. Ĉ4 acting on py produces px.

which, when operated on by Ô, gives

Ô (H Ψi) = Ô (Ei Ψi). (1.8)

Since the symmetry operator Ô commutes with H, as described by (1.6), we obtain

H (Ô Ψi) = Ei (Ô Ψi), (1.9)

and we see that if Ψi is an eigenfunction, ÔΨi is also an eigenfunction of the same

Hamiltonian with the same eigenvalue Ei.

From quantum mechanics it is known that two commuting operators share a common set

of eigenfunctions. Here we learn that by operating on an eigenfunction with a symmetry

operator we generate another eigenfunction belonging to the same eigenvalue.

A pictorial example of the generation of a new eigenfunction with a symmetry operator

is shown in Figure 1.6, it depicts the generation of a px-orbital by operating on a py-orbital

with a π/4 rotation about the z-axis.

This example illustrates that the symmetry operators also act on functions defined on

configuration space.2

All functions generated by the successive application of the operator Ô and all other

symmetry operators of the system form a degenerate manifold in the Hilbert space of

the Hamiltonian. The family of functions forming the basis of this manifold is classified

by some characteristic symmetry properties, which distinguish it from other classes or

families of functions in the Hilbert space.

To illustrate this property of generating distinct families of functions in Hilbert space,

we consider the consequence of space isotropy, which is encountered under many guises

2 A note on function-space operators
Function-space operators are generally denoted by a “hat” over the symbol for the operator,

as in Ô. This is not formally necessary in that it is possible to infer the nature of the operator
by its context. If an operator acts on a function it is a function operator. Thus, sometimes, to
reduce clutter, it may be convenient to not use a hat. Indeed, we do not use a hat over the
Hamiltonian, which operates on wavefunctions. However, prudent practice is to use the hat for
emphasis, since there are subtle differences in the action of a function operator on the coordinate
variables of a function and the action of a configuration-space operator on the coordinates of a
physical entity. This will be made clear in later sections of this chapter.
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1.2 Hamiltonians, eigenfunctions, and eigenvalues 7

in mechanics, electromagnetics, and quantum mechanics. It is manifest in the family of

functions we know as spherical harmonics, Y m
l , which form disjoint subspaces denoted by

the index l, each subspace l has dimension 2l + 1.3

Since isotropy means invariance under arbitrary infinitesimal rotations, it implies that

a system with such symmetry should be invariant under all possible rotation operations.

In quantum mechanics, isotropic symmetry of a system implies that all such operations

should commute with its Hamiltonian, and thus their application to the eigenfunctions of

the Hamiltonian should reveal the degeneracy within each spherical harmonic manifold in

its Hilbert space.

In classical mechanics and electromagnetics, as well as in quantum mechanics, the clo-

sure of the different manifolds is demonstrated by the well-known addition theorem of

Legendre polynomials. In essence these relations express the fact that pure angular rota-

tions of, for example, p-states about their origin result in another p-state and thus do not

alter the angular characteristics of the eigenfunction. Similar rotations of a dipole produce

only other dipoles, not other multipoles.

The existence of a set of classes of symmetries to which symmetrized functions dis-

tinctly belong in isotropic space, that is, the spherical harmonics, is not an isolated case.

It is the general feature for any underlying configurational symmetry. For example, the

homogeneity of space leads to the natural adaptation of plane-wave functions as a dis-

tinct set for classifying symmetrized functions in this configuration space. The symmetry

classes associated with a given symmetry group are conventionally known as its irreducible

representations.

Another example may be found in quantum systems for which the symmetry of indistin-

guishability among a set of particles leads to two distinct and disjoint classes of wavefunc-

tions which are commonly referred to as fermion and boson wavefunctions, or particle

systems. To underscore the connection between the symmetry and the nature of the

allowed states of such systems let us review the argument behind this well-established clas-

sification. The indistinguishability of the particles requires that the associated Hamiltonian

should not change when two particles are exchanged, that is, H is invariant under such

an exchange, or permutation, operation. If we denote the operator associated with a two-

particle permutation operation by P̂12, we may write

P̂12 H Ψ = H P̂12 Ψ = E P̂12 Ψ. (1.10)

Now, the commutation of P̂12 with H requires that they share common eigenfunctions. If

we consider the eigenfunctions of P̂12, we have

P̂12 Ψ = λ Ψ, (1.11)

which means the exchange operation leaves the state unchanged apart from a multiplica-

tive, possibly complex, factor λ. A second application of P̂12 returns the system to its

original configuration, so that

P̂12
2
Ψ = λ2 Ψ = Ψ, (1.12)

3 In electromagnetics the spherical harmonics describe monopole, dipole, quadrupole, . . . fields,
and in atomic physics they are manifest as s, p, d, . . . states. Indeed, the structure of the periodic
table of the elements is a consequence of the three-dimensional isotropic character of space.
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8 Symmetry and physics

hence

λ2 = 1 (1.13)

or λ = ±1, thus establishing two distinct classes of eigenstates of a Hamiltonian describing

a set of indistinguishable particles, namely, those that transform even and those that

transform odd under the permutation or particle-exchange operation.

1.2.1 Examples of symmetry and conservation laws

Translation and conservation of linear momentum

Given a classical system’s Hamiltonian H(x, p), where x and p are conjugate coordinate

and momentum variables, we write the canonical equations of motion as

ẋ =
∂H

∂p
,

ṗ = −
∂H

∂x
.

If the system is invariant under arbitrary translations, then the r.h.s of the second equation

vanishes and the linear momentum p is conserved. When the system is treated quantum

mechanically, we define the translation operator corresponding to an infinitesimal dis-

placement dx as

R(dx) x = x + dx,

and, as we will show in Section 1.3, its action on function-space is given by

R̂
∣

∣ψ(x)
〉

=
∣

∣ ψ(x − dx)
〉

=
∣

∣ ψ(x)
〉

−i
p

�
dx

∣

∣ψ(x)
〉

,

so that the operator R̂ can be expressed as

R̂ = exp

(

−i
p dx

�

)

. (1.14)

If the Hamiltonian is invariant under such operations, then
[

R̂, H
]

= 0. (1.15)

Using Heisenberg’s equation of motion and substituting (1.14), we obtain

d

dt
〈p〉 =

1

i�

〈[

p, H
]〉

= 0. (1.16)

Inversion and parity conservation

Consider a system which remains invariant under the inversion operation, i.e.
[

Î , H
]

= 0, (1.17)

then we find that it also commutes with the time-translation operator

Û(t2, t1) = exp

[

−i
H (t2 − t1)

�

]

⇒
[

Î , Û
]

= 0.
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1.3 Symmetry operators and operator algebra 9

Since Î commutes with H, they have simultaneous eigenfunctions, such that

Î
∣

∣ ψ(t1)
〉

= λ1

∣

∣ ψ(t1)
〉

. (1.18)

Since Î2 is the identity, λ1 assumes the values ±1 only, and we obtain

Î
∣

∣ ψ(t2)
〉

= Î Û(t2, t1)
∣

∣ ψ(t1)
〉

= Û(t2, t1)Î
∣

∣ ψ(t1)
〉

= λ1Û(t2, t1)
∣

∣ ψ(t1)
〉

= λ1

∣

∣ ψ(t2)
〉

. (1.19)

1.3 Symmetry operators and operator algebra

We introduced earlier the idea that symmetry operators may act on Hamiltonians as well

as functions, and that these actions can be regarded as transformations in configuration

space. Here, we shall give a detailed exposé of these ideas, and establish some concepts

and conventions needed in order to be self-consistent in applying symmetry operations to

physical applications of group theory.

1.3.1 Configuration-space operators

Configuration space is the real physical space in which physical objects move, i.e. where

we define classical particle trajectories and quantum mechanical wavefunctions and prob-

abilities. Operators acting in this space are known as configuration-space operators. Now,

we consider a point object P, a particle in this space, located at position r with respect to

the reference axes, as shown in Figure 1.7. If the object is translated by a vector t, it will

arrive at the new position defined by the vector r′ with respect to the axes such that

r
′ = r + t. (1.20)

We can thus define an active operator tA, and its inverse t−1
A such that

tAr = r + t

t−1
A r = r − t. (1.21)

y

x

tAP P

y

x

r r

t

r

Fig. 1.7. Active operator tA translates the point body P from r to r′.
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10 Symmetry and physics

y
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P P
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r
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r

Fig. 1.8. Passive operator tP translates the coordinate system by −t.

We show a grid of equivalent points in configuration space because we have in mind, say,

a crystal structure in which all the grid points correspond to atomic positions. In such a

case, moving one point (atom) P of a body (a crystal) moves all the points. The space is

infinite, as is the (idealized) crystal. In Figure 1.7, we show the identical fixed coordinate

system twice in order to see the before and after pictures.

Now consider instead the effect of the passive operator, tP, which translates the coor-

dinate axes by −t while keeping the point object fixed, as in Figure 1.8. Then the new

position of the point P after the translation is still given by

tPr = r
′ = r + t, (1.22)

but the interpretation is different. The new position is with reference to the new x′, y′

coordinate system. The operator tP has the inverse effect from that of tA.

Likewise, rotation operations can be either passive or active, bearing inverse relations

to each other.

1.3.2 Function-space operations

We have alluded to a connection between configuration-space operators and function-space

operators. As a prelude to showing that a coordinate transformation in configuration space

induces a transformation of the function defined on it, we consider the case of a traveling

wave. This contains the basic physics and mathematics in a familiar and easily understood

situation.

Consider a transverse wave of shape f(x, t) traveling with positive velocity along the

x-axis, as shown in Figure 1.9. If we are to deal with the wave motion quantitatively, we

need a mathematical description of the shape of the wave moving as a whole. We assume

no damping or dispersion, so the shape remains unchanged, and any point on the wave may

be taken as a reference point. We will follow the motion of the wave peak. To describe an

amplitude that remains constant, although its position moves to the right with increasing

time, we need a function of the general form

f(x, t) = f(x − vt). (1.23)

With a function of this form, as t increases, x also increases, but the increase in x is

exactly compensated for in the argument of f by the term −vt, so that the argument is
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