Human Herpesviruses

This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi’s Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B, and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.

Ann Arvin is Professor of Pediatrics, Microbiology, and Immunology at Stanford University.

Gabriella Campadelli-Fiume is Professor of Microbiology and Virology at the University of Bologna, Italy.

Edward Mocarski is Professor of Microbiology and Immunology at Emory University.

Patrick Moore is Professor of Molecular Genetics and Biochemistry at the University of Pittsburgh.

Bernard Roizman is Professor of Molecular Genetics, Cell Biology, Biochemistry, and Molecular Biology at the University of Chicago.

Richard Whitley is Professor of Pediatrics, Microbiology, Medicine, and Neurosurgery at the University of Alabama Birmingham.

Koichi Yamanishi is Professor of Microbiology at Osaka University, Japan.
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis

Edited by

Ann Arvin
Stanford University, CA School of Medicine

Gabriella Campadelli-Fiume
University of Bologna, Italy

Edward Mocarski
Emory University School of Medicine, USA

Patrick S. Moore
University of Pittsburgh Cancer Institute, PA, USA

Bernard Roizman
The University of Chicago, IL, USA

Richard Whitley
University of Alabama at Birmingham, AL, USA

Koichi Yamanishi
Osaka University School of Medicine, Japan
Contents

List of contributors ix
Preface xix

Part I Introduction: definition and classification of the human herpesviruses

Bernard Roizman

1 Overview of classification 3
 Andrew Davison

2 Comparative analysis of the genomes 10
 Andrew Davison

3 Comparative virion structures of human herpesviruses 27
 Fenyong Liu and Z. Hong Zhou

4 Comparative analysis of herpesvirus–common proteins 44
 Edward Mocarski, Jr.

Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses

Gabriella Campadelli-Fiume and Bernard Roizman

5 Genetic comparison of human alphaherpesvirus genomes 61
 Joel Baines and Philip Pellett

6 Alphaherpes viral genes and their functions 70
 Bernard Roizman and Gabriella Campadelli-Fiume

7 Entry of alphaherpesviruses into the cell 93
 Gabriella Campadelli-Fiume and Laura Menotti
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Early events pre-initiation of alphaherpes viral gene expression</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Thomas Kristie</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Initiation of transcription and RNA synthesis, processing, and transport in HSV and VZV infected cells</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Rozanne Sandri-Goldin</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Alphaherpesvirus DNA replication</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>John Hay and William Ruyechan</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Envelopment of HSV nucleocapsids at the inner nuclear membrane</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Joel Baines</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The egress of alphaherpesviruses from the cell</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Gabriella Campadelli-Fiume</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The strategy of herpes simplex virus replication and takeover of the host cell</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Bernard Roizman and Brunella Iaddeo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edward Mocarski</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Comparative betaherpes viral genome and virion structure</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Andrew Davison and David Bhella</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Betaherpes viral genes and their functions</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Edward Mocarski</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Early events in human cytomegalovirus infection</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Teresa Compton and Adam Feire</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Immediate–early CMV gene regulation and function</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Mark Stinski and Jeffrey Meier</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Early CMV gene expression and function</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Elizabeth White and Deborah Spector</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>CMV DNA synthesis and late viral gene expression</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>David Anders, Julie Kerry and Gregory Pari</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>CMV maturation and egress</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>William Britt</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>CMV modulation of the host response to infection</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>A. Louise McCormick and Edward Mocarski, Jr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patrick S. Moore</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Introduction to the human γ-herpesviruses</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Richard Longnecker and Frank Neipel</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Gammaherpesviruses entry and early events during infection</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>Bala Chandran and Lindsey Hutt-Fletcher</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Gammaherpesvirus maintenance and replication during latency</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Paul Lieberman, Jianhong Hu, and Rolf Renne</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Reactivation and lytic replication of EBV</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>Shannon Kenney</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Reactivation and lytic replication of KSHV</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td>David Lukac and Yan Yuan</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>EBV gene expression and regulation</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Lawrence S. Young, John R. Arrand, and Paul G. Murray</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>KSHV gene expression and regulation</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>Thomas Schultz and Yuan Chang</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Effects on apoptosis, cell cycle and transformation, and comparative aspects of EBV with other DNA tumor viruses</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>George Klein and Ingemar Emberg</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>KSHV manipulation of the cell cycle and programmed cell death pathways</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>Patrick Moore</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Human gammaherpesvirus immune evasion strategies</td>
<td>559</td>
</tr>
<tr>
<td></td>
<td>Robert Means, Sabine Lang, and Jae Jung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ann Arvin and Richard Whitley</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>HSV-1 AND 2: pathogenesis and disease</td>
<td>589</td>
</tr>
<tr>
<td></td>
<td>Richard Whitley, David Kimberlin, and Charles Prober</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>HSV-1 and 2: molecular basis of HSV latency and reactivation</td>
<td>602</td>
</tr>
<tr>
<td></td>
<td>Christopher Preston and Stacey Efstathiou</td>
<td></td>
</tr>
</tbody>
</table>
34 HSV-1 and 2: immunobiology and host response
 David Koelle

35 HSV: immunopathological aspects of HSV infection
 Kaustuv Banerjee and Barry Rouse

36 HSV: persistence in the population: epidemiology, transmission
 Anna Wald and Lawrence Corey

Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
 Ann Arvin and Richard Whitley

37 VZV: pathogenesis and the disease consequences of primary infection
 Jennifer Moffat, Chia-chi Ku, Leigh Zerboni, Marvin Sommer, and Ann Arvin

38 VZV: molecular basis of persistence (latency and reactivation)
 Jeffrey Cohen

39 VZV: immunobiology and host response
 Ann Arvin and Allison Abendroth

40 VZV: persistence in the population: transmission and epidemiology
 Jane Seward and Aisha Jumaan

Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
 Ann Arvin and Richard Whitley

41 HCMV: pathogenesis and disease consequences
 William Britt

42 HCMV: molecular basis of persistence and latency
 Michael Jarvis and Jay Nelson

43 HCMV: immunobiology and host response
 Mark Wills, Andrew Carmichael, J. H. Sinclair, and J. G. Patrick Sissons

44 HCMV: persistence in the population: epidemiology and transmission
 Suresh Boppana and Karen Fowler

45 HCMV: persistence in the population: potential transplacental transmission
 Lenore Peirera, Ekaterina Maidji, and Susan Fisher

Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV-6A, 6B, and 7
 Ann Arvin and Richard Whitley

46 HHV-6A, 6B, and 7: pathogenesis, host response, and clinical disease
 Yasuko Mori and Koichi Yamanishi

47 HHV-6A, 6B, and 7: molecular basis of latency and reactivation
 Kaszuhiro Kondo and Koichi Yamanishi

48 HHV-6A, 6B, and 7: immunobiology and host response
 Fu-Zhang Wang and Philip Pellet

49 HHV-6A, 6B, and 7: persistence in the population: epidemiology, transmission
 Vincent Emery and Duncan Clark

Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
 Patrick S. Moore

50 Clinical and pathological aspects of EBV And KSHV infection
 Richard Ambinder and Ethel Cesarman

51 EBV: Immunobiology and host response
 Denis Moss, Scott Burrows, and Rajiv Khanna

52 Immunobiology and host response to KSHV infection
 Dimitrios Lagos and Chris Boshoff

53 The epidemiology of EBV and its association with malignant disease
 Henrik Hjalgrim, Jeppe Friborg, and Mads Melbye

54 The epidemiology of KSHV and its association with malignant disease
 Jeffrey Martin

55 EBV-induced oncogenesis
 Nancy Raab-Traub

56 KSHV-induced oncogenesis
 Donald Ganem
Contents

Part IV Non-human primate herpesviruses
Ann Arvin, Patrick Moore, and Richard Whitley

57 Monkey B virus
Julia Hilliard 1031

58 Simian varicella virus
Ravi Mahalingam and Donald Gilden 1043

59 Primate betaherpesviruses
Peter Barry and William Chang 1051

60 Gammaherpesviruses of New World primates
Armin Ensser and Bernhard Fleckenstein 1076

61 EBV and KSHV-related herpesviruses in non-human primates
Blossom Damania 1093

Part V Subversion of adaptive immunity
Richard Whitley and Ann Arvin

62 Herpesvirus evasion of T-cell immunity
Jatin Vyas, Benjamin Gewurz, and Hidde Ploegh 1117

63 Subversion of innate and adaptive immunity: immune evasion from antibody and complement
Lauren Hook and Harvey Friedman 1137

Part VI Antiviral therapy
Richard Whitley

64 Antiviral therapy of HSV-1 and -2
David Kimberlin and Richard Whitley 1153

65 Antiviral therapy of varicella-zoster virus infections
John Gann, Jr. 1175

66 Antiviral therapy for human cytomegalovirus
Paul Griffiths and Michael Boeckh 1192

67 New approaches to antiviral drug discovery (genomics/proteomics)
Mark Prichard 1211

68 Candidate anti-herpesviral drugs; mechanisms of action and resistance
Karen Bron 1219

Part VII Vaccines and immunotherapy
Ann Arvin and Koichi Yamanishi

69 Herpes simplex vaccines
George Kemble and Richard Spaete 1253

70 Varicella-zoster vaccine
Anne Gershon 1262

71 Human cytomegalovirus vaccines
Thomas Heineman 1274

72 Epstein–Barr virus vaccines
Andrew Morgan and Rajiv Khanna 1292

73 DNA vaccines for human herpesviruses
Thomas Evans and Mary Wloch 1306

74 Adoptive immunotherapy for herpesviruses
Ann M. Leen, Uluhan Sili, Catherine Bollard, and Cliona Rooney 1318

75 Immunotherapy of HSV infections – antibody delivery
David Kimberlin 1332

Part VIII Herpes as therapeutic agents
Richard Whitley and Bernard Roizman

76 Herpesviruses as therapeutic agents
Frank Tufaro and James Markert 1341

Index 1353
Contributors

Allison Abendroth
Centre for Virus Research
Westmead Millennium Institute and Research Centres
Westmead NSW 2145
Australia

Richard Ambinder
Johns Hopkins University School of Medicine
1650 Orleans Street, Room 389
Baltimore, MD 21231, USA

David Anders
Wadsworth Center
The David Axelrod Institute
PO Box 22002
Albany, NY 12201, USA

John Arrand
Cancer Research UK Institute for Cancer Studies
University of Birmingham
Edgbaston, Birmingham
B15 2TT, UK

Ann Arvin
Department of Pediatrics and Microbiology and Immunology
Stanford University School of Medicine
300 Pasteur Drive, Room G311
Stanford, CA 94305, USA

Joel Baines
Cornell University
Department of Microbiology and Immunology
C5169 Veterinary Education Ctr.
Ithaca, NY 14853, USA
Duncan Clark
Virology
Royal Free University College Medical School
Rowland Hill Street,
London, NW3 2QG, UK

Jeffrey Cohen
Laboratory of Clinical Investigation,
National Institute of Health
10 Center Drive, MSC 1888
Bldg. 10, Rm 11N228
Bethesda, MD, 20892, USA

Teresa Compton
NIBRI (Novartis)
100 Technology Square, Suite 4153,
Cambridge MA 02139, USA

Lawrence Corey
Virology Division, Laboratory Medicine
University of Washington
1100 Fairview Avenue N D3-100
Box 358080
Seattle, WA 98109, USA

Blossom Damania
University of North Carolina-Chapel Hill
Lineberger Cancer Center, CB#7295
Chapel Hill, NC 27599, USA

Andrew Davison
Institute of Virology
MRC Virology Unit
Church Street
Glasgow, G1 5JR, UK

Stacey Efstathiou
Division of Virology, Department of Pathology
University of Cambridge, Tennis Court Road
Cambridge, CB2, LOR UK

Vincent Emery
Royal Free University College Medical School
Virology Department
Rowland Hill Street
London, NW3 2PF, UK

Armin Ensser
Institut für Klinische und Molekulare Virologie
der Friedrich-Alexander Universität Erlangen-Nürnberg
Schloßgarten 4
D-91054 Erlangen
Germany

Thomas Evans
NIBRI (Novartis)
100 Technology Square
Suite 4153
Cambridge, MA 02139, USA

Adam Feire
McArdle Laboratory for Cancer Research, Room 610
University of Wisconsin
Madison, WI 53706, USA

Susan Fisher
Departments of Stomatology, Anatomy, Pharmaceutical Chemistry and the Biomedical Sciences Graduate Program
and the Oral Biology Graduate Program
University of California, San Francisco
513 Parnassus Avenue MC 0512
San Francisco, CA 94143, USA

Bernhard Fleckenstein
Institut für Klinische und Molekulare Virologie
der Friedrich-Alexander Universität Erlangen-Nürnberg
Schloßgarten 4
D-91054 Erlangen
Germany

Karen Fowler
Department of Pediatrics, Epidemiology and Maternal and Child Health
University of Alabama
1530 3rd Avenue South, CHB 306
Birmingham, AL 35294-0011, USA

Jeppe Friborg
Department of Epidemiology Research
Statens Serum Institute
5 Artillerivej, DK-2300
Copenhagen S, Denmark

Harvey Friedman
Department of Medicine
University of Pennsylvania School of Medicine
502 Johnson Pavilion
Philadelphia, PA 19104-6073, USA
Contributors

Donald Ganem
Department of Medicine
University of California San Francisco
513 Parnassus Avenue
San Francisco, CA 94143, USA

Anne Gershon
College of Physicians and Surgeons
Columbia University
Pediatrics, BB4-427
650 W. 168th St.
New York, NY 10032, USA

Benjamin Gewurz
Harvard Medical School
200 Longwood Avenue
Department of Pathology
Boston, MA, USA

Donald Gilden
Department of Neurology
University of Colorado Health Sciences Center
4200 E. 9th Ave., B182
Denver, CO 80262, USA

John Gnann, Jr.
Department of Medicine
University of Alabama at Birmingham
845 19th St. S.
Birmingham, AL 35294, USA

Paul Griffiths
Royal Free University College Medical School
Virology Department
Rowland Hill Street,
London, NW3 2PF, UK

John Hay
State University of New York
Microbiology, Farber Hall, Rm. 138
3435 Main Street, Bldg. 26
Buffalo, NY, 14214, UK

Thomas Heineman
St. Louis University Health Sciences Center
3635 Vista Avenue at Grand Blvd.
PO Box 15250
St. Louis, MO 63110, USA

Julia Hilliard
Georgia State University
Biology, 424 Science Annex
29 Peachtree Center Avenue
Atlanta, GA 30303, USA

Henrik Hjalgrim
Department of Epidemiology Research
Statens Serum Institute
5 Artillerivej, DK-2300
Copenhagen S, Denmark

Lauren Hook
Department of Medicine
University of Pennsylvania School of Medicine
502 Johnson Pavilion

Jianhong Hu
Department of Molecular Genetics and Microbiology
University of Florida
1376 Mowry Road, Rm 375E
Gainesville, FL 32610, USA

Lindsey Hutt-Fletcher
Louisiana State University
Health Sciences Center
Feist-Weiller Cancer Center
1501 Kings Highway
PO Box 33932
Shreveport, LA 71130-3932, USA

Michael A. Jarvis
Vaccine and Gene Therapy Institute
Oregon Health Sciences University
3181 S. W. Sam Jackson Park Road
Portland, OR 97201, USA

Aisha Jumaan
Center for Disease Control
1600 Clifton Road., MS E-61
Atlanta, GA 30333, USA

Jae Jung
Division of Tumor Virology
New England Primate Research Center
Harvard Medical School
One Pine Hill Drive
Southborough, MA 01772, USA
Contributors

George Kemble
MedImmune, Inc.
297 North Bernardo Avenue
Mt. View, CA 94043, USA

Shannon Kenney
Department of Medical Microbiology and Immunology
1400 University Avenue
Madison, WI 53706, USA
102 Mason Farm Road, Box 7295
Chapel Hill, NC 27599-7295, USA

Julie Kerry
Department of Microbiology and Molecular Cell Biology
Eastern Virginia Medical School
700 West Olney Road, Lewis Hall #3152
Norfolk, VA 23507, USA

Rajiv Khanna
Australian Centre for Vaccine Development
Division of Infectious Diseases and Immunology
Queensland Institute of Medical Research
300 Herston Road
Herston (Qld) 4006
Australia

David Kimberlin
Department of Pediatrics
University of Alabama at Birmingham
1600 7th Avenue South
CHB 303
Birmingham, AL 35233, USA

George Klein
Microbiology and Tumor Biology Center
Karolinska Institute
PO Box 280
S-171, 77 Stockholm, Sweden

David Koelle
Department of Medicine/Infectious Diseases
University of Washington
HMC Virology Division, M.S. 359690
325 9th Avenue
Seattle, WA 98104, USA

Kaszuhiro Kondo
Osaka University School of Medicine
2-2 Yamada-oka, Suita
Osaka 565-9871, Japan

Thomas Christie
National Institute of Health
Building – 133
9000 Rockville Pike
Bethesda, MD, 20810, USA

Chia-chi Ku
Department of Pediatrics
Stanford University School of Medicine
300 Pasteur Drive, Room G312, MC 5208
Stanford, CA 94305, USA

Dimitrios Lagos
Cancer Research UK Viral Oncology Group
Wolfson Institute for Biomedical Research
Gower Street
University College London
WC1E 6BT, UK

Sabine Lang
Department of Pathology
Yale University School of Medicine, LH 304
New Haven, CT 06520, USA

Ann Leen
Baylor College of Medicine
Center for Cell and Gene Therapy
1102 Bates Street, Suite 760.01
Houston, TX 77030, USA

Paul Lieberman
The Wistar Institute
3601 Spruce Street
Philadelphia, PA 19104, USA

Fenyong Liu
University of California at Berkeley
School of Public Health
140 Warren Hall
Berkeley, CA 94720, USA

Richard Longnecker
Department of Microbiology-Immunology
Feinberg School of Medicine
Northwestern University
303 East Chicago Avenue
Chicago, IL 60611, USA
Contributors

David Lukac
UMDN/NJ Medical School
Department of Microbiology and Molecular Genetics
Int’l Center for Public Health
225 Warren Street, Room E350T
Newark, NJ 07103, USA

Louise McCormick
Department of Microbiology and Immunology
Emory University School of Medicine
1462 Clifton Road,
Suite 429
Atlanta, GA 30322, USA

Susan McDonagh
University of California San Francisco
513 Parnassus Avenue
HSW-604
San Francisco, CA 94143, USA

Ravi Mahalingam
Department of Neurology
University of Colorado Health Sciences Center
4200 East 9th Avenue, Mail Stop B182
Denver, CO 80262, USA

Ekaterina Maidji
University of California San Francisco
513 Parnassus Avenue
HSW-604
San Francisco, CA 94143, USA

James M. Markert
Department of Surgery
University of Alabama at Birmingham
FOT#1050
1530 3rd Avenue S.
Birmingham, AL 35294-3410, USA

Jeffrey Meier
Department Internal Medicine
University of Iowa
Iowa City, Iowa 52242, USA

Mads Melbye
Department of Epidemiology Research
Statens Serum Institute
5 Artillerivej, DK-2300
Copenhagen S, Denmark

Laura Menotti
Department of Experimental Pathology
University of Bologna
Via San Giacomo 12, Bologna 4016
Italy

Edward Mocarski
Department of Microbiology and Immunology
Emory University School of Medicine
Current address:
Emory Vaccine Center
1462 Clifton Road, Suite 429
Atlanta, GA 30322, USA

Jennifer Moffat
SUNY Upstate Medical University
Department of Microbiology and Immunology
750 E. Adams, Room 2215
Syracuse, NY 13210, USA

Patrick Moore
Molecular Virology Program
University of Pittsburgh Cancer Institute
Hillman Cancer Center
Research Pavilion, Suite 1.8
5117 Centre Avenue
Pittsburgh, PA 15213-1863, USA

Andrew Morgan
University of Bristol
School of Medical Sciences
Department of Pathology and Microbiology
University Walk, Clifton, Bristol
BS8 1TD, UK
Yasuko Mori
Department of Microbiology
Osaka University School of Medicine
2-2 Yamada-oka, Suita
Osaka, 565-0871, Japan

Denis Moss
EBV Biology Laboratory
Queensland Institute of Medical Research
Post Office, Royal Brisbane Hospital
Brisbane 4029, Australia

Paul Murray
Cancer Research UK Institute for Cancer Studies
University of Birmingham
Edgbaston, Birmingham
B15 2T, UK

Frank Neipel
Institute für Klinische und Molekulare Virologie
SchloBgarten 4,
D-91054 Erlangen, Germany

Jay Nelson
Department of Molecular Microbiology and Immunology
Oregon Health Sciences Center
3181 S.W. Sam Jackson Park Road
Portland, OR 97201, USA

Gregory Pari
Department of Microbiology/320
University of Nevada, Reno
School of Medicine
Reno, NV 89557, USA

Lenore Peirera
University of California San Francisco
513 Parnassus Ave.
HSW-604
San Francisco, CA 94143, USA

Philip Pellett
Department of Virology
Lerner Research Institute, NN10, Cleveland Clinic Foundation
9500 Euclid Avenue
Cleveland, OH 44195, USA

Hidde Ploegh
Whitehead Institute for Biomedical Research
Cambridge, MA 02142, USA

Christopher Preston
Medical Research Council Virology Unit
Church Street
Glasgow G11 5JR
UK

Mark Prichard
University of Alabama at Birmingham
Department of Pediatrics
1600 6th Avenue South
128 Children's Harbor Building
Birmingham, AL 35233, USA

Charles Prober
Department of Pediatrics and Microbiology and Immunology
Stanford University School of Medicine
300 Pasteur Drive, G312, MC 5208
Stanford, CA 94305, USA

Nancy Raab-Traub
University of North Carolina
Lineberger Cancer Center
102 Mason Farm Road
Chapel Hill, NC 27599–7295, USA

Rolf Renne
Department of Molecular Genetics and Microbiology
University of Florida
1376 Mowry Road, Rm 361
Gainesville, FL 32610, USA

Bernard Roizman
The Marjorie B. Kovler Viral Oncology Laboratories
The University of Chicago
910 East 58th Street
Chicago, IL 60637, USA

Cliona Rooney
Center for Cell and Gene Therapy
Baylor College of Medicine
1102 Bates Street, BCM 320
Houston, TX 77030, USA

Barry Rouse
Department of Microbiology
College of Veterinary Medicine
University of Tennessee
1414 W. Cumberland Avenue
F403 Walters Life Sciences
Knoxville, TN 37996, USA
Contributors

William Ruyechan
State University of New York
Microbiology, Farber Hall, Rm. 138
3435 Main Street, Bldg. 26
Buffalo, NY, 14214, USA

Rozanne Sandri-Goldin
Department of Microbiology and Molecular Genetics
College of Medicine
University of California at Irvine
C135 Medical Sciences Building
Irvine, CA, 92697, USA

Thomas Schulz
Institute für Virologie, OE 5230
Medizinische Hochschule Hannover
Carl-Neuberg-Str. 1
D-30625 Hannover
Germany

Jane Seward
Centers for Disease Control
1600 Clifton Road
Atlanta, GA 30333, USA

Uluhan Sili Ph.D.
Center for Cell and Gene Therapy
Baylor College of Medicine
1102 Bates Street
Houston, TX 77030, USA

J. H. Sinclair
Department of Medicine, University of Cambridge
Clinical School, Box 157, Addenbrooke's Hospital, Hills Road,
Cambridge CB2 2QQ, UK

Patrick Sissons
Department of Medicine, University of Cambridge Clinical School
Box 157, Addenbrooke's Hospital, Hills Road,
Cambridge, CB2 2QQ, UK

Marvin Sommer
Department of Pediatrics
Stanford University School of Medicine
300 Pasteur Drive, Room G312, MC 5208
Stanford, CA 94305, USA

Richard Spaete
MedImmune, Inc.
297 North Bernardo Avenue
Mt. View, CA 94043, USA

Deborah Spector
Department of Cellular and Molecular Medicine
Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Molecular Genetics
University of California San Diego
9500 Gilman Drive, MC 0366
La Jolla, CA 92093–0712, USA

Mark Stinski
University of Iowa
Department of Microbiology
University of Iowa
Iowa City, Iowa 52242, USA

Takako Tabata
University of California San Francisco
513 Parnassus Avenue
HSW-604
San Francisco, CA 94143, USA

Brunella Taddeo
The Marjorie B. Kovler Viral Oncology Labs.
The University of Chicago
910 East 58th Street
Chicago, IL 60637, USA

Frank Tufaro
Allera Health Products, Inc.
360 Central Avenue, Suite 1560
St. Petersburg, FL 33701, USA

Jatin Vyas
55 First St. GRJ 504
Massachusetts General Hospital
Division of Infections Diseases
Boston, MA 02114, USA

Anna Wald
Virology Research Clinic
600 Broadway, Suite 400
Seattle, WA 98122, USA

Fu-Zhang Wang
Cornell University
Department of Microbiology & Immunology
CS169 Veterinary Education Ctr.
Ithaca, NY 14853, USA
Elizabeth White
Department of Cellular and Molecular Medicine
Skaggs School of Pharmacy and Pharmaceutical Sciences Center for Molecular Genetic and Division of Biological Science
University of California, San Diego
9500 Gilman Drive, MC 0366
La Jolla, CA 92095-0712, USA

Richard Whitley
Department of Pediatrics
University of Alabama at Birmingham
1600 7th Avenue, S. CHB 303
Birmingham, AL 35233, USA

Mark Wills
Department of Medicine, University of Cambridge Clinical School, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK

Mary K. Wloch
Vical Incorporated
10390 Pacific Center Ct.
San Diego, CA 92121, USA

Koichi Yamanishi
Department of Microbiology
Osaka University School of Medicine
2-2 Yamada-oka, Suita
Osaka, 565-0871, Japan

Lawrence Young
Cancer Research UK Institute for Cancer Studies University of Birmingham
Edgbaston, Birmingham
B15 2TT, UK

Yan Yuan
University of Pennsylvania School of Dental Medicine
3451 Walnut Street
248 Levy/6002
Philadelphia, PA 19104, USA

Leigh Zerboni
Department of Pediatrics
Stanford University School of Medicine
300 Pasteur Drive, Room G312, MC 5208
Stanford, CA 94305, USA

Hong Zhou
Department of Pathology and Laboratory Medicine
University of Texas
Houston Medical School
Houston, TX 77030, USA
Diseases caused by the human herpesviruses were recognized by the earliest practitioners of medicine. Hippocrates, Celsus, Herodotus, Galen, Avicenna and others described cutaneous lesions typical of infections caused by herpes simplex viruses (HSV) 1 and 2, and varicella-zoster virus (VZV). ‘Herpes,’ the family name of these viruses, is traced to the Greek term for lesions that appeared to creep or crawl over the skin. Among the duties of John Astruc, physician to King Louis XIV, was to understand the diseases of French prostitutes, in Latin, the ‘Puellae publicae,’ which led to his description of herpes genitalis. Distinguishing between genital herpes and syphilis was an obvious concern in this social context as it is now. The modern scientific investigation of HSV can be dated to the work of Gruter, who first isolated the virus and demonstrated its serial transmission in rabbits. During the 19th century, experiments in human subjects showed that HSV and VZV could be transmitted from fluid recovered from HSV and VZV lesions. Demonstrating that Koch’s postulates were fulfilled was important but arguably the truly revolutionary discovery about the herpesviruses was made by Andrews and Carmichael in the 1930s who showed that recurrent herpes labialis occurred only in adults who already had neutralizing antibodies against HSV. Since our modern understanding of all of the human herpesviruses revolves around latency and reactivation as established facts of their biology, it is important to remember that these concepts are far from obvious and to appreciate the creative insights of Doerr who proposed that recurrent HSV was not an exogenous infection but resulted from stimuli to the cell that caused the endogenous production of a virus-like agent and of Burnet and Williams who perfected the notion that HSV persists for life and “remains for the most part latent; but under the stimulus of trauma, fever, and so forth it may at any time be called into activity and provoke a visible herpetic lesion.”
Although their relationships to HSV and VZV were by no means appreciated, the more subtle members of the herpesvirus family began to be discovered after an interval of many hundreds of years. The first of these was human cytomegalovirus (HCMV), which was initially associated with human disease through the detection of enlarged cells containing unusual cytoplasmic inclusions in the urine and organs of infants who were born with signs of intrauterine damage that had been attributed to syphilis. In the early 1950s, HCMV as well as VZV were the first human herpesviruses to be isolated in cultured cells. Within a decade, Epstein-Barr virus (EBV) particles were found in Burkitt’s lymphoma cells and EBV was shown to be associated with mononucleosis. By the mid-1990s, three more human herpesviruses, HHV-6A, HHV-6B and HHV-7, which share a tropism for T lymphocytes, were discovered and the etiologic agent of the unusual vascular skin tumor called ‘Kaposi’s sarcoma, first described in 1872, was identified as “Kaposi’s sarcoma-associated herpesvirus (KSHV, HHV8). These four new human herpesviruses were identified during the early years of the human immunodeficiency virus (HIV) epidemic because these viruses cause aggressive disease in HIV-infected patients or were discovered during intensive research on human T cell biology. In each instance, discovery of the human herpesviruses paralleled technologic progress, illustrated by animal models for HSV, cell culture methods for VZV and CMV, the cultivation of B lymphocytes for the detection of EBV and of T lymphocytes for identification of HHV-6 and 7, and differential nucleic acid detection for revealing the existence of HHV8.

Molecular genetics methods demonstrate that the human herpesviruses share a common ancestor. However, each virus has evolved to occupy a particular niche during millions of years of co-evolution with their primate, and eventually human, host. Understanding the nuances of the adaptive strategies that have allowed all of these viruses to be transmitted efficiently and to persist so successfully in the human population, and often in the same individual, constitutes a fascinating enterprise. At the same time, infections caused by these ubiquitous viruses create a substantial global burden of disease affecting healthy and immunocompromised patients and among people living in developed and developing countries. Because of their serious and potentially life-threatening consequences, the human herpesviruses are medically important targets for basic and clinical research.

The goal of this book is to describe the remarkable recent progress towards elucidating the basic and clinical virology of these new pathogens, in conjunction with a summary of the many new insights about their epidemiology, mechanisms of pathogenesis and immune control, approaches to clinical diagnosis and the recognition of the clinical illnesses that result from primary and recurrent herpesvirus infections across the age spectrum. All of the herpesviruses have common genes, structures, replication strategies and mechanisms of defense against the host response but each virus also has unique properties that allow it to find its particular ecological refuge. An unexpected outcome of research over the past decade is the finding that the human herpesviruses have devised many different ways to achieve the same biologic effect, as illustrated by their unique strategies for down-regulation of major histocompatibility complex proteins. Functional similarities exist among these viruses even when they do not share similar genes or infect similar tissues. Each chapter of the book explores these viral themes and variations from the virologic and clinical perspectives. The contributions of the many distinguished authors highlight the basic science aspects of the field, emphasizing the comparative virology of the human herpesviruses and virus-host cell interactions, and the significant clinical developments, including antiviral drugs and vaccines, that are essential for the best practice of medicine in the 21st century. The concluding chapter illustrates how therapies for cancer may emerge from these advances in basic and clinical research, to create a fundamentally new era in the complex history of the relationship between the human herpesviruses and their hosts.

The editors are deeply grateful for the generosity of the authors who have shared their comprehensive knowledge of the human herpesviruses. We hope that this book will serve as a resource for investigators and physicians, and most importantly, that it will motivate a new generation of students and trainees to address the many unresolved questions about these herpesviruses as agents of human disease. Since the genomes of all of these viruses have been sequenced, it is obvious that many genes exist for which functions have not been identified and we now understand that most herpesviral proteins can be expected to have multiple functions. Basic research on the human herpesviruses also reveals fundamental facts about human cellular biology, including surface receptors, metabolic pathways, cell survival mechanisms, malignant transformation as well as innate antiviral defenses. In the clinical realm, every improvement in diagnostic methods expands the spectrum of clinical disorders that are recognized as being caused by these viruses. Clinical interventions exist that could not have been imagined fifty years ago but the need for better therapeutic and preventive measures has become even more apparent as the burden of herpesvirus disease is defined with precision. Given that four human herpesviruses have been discovered in the past 15 years, are there others?