
CONCRETE ABSTRACT ALGEBRA
From Numbers to Gröbner Bases

Concrete Abstract Algebra develops the theory of abstract algebra from num-
bers to Gröbner bases, whilst taking in all the usual material of a traditional
introductory course. In addition there is a rich supply of topics such as cryptog-
raphy, factoring algorithms for integers, quadratic residues, finite fields, factor-
ing algorithms for polynomials and systems of non-linear equations. A special
feature is that Gröbner bases do not appear as an isolated example. They are
fully integrated as a subject that can be taught successfully in an undergraduate
context.

Lauritzen’s approach to teaching abstract algebra is based on an extensive use
of examples, applications and exercises. The basic philosophy is that inspiring,
non-trivial, applications and examples give motivation and ease the learning
of abstract concepts. This book is built on several years of experience teach-
ing introductory abstract algebra at Aarhus, where the emphasis on concrete
examples has improved student performance significantly.
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Preface

Imagine that you have a very persistent piano teacher insisting that you study
notes and practice scales for three years before you are allowed to listen to or
play any real music. How is that going to affect your level of inspiration? Are
you going to attend every lesson with passion or practice absolutely ignited with
energy? Abstract algebra is like piano playing. You can kill your inspiration
and motivation spending years on formalism before seeing the beauty of the
subject. This book is written with the intent that every chapter should contain
some real music, matters which involve practice of the notes and scales in a
surprising and unexpected way. It is an attempt to include a lot of non-trivial and
fun topics in an introductory abstract algebra course. Having inspiring goals
makes the learning easier. The topics covered in this book are numbers, groups,
rings, polynomials and Gröbner bases.

Knowledge of linear algebra and complex numbers is assumed in some
examples. However, most of the text is accessible with only basic mathematical
topics such as sets, maps, elementary logic and proofs.

Gröbner bases are usually not treated at an undergraduate level. My feeling
four years ago when including this topic in the syllabus at Aarhus was one
of hesitation. I was afraid that the material would be too advanced for the
students. It turned out that the students liked the concrete nature of the material
and enjoyed the non-trivial computations with polynomials. They found it easier
than the traditional topics of groups and rings.

Unlike most treatments on Gröbner bases, I have not included any imple-
mentations of algorithms in a pseudo-language. My personal experience is that
it disturbs the flow of the mathematics when teaching the basic ideas of the al-
gorithms. Once the mathematical concepts and a few examples are understood,
it is easy to extract the algorithms for implementation on a computer. In fact

xi
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xii Preface

students are very much encouraged to experiment using a computer algebra
system especially when learning about numbers and Gröbner bases.

Chapter 1 is on numbers. It is mostly based on the RSA cryptosystem and the
mystery that it seems much easier to multiply numbers than to factor them. The
617-digit number on the cover of this book is a product of two prime numbers. If
you can find them you should write to RSA Labs and claim the $200, 000 prize.
Going through the first chapter you will learn basic number theory: division
with remainder, congruences, the Euclidean algorithm, the Chinese remainder
theorem, prime numbers, how prime numbers uncovered the infamous FDIV
bug in Intel’s Pentium processor, Fermat’s little theorem and how it is used to
produce 100-digit prime numbers for the modern information age, three modern
algorithms for factoring numbers much faster than by trial division, quadratic
residues and the quadratic reciprocity theorem (which will be proved in
Chapter 4).

The level of abstraction is increased in Chapter 2. Here the mathematical
object is a group. A group is defined using a composition on a set and it satisfies
three simple rules. This definition has proved extremely important and invalu-
able to modern algebra. You get a framework for many proofs and concepts
from basic number theory. We treat the basics of group theory, the symmetric
and alternating groups, how to solve the 15-puzzle using groups, actions of
groups, counting and the Sylow theorems.

In Chapter 3 we treat rings. A ring is an abelian group with multiplication
as an added composition. We touch briefly on non-commutative rings, with the
quaternions as an example. We then move on to commutative rings, Freshman’s
Dream, fields, domains, principal ideal domains, Euclidean domains and unique
factorization domains. The Fermat two-square theorem (every prime number
leaving a remainder of 1 when divided by 4 can be written as a sum of two
unique squares (e. g. 13 = 32 + 22)) is a prime example in this chapter. You
will see the infinitude of prime numbers leaving a remainder of 1 when divided
by 4, further use of quadratic residues and an effective algorithm for computing
the two squares in the two-square theorem.

Polynomials form a central topic. In Chapter 4 we treat polynomials in one
variable. Here the highlights are: cyclotomic polynomials, a proof of the law of
quadratic reciprocity using only basic properties of rings of polynomials, how
to use floating point arithmetic to compute the order of specific elements in a
well known cyclic group, the ElGamal cryptosystem, the infinitude of prime
numbers congruent to 1 modulo a natural number > 1 and the existence and
uniqueness of finite fields, along with algorithms for factoring polynomials over
finite fields.
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Preface xiii

In Chapter 5 polynomials in several variables and Gröbner bases are treated.
Gröbner bases form an exciting and relatively new branch of algebra. They are
very concrete and computational. The distance from understanding the abstract
concepts involved to computing with them is small. They provide a framework
for solving non-linear equations (used in most computer algebra systems) with
applications in many areas inside and outside algebra. In Chapter 5 you will
see term orders, the fundamental Dickson’s lemma, the division algorithm for
polynomials in several variables, the existence of Gröbner bases, Hilbert’s basis
theorem, Buchberger’s S-criterion and algorithm, how to write X4 + Y 4 as a
polynomial in X + Y and XY (like writing X2 + Y 2 as (X + Y )2 − 2XY ) using
Gröbner bases and how to solve certain non-linear equations in several variables
systematically.

A few exercises are marked HOF. This indicates that they are “hall of fame”
exercises, far beyond what is required in an introductory abstract algebra course.
They usually call for an extraordinary amount of ingenuity. A student capable
of solving one of these deserves to be inducted into the hall of fame of creative
problem solvers. A hall of fame museum can be suitably maintained using a
course home page.

Suggestions for teaching a one-semester course

The book contains too much material for a one-semester course in introductory
abstract algebra. So, a selection of material must be made. A possible procedure
would be to leave out factoring algorithms from Chapter 1, quadratic reciprocity
from Chapters 1 and 4 and the Sylow theorems from Chapter 2. This plan would
give a one-semester course ending with Gröbner bases; it would cover the usual
topics in an introductory course.

Leaving out Gröbner bases completely, Chapters 1 through 4 would form an
in-depth traditional introductory abstract algebra course with many examples.
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