CONCRETE ABSTRACT ALGEBRA From Numbers to Gröbner Bases

Concrete Abstract Algebra develops the theory of abstract algebra from numbers to Gröbner bases, whilst taking in all the usual material of a traditional introductory course. In addition there is a rich supply of topics such as cryptography, factoring algorithms for integers, quadratic residues, finite fields, factoring algorithms for polynomials and systems of non-linear equations. A special feature is that Gröbner bases do not appear as an isolated example. They are fully integrated as a subject that can be taught successfully in an undergraduate context.

Lauritzen's approach to teaching abstract algebra is based on an extensive use of examples, applications and exercises. The basic philosophy is that inspiring, non-trivial, applications and examples give motivation and ease the learning of abstract concepts. This book is built on several years of experience teaching introductory abstract algebra at Aarhus, where the emphasis on concrete examples has improved student performance significantly.

CONCRETE ABSTRACT ALGEBRA

From Numbers to Gröbner Bases

NIELS LAURITZEN

Department of Mathematical Sciences University of Aarhus Denmark

Cambridge University Press	
978-0-521-82679-2 - Concrete Abstract Algebra: From Numbers to Grobner Ba	ises
Niels Lauritzen	
Frontmatter	
More information	

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > http://www.cambridge.org

© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 9/13 pt. *System* $\[\] \Delta T_E X 2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Lauritzen, Niels, 1964– Concrete abstract algebra: from numbers to Gröbner bases / Niels Lauritzen. p. cm. Includes bibliographical references and index. ISBN 0 521 82679 9 (hardback) – ISBN 0 521 53410 0 (paperback) 1. Algebra, abstract. 1. Title QA162.L43 2003 512'.02–dc21 2003051248

> ISBN 0 521 82679 9 hardback ISBN 0 521 53410 0 paperback

For Helle and William

-

Cambridge University Press 978-0-521-82679-2 - Concrete Abstract Algebra: From Numbers to Grobner Bases Niels Lauritzen Frontmatter More information

Contents

Preface		
Acknowledgements		
Num	1	
1.1 The natural numbers and the integers		3
1.1.1 Well ordering and mathematical induction1.2 Division with remainder		
	1.3.1 Repeated squaring – an example	7
1.4	Greatest common divisor	8
1.5	The Euclidean algorithm	9
1.6	The Chinese remainder theorem	14
1.7	Euler's theorem	17
1.8	Prime numbers	19
	1.8.1 There are infinitely many prime numbers	20
	1.8.2 Unique factorization	22
	1.8.3 How to compute $\varphi(n)$	24
1.9	RSA explained	24
	1.9.1 Encryption and decryption exponents	25
	1.9.2 Finding astronomical prime numbers	26
1.10	Algorithms for prime factorization	30
	1.10.1 The birthday problem	30
	1.10.2 Pollard's ρ -algorithm	31
	1.10.3 Pollard's $(p-1)$ -algorithm	33
	1.10.4 The Fermat–Kraitchik algorithm	34
1.11	Quadratic residues	36
1.12	Exercises	41
	knowl Num 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	knowledgementsNumbers1.11.1The natural numbers and the integers1.1.1Well ordering and mathematical induction1.2Division with remainder1.3Congruences1.3.1Repeated squaring – an example1.4Greatest common divisor1.5The Euclidean algorithm1.6The Chinese remainder theorem1.7Euler's theorem1.8Prime numbers1.8.1There are infinitely many prime numbers1.8.2Unique factorization1.8.3How to compute $\varphi(n)$ 1.9RSA explained1.9.1Encryption and decryption exponents1.9.2Finding astronomical prime numbers1.10Algorithms for prime factorization1.10.1The birthday problem1.10.3Pollard's $(p-1)$ -algorithm

viii

Cambridge University Press	
978-0-521-82679-2 - Concrete Abstract Algebra: From Numbers to Grobne	Bases
Niels Lauritzen	
Frontmatter	
More information	

Contents

2	Grou	na		50
2	Grou 2.1	Definit	tion	50
	2.1	2.1.1	Groups and congruences	51
		2.1.1	The composition table	53
		2.1.2	Associativity	54
			The first non-abelian group	54
			Uniqueness of neutral and inverse elements	55
			Multiplication by $g \in G$ is bijective	56
		2.1.7	More examples of groups	57
	22		bups and cosets	60
	2.2	2.2.1	-	61
		2.2.1		61
	2.3		ll subgroups	64
	2.5	2.3.1	Quotient groups of the integers	66
		2.3.2	The multiplicative group of prime residue classes	66
	2.4		homomorphisms	68
	2.5	-	omorphism theorem	71
			of a group element	72
		Cyclic		74
	2.8	-	s and numbers	76
		-	Euler's theorem	76
		2.8.2	Product groups	76
			The Chinese remainder theorem	77
	2.9		etric and alternating groups	78
		•	Cycles	79
		2.9.2	•	82
		2.9.3	The alternating group	85
			Simple groups	86
		2.9.5	The 15-puzzle	88
	2.10		s of groups	92
		2.10.1	Conjugacy classes	98
			Conjugacy classes in the symmetric group	98
			Groups of order p^r	100
		2.10.4	The Sylow theorems	101
	2.11	Exerci	ses	104
3	Ring	S		111
	3.1	Definit	tion	112
		3.1.1	Ideals	115
	3.2	Quotie	nt rings	116
		3.2.1	Quotient rings of \mathbb{Z}	117

Cambridge University Press	
978-0-521-82679-2 - Concrete Abstract Algebr	a: From Numbers to Grobner Bases
Niels Lauritzen	
Frontmatter	
More information	

Contents

		3.2.2 Prime ideals	118		
		3.2.3 Maximal ideals	118		
	3.3	Ring homomorphisms	119		
		3.3.1 The unique ring homomorphism from \mathbb{Z}	120		
		3.3.2 Freshman's Dream	121		
	3.4	Fields of fractions	123		
	3.5	Unique factorization	125		
		3.5.1 Divisibility and greatest common divisor	126		
		3.5.2 Irreducible elements	126		
		3.5.3 Prime elements	127		
		3.5.4 Euclidean domains	130		
		3.5.5 Fermat's two-square theorem	132		
		3.5.6 The Euclidean algorithm strikes again	134		
		3.5.7 Prime numbers congruent to 1 modulo 4	135		
		3.5.8 Fermat's last theorem	137		
	3.6	Exercises	138		
4	Poly	Polynomials			
	4.1	Polynomial rings	144		
		4.1.1 Binomial coefficients modulo a prime number	146		
	4.2	Division of polynomials	147		
	4.3	Roots of polynomials			
		4.3.1 Differentiation of polynomials	153		
	4.4	Cyclotomic polynomials	154		
	4.5	Primitive roots	157		
		4.5.1 Decimal expansions and primitive roots	159		
		4.5.2 Primitive roots and public key cryptography	160		
		4.5.3 Yet another application of cyclotomic			
		polynomials	160		
	4.6	Ideals in polynomial rings	161		
		4.6.1 Polynomial rings modulo ideals	164		
	4.7	Theorema Aureum: the law of quadratic reciprocity	167		
	4.8	Finite fields	170		
		4.8.1 Existence of finite fields	172		
		4.8.2 Uniqueness of finite fields	172		
		4.8.3 A beautiful identity	173		
	4.9	4.9 Berlekamp's algorithm			
	4.10	4.10 Exercises			
5	Gröl	Gröbner bases			
	5.1	Polynomials in several variables	187		
		5.1.1 Term orderings	189		

5.1.1 Term orderings

ix

Cambridge University Press			
978-0-521-82679-2 - Concrete Abstrac	t Algebra: From	Numbers to	Grobner Bases
Niels Lauritzen			
Frontmatter			
More information			

Х	Contents	
5.2	The initial term of a polynomial	193
5.3	* ·	194
5.4	C C	196
	5.4.1 Hilbert's basis theorem	198
5.5	Newton revisited	200
5.6	Buchberger's S-criterion	203
	5.6.1 The S-polynomials	204
	5.6.2 The S-criterion	208
5.7	Buchberger's algorithm	208
5.8	The reduced Gröbner basis	212
5.9	Solving equations using Gröbner bases	214
5.1	0 Exercises	217
Appen	dix A Relations	223
Α.	Basic definitions and properties	223
A.2	2 Equivalence relations	224
	A.2.1 Construction of the integers \mathbb{Z}	226
	A.2.2 Construction of the rational numbers \mathbb{Q}	227
A.3	3 Partial orderings	228
Appen	dix B Linear algebra	230
	Linear independence	231
B.2	2 Dimension	232
Refere	nces	234
Index		236

Preface

Imagine that you have a very persistent piano teacher insisting that you study notes and practice scales for three years before you are allowed to listen to or play any real music. How is that going to affect your level of inspiration? Are you going to attend every lesson with passion or practice absolutely ignited with energy? Abstract algebra is like piano playing. You can kill your inspiration and motivation spending years on formalism before seeing the beauty of the subject. This book is written with the intent that every chapter should contain some real music, matters which involve practice of the notes and scales in a surprising and unexpected way. It is an attempt to include a lot of non-trivial and fun topics in an introductory abstract algebra course. Having inspiring goals makes the learning easier. The topics covered in this book are numbers, groups, rings, polynomials and Gröbner bases.

Knowledge of linear algebra and complex numbers is assumed in some examples. However, most of the text is accessible with only basic mathematical topics such as sets, maps, elementary logic and proofs.

Gröbner bases are usually not treated at an undergraduate level. My feeling four years ago when including this topic in the syllabus at Aarhus was one of hesitation. I was afraid that the material would be too advanced for the students. It turned out that the students liked the concrete nature of the material and enjoyed the non-trivial computations with polynomials. They found it easier than the traditional topics of groups and rings.

Unlike most treatments on Gröbner bases, I have not included any implementations of algorithms in a pseudo-language. My personal experience is that it disturbs the flow of the mathematics when teaching the basic ideas of the algorithms. Once the mathematical concepts and a few examples are understood, it is easy to extract the algorithms for implementation on a computer. In fact

xii

Preface

students are very much encouraged to experiment using a computer algebra system especially when learning about numbers and Gröbner bases.

Chapter 1 is on numbers. It is mostly based on the RSA cryptosystem and the mystery that it seems much easier to multiply numbers than to factor them. The 617-digit number on the cover of this book is a product of two prime numbers. If you can find them you should write to RSA Labs and claim the \$200, 000 prize. Going through the first chapter you will learn basic number theory: division with remainder, congruences, the Euclidean algorithm, the Chinese remainder theorem, prime numbers, how prime numbers uncovered the infamous FDIV bug in Intel's Pentium processor, Fermat's little theorem and how it is used to produce 100-digit prime numbers much faster than by trial division, quadratic residues and the quadratic reciprocity theorem (which will be proved in Chapter 4).

The level of abstraction is increased in Chapter 2. Here the mathematical object is a group. A group is defined using a composition on a set and it satisfies three simple rules. This definition has proved extremely important and invaluable to modern algebra. You get a framework for many proofs and concepts from basic number theory. We treat the basics of group theory, the symmetric and alternating groups, how to solve the 15-puzzle using groups, actions of groups, counting and the Sylow theorems.

In Chapter 3 we treat rings. A ring is an abelian group with multiplication as an added composition. We touch briefly on non-commutative rings, with the quaternions as an example. We then move on to commutative rings, Freshman's Dream, fields, domains, principal ideal domains, Euclidean domains and unique factorization domains. The Fermat two-square theorem (every prime number leaving a remainder of 1 when divided by 4 can be written as a sum of two unique squares (e. g. $13 = 3^2 + 2^2$)) is a prime example in this chapter. You will see the infinitude of prime numbers leaving a remainder of 1 when divided by 4, further use of quadratic residues and an effective algorithm for computing the two squares in the two-square theorem.

Polynomials form a central topic. In Chapter 4 we treat polynomials in one variable. Here the highlights are: cyclotomic polynomials, a proof of the law of quadratic reciprocity using only basic properties of rings of polynomials, how to use floating point arithmetic to compute the order of specific elements in a well known cyclic group, the ElGamal cryptosystem, the infinitude of prime numbers congruent to 1 modulo a natural number > 1 and the existence and uniqueness of finite fields, along with algorithms for factoring polynomials over finite fields.

Preface

In Chapter 5 polynomials in several variables and Gröbner bases are treated. Gröbner bases form an exciting and relatively new branch of algebra. They are very concrete and computational. The distance from understanding the abstract concepts involved to computing with them is small. They provide a framework for solving non-linear equations (used in most computer algebra systems) with applications in many areas inside and outside algebra. In Chapter 5 you will see term orders, the fundamental Dickson's lemma, the division algorithm for polynomials in several variables, the existence of Gröbner bases, Hilbert's basis theorem, Buchberger's S-criterion and algorithm, how to write $X^4 + Y^4$ as a polynomial in X + Y and XY (like writing $X^2 + Y^2$ as $(X + Y)^2 - 2XY$) using Gröbner bases and how to solve certain non-linear equations in several variables systematically.

A few exercises are marked **HOF**. This indicates that they are "hall of fame" exercises, far beyond what is required in an introductory abstract algebra course. They usually call for an extraordinary amount of ingenuity. A student capable of solving one of these deserves to be inducted into the hall of fame of creative problem solvers. A hall of fame museum can be suitably maintained using a course home page.

Suggestions for teaching a one-semester course

The book contains too much material for a one-semester course in introductory abstract algebra. So, a selection of material must be made. A possible procedure would be to leave out factoring algorithms from Chapter 1, quadratic reciprocity from Chapters 1 and 4 and the Sylow theorems from Chapter 2. This plan would give a one-semester course ending with Gröbner bases; it would cover the usual topics in an introductory course.

Leaving out Gröbner bases completely, Chapters 1 through 4 would form an in-depth traditional introductory abstract algebra course with many examples.

xiii

Acknowledgements

I wish to thank all the students of Algebra 1 at the University of Aarhus during the past four years for carefully listening, asking questions, looking puzzled at the right (or wrong) times and for inspiring me to change my exposition several times. I wish in particular to thank R. Villemoes for many valuable comments and for a set of detailed T_EX-solutions to the exercises (available through Cambridge University Press).

Many people influenced this book either by discussions and comments or by patiently answering my numerous questions: T. B. Andersen, H. H. Andersen, M. Bökstedt, J. Brandt, A. Buch, A. L. Christophersen, I. Damgaard, R. Faber Larsen, P. de Place Friis, S. Galatius Smith, W. J. Haboush, J. P. Hansen, G. Hellmund, C. U. Jensen, T. H. Lynderup, T. Høholdt, T. Laframboise, M. Skov Madsen, K. Nielsen, U. Raben Pedersen, M. S. Risager, A. Skovborg, H. G. Spalk, J. Tornehave, H. Vosegaard and A. Venkov.

I am particularly indebted to J. C. Jantzen for reading carefully earlier versions of my Algebra 1 notes. His comments were (as always) extremely relevant and helpful. J. F. Thomsen also read earlier versions of the notes and made detailed comments on the 15-puzzle, which led to substantial improvements. H. A. Salomonsen pointed out a substantial simplification that moved the proof of quadratic reciprocity from the context of finite fields to the more student-friendly environment of the basic theory of polynomials. An anonymous referee from the US made meticulous comments and suggestions which greatly facilitated the process of turning my incomplete notes into the present book. J. Walthoe at Cambridge University Press has been extremely helpful making several insightful suggestions.

This book is for Helle and William. They have unselfishly fueled my writing with their love.