CLASSICAL MECHANICS

Gregory’s *Classical Mechanics* is a major new textbook for undergraduates in mathematics and physics. It is a thorough, self-contained and highly readable account of a subject many students find difficult. The author’s clear and systematic style promotes a good understanding of the subject: each concept is motivated and illustrated by worked examples, while problem sets provide plenty of practice for understanding and technique. Computer assisted problems, some suitable for projects, are also included. The book is structured to make learning the subject easy; there is a natural progression from core topics to more advanced ones and hard topics are treated with particular care. A theme of the book is the importance of conservation principles. These appear first in vectorial mechanics where they are proved and applied to problem solving. They reappear in analytical mechanics, where they are shown to be related to symmetries of the Lagrangian, culminating in Noether’s theorem.

- Suitable for a wide range of undergraduate mechanics courses given in mathematics and physics departments: no prior knowledge of the subject is assumed
- Profusely illustrated and thoroughly class-tested, with a clear direct style that makes the subject easy to understand: all concepts are motivated and illustrated by the many worked examples included
- Good, accurately-set problems, with answers in the book: computer assisted problems and projects are also provided. Model solutions for problems available to teachers from www.cambridge.org/Gregory

The author

Douglas Gregory is Professor of Mathematics at the University of Manchester. He is a researcher of international standing in the field of elasticity, and has held visiting positions at New York University, the University of British Columbia, and the University of Washington. He is highly regarded as a teacher of applied mathematics: this, his first book, is the product of many years of teaching experience.
Bloody instructions, which, being taught,
Return to plague th' inventor.

SHAKESPEARE, Macbeth, act I, sc. 7
CLASSICAL MECHANICS

AN UNDERGRADUATE TEXT

R. DOUGLAS GREGORY

University of Manchester
Contents

Preface ... xi

1 **Newtonian mechanics of a single particle** 1

 1 **The algebra and calculus of vectors** 3
 1.1 Vectors and vector quantities 3
 1.2 Linear operations: $a + b$ and λa 5
 1.3 The scalar product $a \cdot b$ 10
 1.4 The vector product $a \times b$ 13
 1.5 Triple products ... 15
 1.6 Vector functions of a scalar variable 16
 1.7 Tangent and normal vectors to a curve 18
 Problems .. 22

2 **Velocity, acceleration and scalar angular velocity** 25

 2.1 Straight line motion of a particle 25
 2.2 General motion of a particle 28
 2.3 Particle motion in polar co-ordinates 32
 2.4 Rigid body rotating about a fixed axis 36
 2.5 Rigid body in planar motion 38
 2.6 Reference frames in relative motion 40
 Problems .. 43

3 **Newton’s laws of motion and the law of gravitation** 50

 3.1 Newton’s laws of motion 50
 3.2 Inertial frames and the law of inertia 52
 3.3 The law of mutual interaction; mass and force 54
 3.4 The law of multiple interactions 57
 3.5 Centre of mass ... 58
Contents

3.6 The law of gravitation .. 59
3.7 Gravitation by a distribution of mass 60
3.8 The principle of equivalence and g 67

Problems

4 Problems in particle dynamics 73
4.1 Rectilinear motion in a force field 74
4.2 Constrained rectilinear motion 78
4.3 Motion through a resisting medium 82
4.4 Projectiles .. 88
4.5 Circular motion .. 92

Problems

5 Linear oscillations .. 105
5.1 Body on a spring ... 105
5.2 Classical simple harmonic motion 107
5.3 Damped simple harmonic motion 109
5.4 Driven (forced) motion 112
5.5 A simple seismograph ... 120
5.6 Coupled oscillations and normal modes 121

Problems

6 Energy conservation ... 131
6.1 The energy principle ... 131
6.2 Energy conservation in rectilinear motion 133
6.3 General features of rectilinear motion 136
6.4 Energy conservation in a conservative field 140
6.5 Energy conservation in constrained motion 145

Problems

7 Orbits in a central field .. 155
7.1 The one-body problem – Newton’s equations 157
7.2 General nature of orbital motion 159
7.3 The path equation .. 164
7.4 Nearly circular orbits .. 167
7.5 The attractive inverse square field 170
7.6 Space travel – Hohmann transfer orbits 177
7.7 The repulsive inverse square field 179
7.8 Rutherford scattering .. 179

Appendix A

Appendix A The geometry of conics 184

Appendix B

Appendix B The Hohmann orbit is optimal 186

Problems

© in this web service Cambridge University Press

www.cambridge.org
Contents

8 Non-linear oscillations and phase space 194

8.1 Periodic non-linear oscillations 194
8.2 The phase plane \((x_1, x_2)\)-plane) 199
8.3 The phase plane in dynamics \((x, v)\)-plane) 202
8.4 Poincaré-Bendixson theorem: limit cycles 205
8.5 Driven non-linear oscillations 211

Problems .. 214

2 Multi-particle systems 219

9 The energy principle 221

9.1 Configurations and degrees of freedom 221
9.2 The energy principle for a system 223
9.3 Energy conservation for a system 225
9.4 Kinetic energy of a rigid body 233

Problems .. 241

10 The linear momentum principle 245

10.1 Linear momentum ... 245
10.2 The linear momentum principle 246
10.3 Motion of the centre of mass 247
10.4 Conservation of linear momentum 250
10.5 Rocket motion ... 251
10.6 Collision theory .. 255
10.7 Collision processes in the zero-momentum frame 259
10.8 The two-body problem 264
10.9 Two-body scattering 269
10.10 Integrable mechanical systems 273

Appendix A Modelling bodies by particles 277

Problems .. 279

11 The angular momentum principle 286

11.1 The moment of a force 286
11.2 Angular momentum 289
11.3 Angular momentum of a rigid body 292
11.4 The angular momentum principle 294
11.5 Conservation of angular momentum 298
11.6 Planar rigid body motion 306
11.7 Rigid body statics in three dimensions 313

Problems .. 317
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Analytical mechanics</td>
<td>321</td>
</tr>
<tr>
<td>12</td>
<td>Lagrange’s equations and conservation principles</td>
<td>323</td>
</tr>
<tr>
<td>12.1</td>
<td>Constraints and constraint forces</td>
<td>323</td>
</tr>
<tr>
<td>12.2</td>
<td>Generalised coordinates</td>
<td>325</td>
</tr>
<tr>
<td>12.3</td>
<td>Configuration space (q–space)</td>
<td>330</td>
</tr>
<tr>
<td>12.4</td>
<td>D’Alembert’s principle</td>
<td>333</td>
</tr>
<tr>
<td>12.5</td>
<td>Lagrange’s equations</td>
<td>335</td>
</tr>
<tr>
<td>12.6</td>
<td>Systems with moving constraints</td>
<td>344</td>
</tr>
<tr>
<td>12.7</td>
<td>The Lagrangian</td>
<td>348</td>
</tr>
<tr>
<td>12.8</td>
<td>The energy function h</td>
<td>351</td>
</tr>
<tr>
<td>12.9</td>
<td>Generalised momenta</td>
<td>354</td>
</tr>
<tr>
<td>12.10</td>
<td>Symmetry and conservation principles</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>361</td>
</tr>
<tr>
<td>13</td>
<td>The calculus of variations and Hamilton’s principle</td>
<td>366</td>
</tr>
<tr>
<td>13.1</td>
<td>Some typical minimisation problems</td>
<td>367</td>
</tr>
<tr>
<td>13.2</td>
<td>The Euler–Lagrange equation</td>
<td>369</td>
</tr>
<tr>
<td>13.3</td>
<td>Variational principles</td>
<td>380</td>
</tr>
<tr>
<td>13.4</td>
<td>Hamilton’s principle</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>388</td>
</tr>
<tr>
<td>14</td>
<td>Hamilton’s equations and phase space</td>
<td>393</td>
</tr>
<tr>
<td>14.1</td>
<td>Systems of first order ODEs</td>
<td>393</td>
</tr>
<tr>
<td>14.2</td>
<td>Legendre transforms</td>
<td>396</td>
</tr>
<tr>
<td>14.3</td>
<td>Hamilton’s equations</td>
<td>400</td>
</tr>
<tr>
<td>14.4</td>
<td>Hamiltonian phase space (q, p)–space</td>
<td>406</td>
</tr>
<tr>
<td>14.5</td>
<td>Liouville’s theorem and recurrence</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>413</td>
</tr>
<tr>
<td>4</td>
<td>Further topics</td>
<td>419</td>
</tr>
<tr>
<td>15</td>
<td>The general theory of small oscillations</td>
<td>421</td>
</tr>
<tr>
<td>15.1</td>
<td>Stable equilibrium and small oscillations</td>
<td>421</td>
</tr>
<tr>
<td>15.2</td>
<td>The approximate forms of T and V</td>
<td>425</td>
</tr>
<tr>
<td>15.3</td>
<td>The general theory of normal modes</td>
<td>429</td>
</tr>
<tr>
<td>15.4</td>
<td>Existence theory for normal modes</td>
<td>433</td>
</tr>
<tr>
<td>15.5</td>
<td>Some typical normal mode problems</td>
<td>436</td>
</tr>
<tr>
<td>15.6</td>
<td>Orthogonality of normal modes</td>
<td>444</td>
</tr>
<tr>
<td>15.7</td>
<td>General small oscillations</td>
<td>447</td>
</tr>
<tr>
<td>15.8</td>
<td>Normal coordinates</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>452</td>
</tr>
</tbody>
</table>
Contents

16 Vector angular velocity and rigid body kinematics 457
 16.1 Rotation about a fixed axis 457
 16.2 General rigid body kinematics 460
 Problems 467

17 Rotating reference frames 469
 17.1 Transformation formulae 469
 17.2 Particle dynamics in a non-inertial frame 476
 17.3 Motion relative to the Earth 478
 17.4 Multi-particle system in a non-inertial frame 485
 Problems 489

18 Tensor algebra and the inertia tensor 492
 18.1 Orthogonal transformations 493
 18.2 Rotated and reflected coordinate systems 495
 18.3 Scalars, vectors and tensors 499
 18.4 Tensor algebra 505
 18.5 The inertia tensor 508
 18.6 Principal axes of a symmetric tensor 514
 18.7 Dynamical symmetry 516
 Problems 519

19 Problems in rigid body dynamics 522
 19.1 Equations of rigid body dynamics 522
 19.2 Motion of ‘spheres’ 524
 19.3 The snooker ball 525
 19.4 Free motion of bodies with axial symmetry 527
 19.5 The spinning top 531
 19.6 Lagrangian dynamics of the top 535
 19.7 The gyrocompass 541
 19.8 Euler’s equations 544
 19.9 Free motion of an unsymmetrical body 549
 19.10 The rolling wheel 556
 Problems 560

Appendix Centres of mass and moments of inertia 564
 A.1 Centre of mass 564
 A.2 Moment of inertia 567
 A.3 Parallel and perpendicular axes 571

Answers to the problems 576
 Bibliography 589
 Index .. 591
Preface

Information for readers

What is this book about and who is it for?
This is a book on classical mechanics for university undergraduates. It aims to cover all the material normally taught in classical mechanics courses from Newton’s laws to Hamilton’s equations. If you are attending such a course, you will be unlucky not to find the course material in this book.

What prerequisites are needed to read this book?
It is expected that the reader will have attended an elementary calculus course and an elementary course on differential equations (ODEs). A previous course in mechanics is helpful but not essential. This book is self-contained in the sense that it starts from the beginning and assumes no prior knowledge of mechanics. However, in a general text such as this, the early material is presented at a brisker pace than in books that are specifically aimed at the beginner.

What is the style of the book?
The book is written in a crisp, no nonsense style; in short, there is no waffle! The object is to get the reader to the important points as quickly and easily as possible, consistent with good understanding.

Are there plenty of examples with full solutions?
Yes there are. Every new concept and technique is reinforced by fully worked examples. The author’s advice is that the reader should think how he or she would do each worked example before reading the solution; much more will be learned this way!

Are there plenty of problems with answers?
Yes there are. At the end of each chapter there is a large collection of problems. For convenience, these are arranged by topic and trickier problems are marked with a star. Answers are provided to all of the problems. A feature of the book is the inclusion of computer assisted problems. These are interesting physical problems that cannot be solved analytically, but can be solved easily with computer assistance.

Where can I find more information?
More information about this book can be found on the book’s homepage

http://www.cambridge.org/Gregory

All feedback from readers is welcomed. Please e-mail your comments, corrections and good ideas by clicking on the comments button on the book’s homepage.
Information for lecturers

Scope of the book and prerequisites
This book aims to cover all the material normally taught in undergraduate mechanics courses from Newton’s laws to Hamilton’s equations. It assumes that the students have attended an elementary calculus course and an elementary course on ODEs, but no more. The book is self contained and, in principle, it is not essential that the students should have studied mechanics before. However, their lives will be made easier if they have!

Inspection copy and Solutions Manual
Any lecturer who is giving an undergraduate course on classical mechanics can request an inspection copy of this book. Simply go to the book’s homepage

http://www.cambridge.org/Gregory

and follow the links.

Lecturers who adopt this book for their course may receive the Solutions Manual. This has a complete set of detailed solutions to the problems at the end of the chapters. To obtain the Solutions Manual, just send an e-mail giving your name, affiliation, and details of the course to solutions@cambridge.org

Feedback
All feedback from instructors and lecturers is welcomed. Please e-mail your comments via the link on the book’s homepage

Acknowledgements
I am very grateful to many friends and colleagues for their helpful comments and suggestions while this book was in preparation. But most of all I thank my wife Win for her unstinting support and encouragement, without which the book could not have been written at all.