COMPACT STELLAR X-RAY SOURCES

X-ray astronomy provides the main window onto astrophysical compact objects such as black holes, neutron stars and white dwarfs. In the past ten years new observational opportunities have led to an explosion of knowledge in this field. In sixteen chapters, written by leading experts, this book provides a comprehensive overview of the observations and astrophysics of X-ray emitting stellar-mass compact objects.

Topics discussed in depth include the various phenomena exhibited by compact objects in binary systems such as X-ray bursts, relativistic jets and quasi-periodic oscillations, as well as gamma-ray burst sources, super-soft and ultra-luminous sources, isolated neutron stars, magnetars and the enigmatic fast transients. The populations of X-ray sources in globular clusters and in external galaxies are discussed in detail. This is an invaluable reference for both graduate students and active researchers.

Walter Lewin is Professor of Physics at MIT. A native of The Netherlands, Professor Lewin received his Ph.D. in Physics from the University of Delft (1965). In 1966, he went to MIT as a postdoctoral associate in the Department of Physics and was invited to join the faculty as Assistant Professor later that same year. He was promoted to Associate Professor of Physics in 1968 and to full Professor in 1974. Professor Lewin’s honors and awards include the NASA Award for Exceptional Scientific Achievement (1978), twice recipient of the Alexander von Humboldt Award (1984 and 1991), a Guggenheim Fellowship (1984), MIT’s Science Council Prize for Excellence in Undergraduate Teaching (1984), the W. Buchner Teaching Prize of the MIT Department of Physics (1988) and the Everett Moore Baker Memorial award for excellence in undergraduate teaching (2003). In 1997, he was the recipient of a NASA Group Achievement Award for the Discovery of the Bursting Pulsar. He is a corresponding member of the Royal Netherlands Academy of Arts and Sciences (elected 1993) and Fellow of the American Physical Society.

Michiel van der Klis is Professor of Astronomy at the Astronomical Institute Anton Pannekoek of the University of Amsterdam and winner of the NWO Spinoza Prize (2004) for his pioneering research into X-ray radiation from binary stars. He gained his Ph.D. in 1983 from the University of Amsterdam for his observations of X-ray stars. Following this, he held various positions, including a period at the European Space Research and Technology Centre in Noordwijk. In 1989, he returned to the University of Amsterdam as a senior lecturer and he became a professor there in 1993. In 1987, he received the Bruno Rossi Prize, the highest international award in high-energy astrophysics and in 1990 the Zeldovitch Award for Astrophysics from Space of the International Committee of Space Research (COSPAR). Since 2002 he has been a member of the Royal Academy of Arts and Sciences.
Cambridge Astrophysics Series

Series editors
Andrew King, Douglas Lin, Stephen Maran, Jim Pringle and Martin Ward

Titles available in this series

7. Spectroscopy of Astrophysical Plasmas
 edited by A. Dalgarno and D. Layzer

10. Quasar Astronomy
 by D. W. Weedman

17. Molecular Collisions in the Interstellar Medium
 by D. Flower

18. Plasma Loops in the Solar Corona
 by R. J. Bray, L. E. Cram, C. J. Durrant and R. E. Loughhead

19. Beams and Jets in Astrophysics
 edited by P. A. Hughes

22. Gamma-ray Astronomy 2nd Edition
 by P. V. Ramana Murthy and A. W. Wolfendale

23. The Solar Transition Region
 by J. T. Mariska

24. Solar and Stellar Activity Cycles
 by Peter R. Wilson

25. 3K: The Cosmic Microwave Background Radiation
 by R. B. Partridge

26. X-ray Binaries
 by Walter H. G. Lewin, Jan van Paradijs and Edward P. J. van den Heuvel

27. RR Lyrae Stars
 by Horace A. Smith

28. Cataclysmic Variable Stars
 by Brian Warner

29. The Magellanic Clouds
 by Bengt E. Westerlund

30. Globular Cluster Systems
 by Keith M. Ashman and Stephen E. Zepf

32. Accretion Processes in Star Formation
 by Lee W. Hartmann

33. The Origin and Evolution of Planetary Nebulae
 by Sun Kwok

34. Solar and Stellar Magnetic Activity
 by Carlos J. Schrijver and Cornelis Zwaan

35. The Galaxies of the Local Group
 by Sidney van den Bergh

36. Stellar Rotation
 by Jean-Louis Tassoul

37. Extreme Ultraviolet Astronomy
 by Martin A. Barstow and Jay B. Holberg

38. Pulsar Astronomy 3rd Edition
 by Andrew G. Lyne and F. Graham-Smith

39. Compact Stellar X-ray Sources
 edited by Walter Lewin and Michiel van der Klis
Contents

List of contributors xi
Preface xv

1 Accreting neutron stars and black holes: a decade of discoveries 1
DIIMITRIOIIS PSALITIS
1.1 Introduction 1
1.2 Pulsating neutron stars 5
1.3 Non-pulsing neutron stars and black holes 14
1.4 Accretion-powered X-ray sources in the twenty-first century 33
References 34

2 Rapid X-ray variability 39
M. VAN DER KLIIS
2.1 Introduction 39
2.2 Timing 40
2.3 Spectroscopy 43
2.4 Source types 45
2.5 Source states 47
2.6 Variability components 55
2.7 Frequency correlations 60
2.8 Orbital and epicyclic frequency models 64
2.9 Low-magnetic-field neutron stars 74
2.10 Black holes 88
2.11 High-magnetic-field neutron stars 92
2.12 Flow-instability and non-flow models 93
2.13 Final remarks 97
References 98

3 New views of thermonuclear bursts 113
TOD STOPHMAYER AND LARS BILDSTEN
3.1 Introduction 113
3.2 The physics of hydrogen/helium burning 115
3.3 Observational overview of bursts 120
3.4 Millisecond variability during X-ray bursts 128
3.5 Superbursts: a new burning regime 143
References 144
vi Contents

3.6 Summary and future prospects 151
References 152

4 Black hole binaries 157
JEFFREY E. McCLINTOCK AND RONALD A. REMILLARD
4.1 Introduction 157
4.2 X-ray lightcurves, spectra and luminosity data 169
4.3 Emission states of black hole binaries 179
4.4 Fast temporal variations: QPOs and broad power peaks 198
4.5 Energetics and key variables determining BHB radiation 203
4.6 Concluding remarks 205
References 206

5 Optical, ultraviolet and infrared observations of X-ray binaries 215
P. A. CHARLES AND M. J. COE
5.1 Introduction 215
5.2 High-mass X-ray binaries 216
5.3 Low-mass X-ray binaries 230
References 259

6 Fast X-ray transients and X-ray flashes 267
JOHN HEISE AND JEAN IN ’T ZAND
6.1 Introduction 267
6.2 The early detections of fast X-ray transients 267
6.3 Two types of fast X-ray transients 268
6.4 Stellar origin of galactic fast X-ray transients 271
6.5 X-ray flashes versus gamma-ray bursts 271
6.6 Extra-galactic origin of X-ray flashes 273
6.7 Oddball FXTs 275
6.8 Discussion 275
6.9 Conclusions 276
References 277

7 Isolated neutron stars 279
VICTORIA M. KASPI, MALLORY S. E. ROBERTS AND ALICE K. HARDING
7.1 Introduction 279
7.2 Magnetospheric emission 281
7.3 Thermal emission from cooling neutron stars 295
7.4 Isolated neutron stars 307
7.5 Central compact objects 312
7.6 Pulsar wind nebulae 314
7.7 X-rays from rotation-powered pulsars in binary systems 331
References 332
(The color plates will be found between pages 340 and 341)
Contents

8 Globular cluster X-ray sources 341

FRANK VERBUNT AND WALTER H. G. LEWIN
8.1 Introduction: some historical remarks 341
8.2 The luminous globular cluster X-ray sources in the Galaxy 346
8.3 The globular cluster sources outside the Galaxy 350
8.4 Low-luminosity X-ray sources 359
8.5 Some remarks on evolution and formation 368
References 374

9 Jets from X-ray binaries 381

ROB FENDER
9.1 History 381
9.2 Physical properties of the jets 382
9.3 Ubiquity 392
9.4 Disk–jet coupling in black hole binaries 393
9.5 Disk–jet coupling in neutron star binaries 402
9.6 High-energy/particle emission from jets 406
9.7 Interactions 409
9.8 Relation to other jet sources 411
9.9 On the origin of jets 412
9.10 Conclusions 415
References 415

10 X-rays from cataclysmic variables 421

ERIK KUULKERS, ANDREW NORTON, AXEL SCHWOPE AND BRIAN WARNER
10.1 Introduction 421
10.2 X-ray emission from non-magnetic CVs 423
10.3 X-ray emission from polars 434
10.4 X-ray emission from intermediate polars 439
10.5 Rapid oscillations 443
10.6 X-ray emission from novae 446
10.7 X-ray emission from symbiotic binaries 452
10.8 Concluding remarks 453
References 454

11 Super-soft sources 461

P. KAHABKA AND E. P. J. VAN DEN HEUVEL
11.1 Introduction 461
11.2 Nuclear burning 462
11.3 Timescales and variability 462
11.4 Spectra of SSS 466
11.5 Super-soft novae 466
11.6 The accretion disk, outflows and jets 468
11.7 The donor star 469
11.8 Circumbinary material 469
viii Contents

11.9 Evolution: relation to Type Ia supernovae 469
11.10 SSS in nearby galaxies 470
11.11 Summary and conclusions 471
References 472

12 Compact stellar X-ray sources in normal galaxies 475
G. FABBIANO AND N. E. WHITE
12.1 Introduction 475
12.2 X-ray binary populations in spiral galaxies 475
12.3 Ultra-luminous X-ray sources 486
12.4 XRBs in elliptical and S0 galaxies 492
12.5 Multi-wavelength correlations 499
12.6 The X-ray evolution of galaxies 500
12.7 Conclusions 502
References 503

13 Accretion in compact binaries 507
A. R. KING
13.1 Introduction 507
13.2 Accretion disk theory 507
13.3 Dwarf novae: the nature of the outbursts 513
13.4 Dwarf novae: the occurrence of the outbursts 514
13.5 Soft X-ray transients: the nature of the outbursts 517
13.6 Soft X-ray transients: the occurrence of the outbursts 523
13.7 Quiescent transients and black-hole horizons 534
13.8 Ultraluminous X-ray sources 535
13.9 Conclusions 544
References 544

14 Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates 547
P. M. WOODS AND C. THOMPSON
14.1 Introduction 547
14.2 Burst observations 550
14.3 Persistent X-ray emission 559
14.4 Timing behavior 563
14.5 Burst-induced variability 565
14.6 Locations, SNR associations, and counterparts 571
14.7 Magnetar model 575
14.8 Future directions 580
References 583

15 Cosmic gamma-ray bursts, their afterglows, and their host galaxies 587
K. HURLEY, R. SARI AND S. G. DJORGOVSKI
15.1 Introduction 587
15.2 The big picture 588
Contents

15.3 Some technical details 589
15.4 The bursting phase 589
15.5 GRB theory: the generic picture 593
15.6 The afterglow: theory 596
15.7 The afterglow revolution 600
15.8 Collimated outflow (jets): theory 602
15.9 Observational evidence for outflow (jets) 605
15.10 Polarization: a promising tool 607
15.11 The reverse shock emission: theory and observations 608
15.12 GRB host galaxies and redshifts 610
15.13 GRBs and cosmology 614
References 618

16 Formation and evolution of compact stellar X-ray sources 623
T. M. TAURIS AND E. P. J. VAN DEN HEUVEL
16.1 Introduction and brief historical review 623
16.2 Compact binaries and their observational properties 625
16.3 Binary stellar evolution and final compact objects 630
16.4 Roche-lobe overflow: cases A, B and C 639
16.5 Common envelope evolution 646
16.6 (Asymmetric) supernova explosions in close binaries 648
16.7 Evolution of LMXBs: formation of millisecond pulsars 650
16.8 Evolution of HMXBs 655
16.9 Spin and B-field evolution of accreting neutron stars 659
References 661

Author index 667
Subject index 681
Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lars Bildsten</td>
<td>Kavli Institute for Theoretical Physics, University of California, Santa Barbara, USA</td>
</tr>
<tr>
<td>P. A. Charles</td>
<td>School of Physics & Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK</td>
</tr>
<tr>
<td>M. J. Coe</td>
<td>School of Physics & Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK</td>
</tr>
<tr>
<td>S. G. Djorgovski</td>
<td>Palomar Observatory, California Institute of Technology, Pasadena, CA, USA</td>
</tr>
<tr>
<td>G. Fabbiano</td>
<td>Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA</td>
</tr>
<tr>
<td>Rob Fender</td>
<td>Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, Netherlands</td>
</tr>
<tr>
<td>Alice K. Harding</td>
<td>Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA</td>
</tr>
<tr>
<td>John Heise</td>
<td>Space Research Organization Netherlands & Astronomical Institute, Universiteit Utrecht, Sorbonnelaan 2, 3584 CA Utrecht, Netherlands</td>
</tr>
<tr>
<td>E. P. J. van den Heuvel</td>
<td>Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, Netherlands</td>
</tr>
<tr>
<td>K. Hurley</td>
<td>Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450, USA</td>
</tr>
</tbody>
</table>
List of contributors

Jean in ’t Zand
Space Research Organization Netherlands &
Astronomical Institute, Universiteit Utrecht
Sorbonnelaan 2
3584 CA Utrecht
Netherlands

P. Kahabka
Max-Planck-Institut für extraterrestrische
Physik
Giessenbachstrasse
85741 Garching
Germany

Victoria M. Kaspi
Physics Department, McGill University
Rutherford Physics Building
3600 University Street
Montreal, QC H3A 2T8
Canada

A. R. King
Theoretical Astrophysics Group
University of Leicester
Leicester LE1 7RH
UK

M. van der Klis
Astronomical Institute Anton Pannekoek
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam
Netherlands

Erik Kuulkers
ISOC, ESAC/ESA
Apartado 50727
28080 Madrid
Spain

Walter H. G. Lewin
Physics Department
Kavli Institute for Astrophysics and
Space Research
Massachusetts Institute of Technology
Cambridge, MA 02139
USA

Jeffrey E. McClintock
Harvard-Smithsonian Center for
Astrophysics
60 Garden St.
Cambridge, MA 02138
USA

Andrew Norton
Department of Physics & Astronomy
The Open University
Walton Hall
Milton Keynes MK7 6AA
UK

Dimitrios Psaltis
Department of Physics
University of Arizona
Tucson, AZ 85721
USA

Ronald A. Remillard
Center for Space Research
Massachusetts Institute of Technology
Cambridge, MA 02139
USA

Mallory S. E. Roberts
Physics Department, McGill University
Rutherford Physics Building
3600 University Street
Montreal, QC H3A 2T8
Canada

R. Sari
Department of Theoretical Astrophysics
California Institute of Technology
Pasadena, CA
USA

Axel Schwope
Astrophysikalisches Institut Potsdam
An der Sternwarte 16
11482 Potsdam
Germany
List of contributors

Tod Strohmayer
Laboratory for High Energy Astrophysics
NASA Goddard Space Flight Center
Greenbelt, MD 20771
USA

T. M. Tauris
Astronomical Observatory
Niels Bohr Institute
Copenhagen University
Denmark

C. Thompson
Canadian Institute for Theoretical Astrophysics
60 George St.
Toronto, ON
Canada

Frank Verbunt
Astronomical Institute
Universiteit Utrecht
Postbus 80125
3508 TA Utrecht
Netherlands

Brian Warner
Department of Astronomy
University of Cape Town
Rondebosch 7700
South Africa

N. E. White
NASA Goddard Space Flight Center
Code 660
Greenbelt, MD 20771
USA

P. M. Woods
Universities Space Research Association
National Space Science and Technology Center
Huntsville, AL
USA
Preface

Extra-solar X-ray astronomy began with the historical paper in Physical Review Letters by Giacconi, Gursky, Paolini, and Rossi (1962). Now, more than four decades later, X-ray astronomy is central to many aspects of astronomy. In 2002, Riccardo Giacconi was awarded the Nobel Prize in Physics “for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources”. In the decade since the publication of X-ray Binaries – the predecessor of the present book – the study of compact stellar X-ray sources has received enormous impetus from observations with the BeppoSAX, Rossi X-ray Timing Explorer (RXTE), Chandra, and XMM-Newton X-ray observatories. In addition, many exciting new results on these X-ray sources have also been produced in the radio, infrared, optical and ultraviolet bands. Highlights include the discovery in low-mass X-ray binaries of millisecond X-ray pulsations, confirming the connection with the millisecond radio pulsars. Millisecond and sub-millisecond quasi-periodic oscillations (QPO) were discovered that are thought to provide a direct view of regions of strong-field gravity near neutron stars and black holes. The discovery of X-ray, optical and radio afterglows of gamma-ray bursts (GRB) firmly established their long-suspected cosmological distances. Super-luminal motion of radio jets was discovered in accreting black-hole binaries. Dozens of ultra-luminous X-ray sources (ULX) have been detected in many galaxies. Their origin is still not clear; some may be accreting intermediate-mass (i.e., of order \(10^5 \text{ M}_\odot\)) black holes (IMBH). Great progress was also made in our understanding of the soft gamma-ray repeaters (SGR) and anomalous X-ray pulsars (AXP). We now know that they are “magnetars”, neutron stars with magnetic dipole fields of enormous strength \((10^{14} - 10^{15} \text{ G})\). This book is a comprehensive and up-to-date survey on compact stellar X-ray sources written by leading experts in the field. It covers in detail the recent developments in X-ray and multi-wavelength observations, and the theory behind them.