The Physics and Chemistry of the Interstellar Medium

This work provides a comprehensive overview of our current theoretical and observational understanding of the interstellar medium of galaxies. With emphasis on the microscopic physical and chemical processes in space, and their influence on the macroscopic structure of the interstellar medium of galaxies, the book includes the latest developments in this area of molecular astrophysics. The various heating, cooling, and chemical processes relevant for the rarefied gas and submicron-sized dust grains that constitute the interstellar medium are discussed in detail. This provides a firm foundation for an in-depth understanding of the ionized, neutral atomic, and molecular phases of the interstellar medium. The physical and chemical properties of large polycyclic aromatic hydrocarbon molecules and their role in the interstellar medium are highlighted, and the physics and chemistry of warm and dense photodissociation regions are discussed. This is an invaluable reference source for advanced undergraduate and graduate students and research scientists.

ALEXANDER TIELENS is a professor of astrophysics at the Kapteyn Astronomical Institute in the Netherlands, and a senior scientist with the Dutch space agency, SRON. Prior to this, he has worked as an assistant researcher in the Astronomy Department of the University of California, Berkeley, and as a senior scientist at NASA Ames Research Center, California. He has published extensively on various aspects of the physics and chemistry of the interstellar medium. Cambridge University Press 0521826349 - The Physics and Chemistry of the Interstellar Medium A. G. G. M. Tielens Frontmatter <u>More information</u>

THE PHYSICS AND CHEMISTRY OF THE INTERSTELLAR MEDIUM

A.G.G.M. TIELENS Kapteyn Astronomical Institute

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK

> > www.cambridge.org

Information on this title: www.cambridge.org/9780521826349

© A.G.G.M. Tielens 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this book is available from the British Library

ISBN-13 978-0-521-82634-9 hardback ISBN-10 0-521-82634-9 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pr	eface		<i>page</i> ix
Li	st of c	onstants	xi
Li	st of c	onversion factors	xii
1	The	galactic ecosystem	1
	1.1	Interstellar objects	2
	1.2	Components of the interstellar medium	6
	1.3	Energy sources	12
	1.4	The Milky Way	18
	1.5	The mass budget of the ISM	20
	1.6	The lifecycle of the Galaxy	22
	1.7	Physics and chemistry of the ISM	22
	1.8	Further reading	23
2	Gas	cooling	25
	2.1	Spectroscopy	25
	2.2	Cooling rate	45
	2.3	Two-level system	46
	2.4	Gas cooling in ionized regions	53
	2.5	Gas cooling in neutral atomic regions	54
	2.6	Cooling law	58
	2.7	Further reading	60
3	Gas	heating	63
	3.1	Overview	63
	3.2	Photo-ionization of atoms	64
	3.3	Photo-electric heating	66
	3.4	Photon heating by H ₂	71
	3.5	Dust-gas heating	74
	3.6	Cosmic-ray heating	75

vi	<i>Contents</i>	
	 3.7 X-ray heating 3.8 Turbulent heating 3.9 Heating due to ambipolar diffusion 3.10 Gravitational heating 3.11 The heating of the interstellar medium 3.12 Further reading 	76 77 79 80 80 83
4	 Chemical processes 4.1 Gas-phase chemical reactions 4.2 Grain-surface chemistry 4.3 Further reading 	85 85 101 114
5	Interstellar dust5.1Introduction5.2Physical processes5.3Observations5.4The sizes of interstellar grains5.5The composition of interstellar dust5.6Further reading	117 117 118 145 157 161 169
6	 Interstellar polycyclic aromatic hydrocarbon molecule 6.1 Introduction 6.2 IR emission by PAH molecules 6.3 PAH charge 6.4 Photochemistry of PAHs 6.5 Other large molecules 6.6 Infrared observations 6.7 The IR characteristics of PAHs 6.8 Further reading 	25 173 173 175 190 198 209 212 213 224
7		228 228 228 246 251 256 263
8	 The phases of the ISM 8.1 Introduction 8.2 Physical processes in atomic gas 8.3 The CNM and WNM phases of the ISM 8.4 The warm ionized medium 	265 265 266 271 276

		Contents	vii
	8.5	The hot intercloud medium	277
	8.6	Summary: the violent ISM	285
	8.7	Chemistry of diffuse clouds	287
	8.8	The cosmic-ray ionization rate	299
	8.9	Observations	304
	8.10	Further reading	314
9	Photo	dissociation regions	317
	9.1	Introduction	317
	9.2	Ionization balance	319
	9.3	Energy balance	320
	9.4	Dust temperature	324
	9.5	Chemistry	326
	9.6	PDR structure	329
	9.7	Comparison with observations	331
	9.8	PDR diagnostic model diagrams	336
	9.9	The Orion Bar	339
	9.10	Physical conditions in PDRs	343
	9.11	Hydrogen IR fluorescence spectrum	344
	9.12	Further reading	345
10		cular clouds	348
	10.1	Introduction	348
	10.2	The degree of ionization	349
	10.3	Energy balance	351
	10.4	Gas-phase chemistry	353
	10.5	Grain-surface chemistry	364
	10.6	Gas–grain interaction	369
	10.7	Observations	377
	10.8	Further reading	392
11	Inters	tellar shocks	396
	11.1	Introduction	396
	11.2	J-shocks	397
	11.3	C-shocks	408
	11.4	Further reading	416
12	Dyna	mics of the interstellar medium	417
	12.1	Introduction	417
	12.2	The expansion of HII regions	418
	12.3	Supernova explosions	440
	12.4	Supernovae and the interstellar medium	447
	12.5	Interstellar winds	453

viii		Contents	
	12.6	The kinetic energy budget of the ISM	458
	12.7	Further reading	459
13	The 1	ifecycle of interstellar dust	461
	13.1	Introduction	461
	13.2	Shock destruction	463
	13.3	Dust lifetimes	468
	13.4	The grain size distribution	470
	13.5	Dust abundances and depletions	470
	13.6	Mass balance of interstellar dust	474
	13.7	Further reading	474
14	List c	of symbols	476
Inde	ex of co	ompounds	484
Inde	ex of p	olycyclic aromatic hydrocarbons	485
Inde	ex of m	olecules	487
Inde	ex of o	bjects	490
Inde	ex		491

Preface

When, upon my return to Holland, I started to teach an advanced course on the interstellar medium in 1998, I quickly realized that there was no suitable textbook available. There is, of course, the incomparable monograph by Spitzer, Physics of the Interstellar Medium (1978, New York: Wiley and Sons). But that book is quite challenging and not very suitable for a student course. Moreover, by now, it is very dated. Over the intervening years, our insights into the basic physics of the interstellar medium have much improved thanks, for example, to the opening up of the infrared and submillimeter windows. In particular, molecules, which we now know to be deeply intervoven into the fabric of the Universe, play only a little role in Spitzer's book. When Eddington made his famous remark, "Atoms are physics but molecules are chemistry," he merely expressed, on the one hand, the dream of a physicist of a simple universe, which can be caught in a single equation, and, on the other hand, the dread of a reality where solutions are never clean and simple. The latter is of course obvious to a chemist and it is now abundantly clear that Eddington's fear has turned into reality, even for astronomy. Present-day graduate students will require an intimate knowledge of molecular astrophysics in order to be active in the field of the interstellar medium of our own or other galaxies whether it is in the here and now or all the way back in the early Universe. This will become even more the case with the launch of the submillimeter space mission, Herschel, in 2007, when the Atacama Large Millimeter Array is finished in 2011, and with the launch of the James Webb Space Telescope in the next decade. Together these missions will push the frontier of the molecular Universe all the way back to the initial pollution of the Universe with the first metals by the first generation of luminous objects, which forever spoiled the physicist's Garden of Eden.

This book covers both the physics and the chemistry of the interstellar medium. Chapters on heating, cooling, and chemical processes provide the students with the necessary toolbox for the astrophysics and astrochemistry of the interstellar medium. This background is rounded off with chapters on the physics and Cambridge University Press 0521826349 - The Physics and Chemistry of the Interstellar Medium A. G. G. M. Tielens Frontmatter <u>More information</u>

х

Preface

chemistry of interstellar dust and large molecules. Once the students have mastered these subjects, they are well prepared for an in-depth discussion of classical topics of the interstellar medium: HII regions, the phases of the interstellar medium, shocks, and the dynamical interaction of HII regions, supernova remnants, and stellar winds with the ISM. The chemistry of the interstellar medium is covered in chapters on diffuse clouds, photodissociation regions, and molecular clouds. All together, this forms a comprehensive course, covering most current aspects of the interstellar medium, which will prepare students well for the future.

Over the years, this book grew from the course that I taught in Groningen. Indeed, in many ways, writing this book carried me through those dark Dutch days. Fortunately, I have many good friends who understand that, when the Sun sets in October not to appear again until May, it is a good time to leave Holland and visit other institutes. I owe a deep debt of gratitude to the Miller Institute and the Astronomy Department of the University of California in Berkeley and my hosts Imke de Pater and Chris McKee, to the Space Sciences Division of NASA Ames Research Center and my hosts David Hollenbach and Lou Allamandola, to the Institute for Geophysics and Planetary Physics of the Lawrence Livermore National Laboratory and my hosts Wil van Breugel and John Bradley, to the Centre d'Etudes Spatiale des Rayonnements in Toulouse and my host Emmanuel Caux, and to the Laboratoire d'Astrophysique de l'Observatoire de Grenoble and my host Cecilia Ceccarelli for their hospitality and for providing an environment conducive to great science. Most of the chapters of this book were conceived and written during these extended visits. Of course, much of this book reflects a lifetime spent in discovering the molecular Universe. I want to thank Harm Habing without whose human touch I would have left astronomy before even finishing the first stage of my journey. Also, I owe much to Lou Allamandola and David Hollenbach, with whom I have spent so many wonderful hours on the trail of discovery: not only for sharing their deep insights and understanding of physical and chemical processes of relevance to studies of the interstellar medium but, particularly, for their friendship. I am also deeply indebted to the many graduate students, who carried me through the many stages of this course, solved the many LATEX problems, and always succeeded in making the right figures, as well as for their careful proofreading of the manuscript. Most of all, their enthusiasm always managed to perk me up. In this regard, I specifically want to thank Adwin Boogert, Rense Boomsma, Jan Cami, Stephanie Cazaux, Sasha Hony, Jacquie Keane, Leticia Martín-Hernández, Chris Ormel, Els Peeters, and Henrik Spoon for their help. Finally, Marion understands like no other what it is to live away from what feels like home. Her encouragement to follow my dream and her support during these difficult years have made this possible. To my girls-Anneke, Saskia, and Elske-the only thing I can say is that, now, it is really done.

Constants

Symbol	Description SI cgs			egs	
		Value	Unit	Value	Unit
c	Speed of light	2.9979 (8)	m s ⁻¹	2.9979 (10)	cm ⁻¹ s ⁻¹
h	Planck's constant	6.6261(-34)	Js	6.6261(-27)	erg s
k	Boltzmann's constant	1.3807(-23)	J/K	1.3807(-16)	erg/K
$\sigma_{ m SB}$	Stefan–Boltzmann constant	5.6704 (-8)	$W m^{-2} K^{-4}$	5.6704 (-5)	erg s ⁻¹ cm ⁻² K ⁻⁴
G	Gravitational constant	6.674 (-11)	$N m^{-2} kg^{-2}$	6.674 (-8)	dyn cm ^{-2} g ^{-2}
N_{Δ}	Avogadro's constant	6.0221 (23)	mol^{-1}	6.0221 (23)	mol^{-1}
me	Electron rest mass	9.1094(-31)	kg	9.1094(-28)	g
$m_{\rm p}$	Proton rest mass	1.6726(-27)	kg	1.6726(-24)	-
$m_{\rm m}^{\rm P}$	Atomic mass unit	1.6605(-27)	e	1.6605(-24)	e
e	Electron charge	1.602 (-19)	•	4.803 (-10)	•
α	Fine-structure constant	7.2974 (-3)		7.2974 (-3)	

Physical constants

Values $a \times 10^b$ are given as a (b).

Symbol Description SI cgs Value Unit Value Unit AU Astronomical unit 1.496 (11) 1.496 (13) cm m Light year 9.463 9.463 (17) ly (15)m cm pc Parsec 3.086 (16) m 3.086 (18) cm pc^2 Square parsec 9.5234 (32) m² 9.5234 (36) cm^2 kpc^2 Square kiloparsec 9.5234 (38) m² 9.5234 (42) cm² Solar luminosity (26) L₀ 3.85 $J s^{-1}$ 3.85 (33)erg s⁻¹ Solar mass 1.989 1.989 M_{\odot} (30)kg (33) g Solar radius 6.96 6.96 R_{\odot} (8) m (10)cm T_{\odot} Solar effective 5.78 (3) Κ 5.78 (3) Κ temperature 1.00 (-26) W m⁻² H z⁻¹ 1.00 (-23) erg s⁻¹ cm⁻² Hz⁻¹ Jy Jansky

Astronomical constants

Values $a \times 10^b$ are given as a (b).

Conversion factors

Unit/symbol	nit/symbol Description SI			cgs		
		Value	Unit	Value	Unit	
deg	degree	1.7453 (-2)	rad	1.7453 (-2)	rad	
arcmin	arcminute	2.90888(-4)	rad	2.90888(-4)	rad	
arcsec	arcsecond	4.8481(-6)	rad	4.8481(-6)	rad	
sq deg	degree ²	3.046 (-4)	sr	3.046 (-4)	sr	
Å	angstrom	1.0 (-10)	m	1.0 (-8)	cm	
μm	micrometer	1.0 (-6)	m	1.0 (-4)	cm	

Angles and lengths

Values $a \times 10^b$ are given as a (b).

Description	SI		cgs		
	Value	Unit	Value	Unit	
Time	1	S	1	S	
	1	year	3.16 (7)	S	
Length	1	m	1 (2)	cm	
Velocity	1	$m s^{-1}$	1 (2)	$\rm cm~s^{-1}$	
Force	1	Ν	1 (5)	dyne	
Pressure	1	Pa	1 (-1)	dyne cm ⁻²	
Energy	1	J	1 (7)	erg	
Charge	1	С	2.9979 (9)	esu	
Magnetic flux density	1	Т	1 (4)	gauss	

SI and cgs units

Values $a \times 10^b$ are given as a (b).

List of conversion factors

	erg	eV	K	cm^{-1}	Hz
K cm ⁻¹	$\begin{array}{c} 1.00\\ 1.602 (-12)\\ 1.3806 (-16)\\ 1.9865 (-16)\\ 6.626 (-27) \end{array}$	$\begin{array}{c} 1.00\\ 8.617 \ (-5)\\ 1.240 \ (-4) \end{array}$	1.1604 (4) 1.00 1.4389	5.034 (15)8064.40.6951.00 $3.336(-11)$	2.418 (14) 2.084 (10) 2.9970(10)

Energy conversion factors

Values $a \times 10^{b}$ are given as a (b). To convert from unit in column 1 to units above the rows, multiply by value; e.g., $1 \text{ eV} = 1.602 \times 10^{-12} \text{ erg.}$

A useful compendium of constants can be found in C. W. Allen, *Astrophysical Quantities*, (London: The Athlone Press). The website http://physics.nist.gov/cuu/, maintained by the National Institute of Standards and Technology, provides a wealth of information on constants.

xiii