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1 Introduction to particle dynamics

In the study of dynamics at an advanced level, it is important to consider many approaches
and points of view in order that one may attain a broad theoretical perspective of the subject.
As we proceed we shall emphasize those methods which are particularly effective in the
analysis of relatively difficult problems in dynamics. At this point, however, it is well to
review some of the basic principles in the dynamical analysis of systems of particles. In
the process, the kinematics of particle motion will be reviewed, and many of the notational
conventions will be established.

1.1 Particle motion

The laws of motion for a particle

Let us consider Newton’s three laws of motion which were published in 1687 in his Prin-
cipia. They can be stated as follows:

I. Every body continues in its state of rest, or of uniform motion in a straight line, unless
compelled to change that state by forces acting upon it.

II. The time rate of change of linear momentum of a body is proportional to the force
acting upon it and occurs in the direction in which the force acts.

III. To every action there is an equal and opposite reaction; that is, the mutual forces of two
bodies acting upon each other are equal in magnitude and opposite in direction.

In the dynamical analysis of a system of particles using Newton’s laws, we can interpret
the word “body” to mean a particle, that is, a certain fixed mass concentrated at a point.
The first two of Newton’s laws, as applied to a particle, can be summarized by the law of
motion:

F = ma (1.1)

Here F is the total force applied to the particle of mass m and it includes both direct contact
forces and field forces such as gravity or electromagnetic forces. The acceleration a of
the particle must be measured relative to an inertial or Newtonian frame of reference. An
example of an inertial frame is an xyz set of axes which is not rotating relative to the “fixed”
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stars and has its origin at the center of mass of the solar system. Any other reference frame
which is not rotating but is translating at a constant rate relative to an inertial frame is
itself an inertial frame. Thus, there are infinitely many inertial frames, all with constant
translational velocities relative to the others. Because the relative velocities are constant,
the acceleration of a given particle is the same relative to any inertial frame. The force F
and mass m are also the same in all inertial frames, so Newton’s law of motion is identical
relative to all inertial frames.

Newton’s third law, the law of action and reaction, has a corollary assumption that the
interaction forces between any two particles are directed along the straight line connecting
the particles. Thus we have the law of action and reaction:

When two particles exert forces on each other, these interaction forces
are equal in magnitude, opposite in sense, and are directed along the
straight line joining the particles.
The collinearity of the interaction forces applies to all mechanical and gravitational forces.

It does not apply, however, to interactions between moving electrically charged particles for
which the interaction forces are equal and opposite but not necessarily collinear. Systems
of this sort will not be studied here.

An alternative form of the equation of motion of a particle is

F = ṗ (1.2)

where the linear momentum of the particle is

p = mv (1.3)

and v is the particle velocity relative to an inertial frame.

Kinematics of particle motion

The application of Newton’s laws of motion to a particle requires that an expression can
be found for the acceleration of the particle relative to an inertial frame. For example, the
position vector of a particle relative to a fixed Cartesian frame might be expressed as

r = x i + yj + zk (1.4)

where i, j, k are unit vectors, that is, vectors of unit magnitude which have the directions
of the positive x , y, and z axes, respectively. When unit vectors are used to specify a vector
in 3-space, the three unit vectors are always linearly independent and are nearly always
mutually perpendicular. The velocity of the given particle is

v = ṙ = ẋ i + ẏj + żk (1.5)

and its acceleration is

a = v̇ = ẍ i + ÿj + z̈k (1.6)

relative to the inertial frame.
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A force F applied to the particle may be described in a similar manner.

F = Fx i + Fyj + Fzk (1.7)

where (Fx , Fy, Fz) are the scalar components of F. In general, the force components can
be functions of position, velocity, and time, but often they are much simpler.

If one writes Newton’s law of motion, (1.1), in terms of the Cartesian unit vectors, and
then equates the scalar coefficients of each unit vector on the two sides of the equation, one
obtains

Fx = mẍ

Fy = mÿ (1.8)

Fz = mz̈

These three scalar equations are equivalent to the single vector equation. In general, the
scalar equations are coupled through the expressions for the force components. Further-
more, the differential equations are often nonlinear and are not susceptible to a complete
analytic solution. In this case, one can turn to numerical integration on a digital computer
to obtain the complete solution. On the other hand, one can often use energy or momen-
tum methods to obtain important characteristics of the motion without having the complete
solution.

The calculation of a particle acceleration relative to an inertial Cartesian frame is straight-
forward because the unit vectors (i, j, k) are fixed in direction. It turns out, however, that
because of system geometry it is sometimes more convenient to use unit vectors that are
not fixed. For example, the position, velocity, and acceleration of a particle moving along
a circular path are conveniently expressed using radial and tangential unit vectors which
change direction with position.

As a more general example, suppose that an arbitrary vector A is given by

A = A1e1 + A2e2 + A3e3 (1.9)

where the unit vectors e1, e2, and e3 form a mutually orthogonal set such that e3 = e1 × e2.
This unit vector triad changes its orientation with time. It rotates as a rigid body with an
angular velocity ω, where the direction of ω is along the axis of rotation and the positive
sense of ω is in accordance with the right-hand rule.

The first time derivative of A is

Ȧ = Ȧ1e1 + Ȧ2e2 + Ȧ3e3 + A1ė1 + A2ė2 + A3ė3 (1.10)

where

ėi = ω × ei (i = 1, 2, 3) (1.11)

Thus we obtain the important equation

Ȧ = (Ȧ)r + ω × A (1.12)

Here Ȧ is the time rate of change of A, as measured in a nonrotating frame that is usually
considered to also be inertial. (Ȧ)r is the derivative of A, as measured in a rotating frame in
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which the unit vectors are fixed. It is represented by the first three terms on the right-hand
side of (1.10). The term ω × A is represented by the final three terms of (1.10). In detail, if
the angular velocity of the rotating frame is

ω = ω1e1 + ω2e2 + ω3e3 (1.13)

then

Ȧ = ( Ȧ1 + ω2 A3 − ω3 A2) e1 + ( Ȧ2 + ω3 A1 − ω1 A3) e2

+ ( Ȧ3 + ω1 A2 − ω2 A1) e3 (1.14)

Velocity and acceleration expressions for common coordinate systems

Let us apply the general equation (1.12) to some common coordinate systems associated
with particle motion.

Cylindrical coordinates

Suppose that the position of a particle P is specified by the values of its cylindrical coordi-
nates (r, φ, z). We see from Fig. 1.1 that the position vector r is

r = rer + zez (1.15)

where we notice that r is not the magnitude of r. The angular velocity of the er eφez triad is

ω = φ̇ez (1.16)

z

ez

eφ

err

r

z

y
O

P

x

φ

Figure 1.1.
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so we find that ėz vanishes and

ėr = ω × er = φ̇eφ (1.17)

Thus, the velocity of the particle P is

v = ṙ = ṙer + r φ̇eφ + żez (1.18)

Similarly, noting that

ėφ = ω × eφ = −φ̇er (1.19)

we find that its acceleration is

a = v̇ = (r̈ − r φ̇2) er + (r φ̈ + 2ṙ φ̇) eφ + z̈ez (1.20)

If we restrict the motion such that ż and z̈ are continuously equal to zero, we obtain the
velocity and acceleration equations for plane motion using polar coordinates.

Spherical coordinates

From Fig. 1.2 we see that the position of particle P is given by the spherical coordinates
(r, θ, φ). The position vector of the particle is simply

r = rer (1.21)

The angular velocity of the er eθeφ triad is due to θ̇ and φ̇ and is equal to

ω = φ̇ cos θ er − φ̇ sin θ eθ + θ̇ eθ (1.22)

z

P

r

y
O

er

ef

eq

x

q

φ

Figure 1.2.
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We find that

ėr = ω × er = θ̇eθ + φ̇ sin θ eφ

ėθ = ω × eθ = −θ̇er + φ̇ cos θ eφ (1.23)

ėφ = ω × eφ = −φ̇ sin θ er − φ̇ cos θ eθ

Then, upon differentiation of (1.21), we obtain the velocity

v = ṙ = ṙer + r θ̇eθ + r φ̇ sin θ eφ (1.24)

A further differentiation yields the acceleration

a = v̇ = (r̈ − r θ̇2 − r φ̇2 sin2 θ ) er + (r θ̈ + 2ṙ θ̇ − r φ̇2 sin θ cos θ ) eθ

+ (r φ̈ sin θ + 2ṙ φ̇ sin θ + 2r θ̇ φ̇ cos θ ) eφ (1.25)

Tangential and normal components

Suppose a particle P moves along a given path in three-dimensional space. The position
of the particle is specified by the single coordinate s, measured from some reference point
along the path, as shown in Fig. 1.3. It is convenient to use the three unit vectors (et , en, eb)
where et is tangent to the path at P , en is normal to the path and points in the direction of
the center of curvature C , and the binormal unit vector is

eb = et × en (1.26)

ρ

s

P
eb

en

et

C

r

z

O

x

y

Figure 1.3.
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The velocity of the particle is equal to its speed along its path, so

v = ṙ = ṡet (1.27)

If we consider motion along an infinitesimal arc of radius ρ surrounding P , we see that

ėt = ṡ

ρ
en (1.28)

Thus, we find that the acceleration of the particle is

a = v̇ = s̈et + ṡėt = s̈et + ṡ2

ρ
en (1.29)

where ρ is the radius of curvature. Here s̈ is the tangential acceleration and ṡ2/ρ is the
centripetal acceleration. The angular velocity of the unit vector triad is directly proportional
to ṡ. It is

ω = ωt et + ωbeb (1.30)

where ωt and ωb are obtained from

ėt = ωben = ṡ

ρ
en

(1.31)
ėb = −ωt en = ṡ

deb

ds

Note that ωn = 0 and also that deb/ds represents the torsion of the curve.

Relative motion and rotating frames

When one uses Newton’s laws to describe the motion of a particle, the acceleration a must
be absolute, that is, it must be measured relative to an inertial frame. This acceleration,
of course, is the same when measured with respect to any inertial frame. Sometimes the
motion of a particle is known relative to a rotating and accelerating frame, and it is desired
to find its absolute velocity and acceleration. In general, these calculations can be somewhat
complicated, but for the special case in which the moving frame A is not rotating, the results
are simple. The absolute velocity of a particle P is

vP = vA + vP/A (1.32)

where vA is the absolute velocity of any point on frame A and vP/A is the velocity of particle
P relative to frame A, that is, the velocity recorded by cameras or other instruments fixed
in frame A and moving with it. Similarly, the absolute acceleration of P is

aP = aA + aP/A (1.33)

where we note again that the frame A is moving in pure translation.
Now consider the general case in which the moving xyz frame (Fig. 1.4) is translating

and rotating arbitrarily. We wish to find the velocity and acceleration of a particle P relative
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y
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r
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Figure 1.4.

to the inertial XYZ frame in terms of its motion with respect to the noninertial xyz frame.
Let the origin O ′ of the xyz frame have a position vector R relative to the origin O of the
XYZ frame. The position of the particle P relative to O ′ is ρ, so the position of P relative
to XYZ is

r = R + ρ (1.34)

The corresponding velocity is

v = ṙ = Ṙ + ρ̇ (1.35)

Now let us use the basic equation (1.12) to express ρ̇ in terms of the motion relative to the
moving xyz frame. We obtain

ρ̇ = (ρ̇)r + ω × ρ (1.36)

where ω is the angular velocity of the xyz frame and (ρ̇)r is the velocity of P relative to
that frame. In detail,

ρ = x i + yj + zk (1.37)

and

(ρ̇)r = ẋ i + ẏj + żk (1.38)

where i, j, k are unit vectors fixed in the xyz frame and rotating with it. From (1.35) and
(1.36), the absolute velocity of P is

v = ṙ = Ṙ + (ρ̇)r + ω × ρ (1.39)



9 Particle motion

The expression for the inertial acceleration a of the particle is found by first noting that

d

dt
(ρ̇)r = (ρ̈)r + ω × (ρ̇)r (1.40)

d

dt
(ω × ρ) = ω̇ × ρ + ω × ((ρ̇)r + ω × ρ)

(1.41)

Thus, we obtain the important result:

a = v̇ = R̈ + ω̇ × ρ + ω × (ω × ρ) + (ρ̈)r + 2ω × (ρ̇)r (1.42)

where ω is the angular velocity of the xyz frame. The nature of the various terms is as
follows. R̈ is the inertial acceleration of O ′, the origin of the moving frame. The term
ω̇ × ρ might be considered as a tangential acceleration although, more accurately, it rep-
resents a changing tangential velocity ω × ρ due to changing ω. The term ω × (ω × ρ) is
a centripetal acceleration directed toward an axis of rotation through O ′. These first three
terms represent the acceleration of a point coincident with P but fixed in the xyz frame.
The final two terms add the effects of motion relative to the moving frame. The term (ρ̈)r

is the acceleration of P relative to the xyz frame, that is, the acceleration of the particle, as
recorded by instruments fixed in the xyz frame and rotating with it. The final term 2ω × (ρ̇)r

is the Coriolis acceleration due to a velocity relative to the rotating frame. Equation (1.42)
is particularly useful if the motion of the particle relative to the moving xyz frame is simple;
for example, linear motion or motion along a circular path.

Instantaneous center of rotation

If each point of a rigid body moves in planar motion, it is useful to consider a lamina, or
slice, of the body which moves in its own plane (Fig. 1.5). If the lamina does not move in
pure translation, that is, if ω �= 0, then a point C exists in the lamina, or in an imaginary

ω

C

B

P

vB

rA

vA

v

r

A

rB

Figure 1.5.
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extension thereof, at which the velocity is momentarily zero. This is the instantaneous
center of rotation.

Suppose that arbitrary points A and B have velocities vA and vB . The instantaneous
center C is located at the intersection of the perpendicular lines to vA and vB . The velocity
of a point P with a position vector ρ relative to C is

v = ω × ρ (1.43)

whereω is the angular velocity vector of the lamina. Thus, if the location of the instantaneous
center is known, it is easy to find the velocity of any other point of the lamina at that instant.
On the other hand, the acceleration of the instantaneous center is generally not zero. Hence,
the calculation of the acceleration of a general point in the lamina is usually not aided by a
knowledge of the instantaneous center location.

If there is planar rolling motion of one body on another fixed body without any slipping,
the instantaneous center lies at the contact point between the two bodies. As time proceeds,
this point moves with respect to both bodies, thereby tracing a path on each body.

Example 1.1 A wheel of radius r rolls in planar motion without slipping on a fixed convex
surface of radius R (Fig. 1.6a). We wish to solve for the acceleration of the contact point
on the wheel. The contact point C is the instantaneous center, and therefore, the velocity of
the wheel’s center O ′ is

v = rωeφ (1.44)

er

ef

ω

R

r

O
(a)

C

O′

f
.

er

ef

r

ω
R

C

O

(b)

O′

f
.

Figure 1.6.
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In terms of the angular velocity φ̇ of the radial line O O ′, the velocity of the wheel is

(R + r )φ̇ = rω (1.45)

so we find that

φ̇ = rω

R + r
(1.46)

To show that the acceleration of the contact point C is nonzero, we note that

aC = aO ′ + aC/O ′ (1.47)

The center O ′ of the wheel moves in a circular path of radius (R + r ), so its acceleration
aO ′ is the sum of tangential and centripetal accelerations.

aO ′ = (R + r )φ̈eφ − (R + r )φ̇2er

= r ω̇eφ − r2ω2

R + r
er (1.48)

Similarly C , considered as a point on the rim of the wheel, has a circular motion about O ′,
so

aC/O ′ = −r ω̇eφ + rω2er (1.49)

Then, adding (1.48) and (1.49), we obtain

aC =
(

r − r2

R + r

)
ω2er =

(
Rr

R + r

)
ω2er (1.50)

Thus, the instantaneous center has a nonzero acceleration.
Now consider the rolling motion of a wheel of radius r on a concave surface of radius R

(Fig. 1.6b). The center of the wheel has a velocity

vO ′ = rωeφ = (R − r )φ̇eφ (1.51)

so

φ̇ = rω

R − r
(1.52)

In this case, the acceleration of the contact point is

aC = aO ′ + aC/O ′ (1.53)

where

aO ′ = (R − r ) φ̈eφ − (R − r ) φ̇2er

= r ω̇eφ − r2ω2

R − r
er (1.54)

aC/O ′ = −r ω̇eφ − rω2er (1.55)

Thus, we obtain

aC = −
(

r + r2

R − r

)
ω2er = −

(
Rr

R − r

)
ω2er (1.56)
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er

eq

k
C

P

O

O′

ω

R

r
f

Figure 1.7.

Notice that very large values of aO ′ and aC can occur, even for moderate values of ω, if R
is only slightly larger than r. This could occur, for example, if a shaft rotates in a sticky
bearing.

Example 1.2 Let us calculate the acceleration of a point P on the rim of a wheel of radius
r which rolls without slipping on a horizontal circular track of radius R (Fig. 1.7). The plane
of the wheel remains vertical and the position angle of P relative to a vertical line through
the center O ′ is φ.

Let us choose the unit vectors er , eθ , k, as shown. They rotate about a vertical axis at an
angular rate ω which is the rate at which the contact point C moves along the circular path.
Since the center O ′ and C move along parallel paths with the same speed, we can write

vO ′ = r φ̇ = Rω (1.57)

from which we obtain

ω = r

R
φ̇k (1.58)

Choose C as the origin of a moving frame which rotates with the angular velocity ω.
To find the acceleration of P , let us use the general equation (1.42), namely,

a = R̈ + ω̇ × ρ + ω × (ω × ρ) + (ρ̈)r + 2ω × (ρ̇)r (1.59)

The acceleration of C is

R̈ = −Rω2er + Rω̇eθ = −r2φ̇2

R
er + r φ̈eθ (1.60)

The relative position of P with respect to C is

ρ = r sin φ eθ + r (1 + cos φ)k (1.61)

From (1.58) we obtain

ω̇ = r

R
φ̈k (1.62)
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Then

ω̇ × ρ = −r2

R
φ̈ sin φ er (1.63)

ω × (ω × ρ) = − r3

R2
φ̇2 sin φ eθ (1.64)

Upon differentiating (1.61), with eθ and k held constant, we obtain

(ρ̇)r = r φ̇ cos φ eθ − r φ̇ sin φ k (1.65)

and

2ω × (ρ̇)r = −2r2

R
φ̇2 cos φ er (1.66)

Also,

(ρ̈)r = (r φ̈ cos φ − r φ̇2 sin φ)eθ − (r φ̈ sin φ + r φ̇2 cos φ)k (1.67)

Finally, adding terms, the acceleration of P is

a = −
[

r2

R
φ̈ sin φ + r2

R
φ̇2(1 + 2 cos φ)

]
er +

[
r φ̈(1 + cos φ) − r φ̇2

(
1 + r2

R2

)
sin φ

]
eθ

− (r φ̈ sin φ + r φ̇2 cos φ)k (1.68)

Example 1.3 A particle P moves on a plane spiral having the equation

r = kθ (1.69)

where k is a constant (Fig. 1.8). Let us find an expression for its acceleration. Also solve
for the radius of curvature of the spiral at a point specified by the angle θ.

r

x

P

y
er

et

eq en

q

α

Figure 1.8.
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First note that the unit vectors (er , eθ ) rotate with an angular velocity

ω = θ̇k (1.70)

where the unit vector k points out of the page. We obtain

ėr = ω × er = θ̇eθ
(1.71)

ėθ = ω × eθ = −θ̇er

The position vector of P is

r = rer (1.72)

and its velocity is

v = ṙ = ṙer + r ėr = ṙer + r θ̇eθ (1.73)

The acceleration of P is

a = v̇ = r̈er + ṙ ėr + r θ̈eθ + ṙ θ̇eθ + r θ̇ ėθ

= (r̈ − r θ̇2)er + (r θ̈ + 2ṙ θ̇ )eθ

= (kθ̈ − kθ θ̇2)er + (kθ θ̈ + 2kθ̇2)eθ (1.74)

The radius of curvature at P can be found by first establishing the orthogonal unit vectors
(et , en) and then finding the normal component of the acceleration. The angle α between
the unit vectors et and eθ is obtained by noting that

tan α = vr

vθ

= ṙ

r θ̇
= kθ̇

kθ θ̇
= 1

θ
(1.75)

and we see that

sin α = 1√
1 + θ2

(1.76)
cos α = θ√

1 + θ2

The normal acceleration is

an = −ar cos α + aθ sin α (1.77)

where, from (1.74),

ar = kθ̈ − kθ θ̇2

(1.78)
aθ = kθ θ̈ + 2kθ̇2

Thus, we obtain

an = kθ̇2

√
1 + θ2

(2 + θ2) (1.79)
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From (1.29), using tangential and normal components, we find that the normal accelera-
tion is

an = ṡ2

ρ
= v2

ρ
= v2

r + v2
θ

ρ
= k2θ̇2(1 + θ2)

ρ
(1.80)

where ρ is the radius of curvature. Comparing (1.79) and (1.80), the radius of curvature at
P is

ρ = k(1 + θ2)3/2

2 + θ2
(1.81)

Notice that ρ varies from 1
2 k at θ = 0 to r for very large r and θ.

1.2 Systems of particles

A system of particles with all its interactions constitutes a dynamical system of great gen-
erality. Consequently, it is important to understand thoroughly the principles which govern
its motions. Here we shall establish some of the basic principles. Later, these principles will
be used in the study of rigid body dynamics.

Equations of motion

Consider a system of N particles whose positions are given relative to an inertial frame
(Fig. 1.9). The i th particle is acted upon by an external force Fi and by N − 1 internal

x

mj

mi

y

z

O

rj

rc

Fj

ri

Fi

fij

fji
c.m.

Figure 1.9.
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interaction forces fi j ( j �= i) due to the other particles. The equation of motion for the i th
particle is

mi r̈i = Fi +
N∑

j=1

fi j (1.82)

The right-hand side of the equation is equal to the total force acting on the i th particle,
external plus internal, and we note that fi i = 0; that is, a particle cannot act on itself to
influence its motion.

Now sum (1.82) over the N particles.

N∑
i=1

mi r̈i =
N∑

i=1

Fi +
N∑

i=1

N∑
j=1

fi j (1.83)

Because of Newton’s law of action and reaction, we have

f j i = −fi j (1.84)

and therefore

N∑
i=1

N∑
j=1

fi j = 0 (1.85)

The center of mass location is given by

rc = 1

m

N∑
i=1

mi ri (1.86)

where the total mass m is

m =
N∑

i=1

mi (1.87)

Then (1.83) reduces to

mr̈c = F (1.88)

where the total external force acting on the system is

F =
N∑

i=1

Fi (1.89)

This result shows that the motion of the center of mass of a system of particles is the same
as that of a single particle of total mass m which is driven by the total external force F.

The translational or linear momentum of a system of N particles is equal to the vector
sum of the momenta of the individual particles. Thus, using (1.3), we find that

p =
N∑

i=1

pi =
N∑

i=1

mi ṙi (1.90)
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where each particle mass mi is constant. Then, for the system, the rate of change of mo-
mentum is

ṗ =
N∑

i=1

ṗi =
N∑

i=1

mi r̈i = F (1.91)

in agreement with (1.88). Note that if F remains equal to zero over some time interval, the
linear momentum remains constant during the interval. More particularly, if a component
of F in a certain fixed direction remains at zero, then the corresponding component of p is
conserved.

Angular momentum

The angular momentum of a single particle of mass mi about a fixed reference point O
(Fig. 1.10) is

Hi = ri × mi ṙi = ri × pi (1.92)

which has the form of a moment of momentum. Upon summation over N particles, we find
that the angular momentum of the system about O is

HO =
N∑

i=1

Hi =
N∑

i=1

ri × mi ṙi (1.93)

Now consider the angular momentum of the system about an arbitrary reference point
P . It is

Hp =
N∑

i=1

ρi × mi ρ̇i (1.94)

x

y

z

O

P
rp

rc

ri

rc

ri

mi

c.m.

Figure 1.10.
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Notice that the velocity ρ̇i is measured relative to the reference point P rather than being an
absolute velocity. The use of relative versus absolute velocities in the definition of angular
momentum makes no difference if the reference point is either fixed or at the center of mass.
There is a difference, however, in the form of the equation of motion for the general case of
an accelerating reference point P , which is not at the center of mass. In this case, the choice
of relative velocities yields simpler and physically more meaningful equations of motion.

To find the angular momentum relative to the center of mass, we take the reference point
P at the center of mass (ρc = 0) and obtain

Hc =
N∑

i=1

ρi × mi ρ̇i (1.95)

where ρi is now the position vector of particle mi relative to the center of mass.
Now let us write an expression for Hc when P is not at the center of mass. We obtain

Hc =
N∑

i=1

(ρi − ρc) × mi (ρ̇i − ρ̇c)

(1.96)

=
N∑

i=1

ρi × mi ρ̇i − ρc × mρ̇c

where
N∑

i=1

miρi = mρc (1.97)

Then, recalling (1.94), we find that

Hp = Hc + ρc × mρ̇c (1.98)

This important result states that the angular momentum about an arbitrary point P is equal
to the angular momentum about the center of mass plus the angular momentum due to the
relative translational velocity ρ̇c of the center of mass. Of course, this result also applies to
the case of a fixed reference point P when ρ̇c is an absolute velocity.

Now let us differentiate (1.93) with respect to time in order to obtain an equation of
motion. We obtain

ḢO =
N∑

i=1

ri × mi r̈i (1.99)

where, from Newton’s law,

mi r̈i = Fi +
N∑

j=1

fi j (1.100)

and we note that
N∑

i=1

N∑
j=1

ri × fi j = 0 (1.101)
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since, by Newton’s third law, the internal forces fi j occur in equal, opposite, and collinear
pairs. Hence we obtain an equation of motion in the form

ḢO =
N∑

i=1

ri × Fi = MO (1.102)

where MO is the applied moment about the fixed point O due to forces external to the
system.

In a similar manner, if we differentiate (1.95) with respect to time, we obtain

Ḣc =
N∑

i=1

ρi × mi ρ̈i (1.103)

where ρi is the position vector of the i th particle relative to the center of mass. From
Newton’s law of motion for the i th particle,

mi (r̈c + ρ̈i ) = Fi +
N∑

j=1

fi j (1.104)

Now take the vector product of ρi with both sides of this equation and sum over i. We find
that

N∑
i=1

ρi × mi r̈c = 0 (1.105)

since
N∑

i=1

miρi = 0 (1.106)

for a reference point at the center of mass. Also,

N∑
i=1

N∑
j=1

ρi × fi j = 0 (1.107)

because the internal forces fi j occur in equal, opposite, and collinear pairs. Hence we obtain

N∑
i=1

ρi × mi ρ̈i =
N∑

i=1

ρi × Fi = Mc (1.108)

and, from (1.103) and (1.108),

Ḣc = Mc (1.109)

where Mc is the external applied moment about the center of mass.
At this point we have found that the basic rotational equation

Ḣ = M (1.110)

applies in each of two cases: (1) the reference point is fixed in an inertial frame; or (2) the
reference point is at the center of mass.




