
1 Introduction to particle dynamics

In the study of dynamics at an advanced level, it is important to consider many approaches
and points of view in order that one may attain a broad theoretical perspective of the subject.
As we proceed we shall emphasize those methods which are particularly effective in the
analysis of relatively difficult problems in dynamics. At this point, however, it is well to
review some of the basic principles in the dynamical analysis of systems of particles. In
the process, the kinematics of particle motion will be reviewed, and many of the notational
conventions will be established.

1.1 Particle motion

The laws of motion for a particle

Let us consider Newton’s three laws of motion which were published in 1687 in his Prin-
cipia. They can be stated as follows:

I. Every body continues in its state of rest, or of uniform motion in a straight line, unless
compelled to change that state by forces acting upon it.

II. The time rate of change of linear momentum of a body is proportional to the force
acting upon it and occurs in the direction in which the force acts.

III. To every action there is an equal and opposite reaction; that is, the mutual forces of two
bodies acting upon each other are equal in magnitude and opposite in direction.

In the dynamical analysis of a system of particles using Newton’s laws, we can interpret
the word “body” to mean a particle, that is, a certain fixed mass concentrated at a point.
The first two of Newton’s laws, as applied to a particle, can be summarized by the law of
motion:

F = ma (1.1)

Here F is the total force applied to the particle of mass m and it includes both direct contact
forces and field forces such as gravity or electromagnetic forces. The acceleration a of
the particle must be measured relative to an inertial or Newtonian frame of reference. An
example of an inertial frame is an xyz set of axes which is not rotating relative to the “fixed”
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2 Introduction to particle dynamics

stars and has its origin at the center of mass of the solar system. Any other reference frame
which is not rotating but is translating at a constant rate relative to an inertial frame is
itself an inertial frame. Thus, there are infinitely many inertial frames, all with constant
translational velocities relative to the others. Because the relative velocities are constant,
the acceleration of a given particle is the same relative to any inertial frame. The force F
and mass m are also the same in all inertial frames, so Newton’s law of motion is identical
relative to all inertial frames.

Newton’s third law, the law of action and reaction, has a corollary assumption that the
interaction forces between any two particles are directed along the straight line connecting
the particles. Thus we have the law of action and reaction:

When two particles exert forces on each other, these interaction forces
are equal in magnitude, opposite in sense, and are directed along the
straight line joining the particles.
The collinearityof the interaction forces applies to allmechanical andgravitational forces.

It does not apply, however, to interactions between moving electrically charged particles for
which the interaction forces are equal and opposite but not necessarily collinear. Systems
of this sort will not be studied here.

An alternative form of the equation of motion of a particle is

F = ṗ (1.2)

where the linear momentum of the particle is

p = mv (1.3)

and v is the particle velocity relative to an inertial frame.

Kinematics of particle motion

The application of Newton’s laws of motion to a particle requires that an expression can
be found for the acceleration of the particle relative to an inertial frame. For example, the
position vector of a particle relative to a fixed Cartesian frame might be expressed as

r = x i + yj + zk (1.4)

where i, j, k are unit vectors, that is, vectors of unit magnitude which have the directions
of the positive x , y, and z axes, respectively. When unit vectors are used to specify a vector
in 3-space, the three unit vectors are always linearly independent and are nearly always
mutually perpendicular. The velocity of the given particle is

v = ṙ = ẋ i + ẏj + żk (1.5)

and its acceleration is

a = v̇ = ẍ i + ÿj + z̈k (1.6)

relative to the inertial frame.
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3 Particle motion

A force F applied to the particle may be described in a similar manner.

F = Fx i + Fyj + Fzk (1.7)

where (Fx , Fy, Fz) are the scalar components of F. In general, the force components can
be functions of position, velocity, and time, but often they are much simpler.

If one writes Newton’s law of motion, (1.1), in terms of the Cartesian unit vectors, and
then equates the scalar coefficients of each unit vector on the two sides of the equation, one
obtains

Fx = mẍ

Fy = mÿ (1.8)

Fz = mz̈

These three scalar equations are equivalent to the single vector equation. In general, the
scalar equations are coupled through the expressions for the force components. Further-
more, the differential equations are often nonlinear and are not susceptible to a complete
analytic solution. In this case, one can turn to numerical integration on a digital computer
to obtain the complete solution. On the other hand, one can often use energy or momen-
tum methods to obtain important characteristics of the motion without having the complete
solution.

The calculation of a particle acceleration relative to an inertial Cartesian frame is straight-
forward because the unit vectors (i, j, k) are fixed in direction. It turns out, however, that
because of system geometry it is sometimes more convenient to use unit vectors that are
not fixed. For example, the position, velocity, and acceleration of a particle moving along
a circular path are conveniently expressed using radial and tangential unit vectors which
change direction with position.

As a more general example, suppose that an arbitrary vector A is given by

A = A1e1 + A2e2 + A3e3 (1.9)

where the unit vectors e1, e2, and e3 form a mutually orthogonal set such that e3 = e1 × e2.
This unit vector triad changes its orientation with time. It rotates as a rigid body with an
angular velocity ω, where the direction of ω is along the axis of rotation and the positive
sense of ω is in accordance with the right-hand rule.

The first time derivative of A is

Ȧ = Ȧ1e1 + Ȧ2e2 + Ȧ3e3 + A1ė1 + A2ė2 + A3ė3 (1.10)

where

ėi = ω × ei (i = 1, 2, 3) (1.11)

Thus we obtain the important equation

Ȧ = (Ȧ)r + ω × A (1.12)

Here Ȧ is the time rate of change of A, as measured in a nonrotating frame that is usually
considered to also be inertial. (Ȧ)r is the derivative of A, as measured in a rotating frame in
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4 Introduction to particle dynamics

which the unit vectors are fixed. It is represented by the first three terms on the right-hand
side of (1.10). The term ω × A is represented by the final three terms of (1.10). In detail, if
the angular velocity of the rotating frame is

ω = ω1e1 + ω2e2 + ω3e3 (1.13)

then

Ȧ = ( Ȧ1 + ω2A3 − ω3A2) e1 + ( Ȧ2 + ω3A1 − ω1A3) e2

+ ( Ȧ3 + ω1A2 − ω2A1) e3 (1.14)

Velocity and acceleration expressions for common coordinate systems

Let us apply the general equation (1.12) to some common coordinate systems associated
with particle motion.

Cylindrical coordinates

Suppose that the position of a particle P is specified by the values of its cylindrical coordi-
nates (r, φ, z). We see from Fig. 1.1 that the position vector r is

r = rer + zez (1.15)

where we notice that r is not the magnitude of r. The angular velocity of the ereφez triad is

ω = φ̇ez (1.16)
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Figure 1.1.
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5 Particle motion

so we find that ėz vanishes and

ėr = ω × er = φ̇eφ (1.17)

Thus, the velocity of the particle P is

v = ṙ = ṙer + r φ̇eφ + żez (1.18)

Similarly, noting that

ėφ = ω × eφ = −φ̇er (1.19)

we find that its acceleration is

a = v̇ = (r̈ − r φ̇2) er + (r φ̈ + 2ṙ φ̇) eφ + z̈ez (1.20)

If we restrict the motion such that ż and z̈ are continuously equal to zero, we obtain the
velocity and acceleration equations for plane motion using polar coordinates.

Spherical coordinates

From Fig. 1.2 we see that the position of particle P is given by the spherical coordinates
(r, θ, φ). The position vector of the particle is simply

r = rer (1.21)

The angular velocity of the ereθeφ triad is due to θ̇ and φ̇ and is equal to

ω = φ̇ cos θ er − φ̇ sin θ eθ + θ̇ eθ (1.22)
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Figure 1.2.
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6 Introduction to particle dynamics

We find that

ėr = ω × er = θ̇eθ + φ̇ sin θ eφ

ėθ = ω × eθ = −θ̇er + φ̇ cos θ eφ (1.23)

ėφ = ω × eφ = −φ̇ sin θ er − φ̇ cos θ eθ

Then, upon differentiation of (1.21), we obtain the velocity

v = ṙ = ṙer + r θ̇eθ + r φ̇ sin θ eφ (1.24)

A further differentiation yields the acceleration

a = v̇ = (r̈ − r θ̇2 − r φ̇2 sin2 θ ) er + (r θ̈ + 2ṙ θ̇ − r φ̇2 sin θ cos θ ) eθ

+ (r φ̈ sin θ + 2ṙ φ̇ sin θ + 2r θ̇ φ̇ cos θ ) eφ (1.25)

Tangential and normal components

Suppose a particle P moves along a given path in three-dimensional space. The position
of the particle is specified by the single coordinate s, measured from some reference point
along the path, as shown in Fig. 1.3. It is convenient to use the three unit vectors (et , en, eb)
where et is tangent to the path at P , en is normal to the path and points in the direction of
the center of curvature C , and the binormal unit vector is

eb = et × en (1.26)
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Figure 1.3.
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7 Particle motion

The velocity of the particle is equal to its speed along its path, so

v = ṙ = ṡet (1.27)

If we consider motion along an infinitesimal arc of radius ρ surrounding P , we see that

ėt = ṡ

ρ
en (1.28)

Thus, we find that the acceleration of the particle is

a = v̇ = s̈et + ṡėt = s̈et + ṡ2

ρ
en (1.29)

where ρ is the radius of curvature. Here s̈ is the tangential acceleration and ṡ2/ρ is the
centripetal acceleration. The angular velocity of the unit vector triad is directly proportional
to ṡ. It is

ω = ωtet + ωbeb (1.30)

where ωt and ωb are obtained from

ėt = ωben = ṡ

ρ
en

(1.31)
ėb = −ωten = ṡ

deb

ds

Note that ωn = 0 and also that deb/ds represents the torsion of the curve.

Relative motion and rotating frames

When one uses Newton’s laws to describe the motion of a particle, the acceleration a must
be absolute, that is, it must be measured relative to an inertial frame. This acceleration,
of course, is the same when measured with respect to any inertial frame. Sometimes the
motion of a particle is known relative to a rotating and accelerating frame, and it is desired
to find its absolute velocity and acceleration. In general, these calculations can be somewhat
complicated, but for the special case in which the moving frame A is not rotating, the results
are simple. The absolute velocity of a particle P is

vP = vA + vP/A (1.32)

where vA is the absolute velocity of any point on frame A and vP/A is the velocity of particle
P relative to frame A, that is, the velocity recorded by cameras or other instruments fixed
in frame A and moving with it. Similarly, the absolute acceleration of P is

aP = aA + aP/A (1.33)

where we note again that the frame A is moving in pure translation.
Now consider the general case in which the moving xyz frame (Fig. 1.4) is translating

and rotating arbitrarily. We wish to find the velocity and acceleration of a particle P relative
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8 Introduction to particle dynamics
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Figure 1.4.

to the inertial XYZ frame in terms of its motion with respect to the noninertial xyz frame.
Let the origin O ′ of the xyz frame have a position vector R relative to the origin O of the
XYZ frame. The position of the particle P relative to O ′ is ρ, so the position of P relative
to XYZ is

r = R + ρ (1.34)

The corresponding velocity is

v = ṙ = Ṙ + ρ̇ (1.35)

Now let us use the basic equation (1.12) to express ρ̇ in terms of the motion relative to the
moving xyz frame. We obtain

ρ̇ = (ρ̇)r + ω × ρ (1.36)

where ω is the angular velocity of the xyz frame and (ρ̇)r is the velocity of P relative to
that frame. In detail,

ρ = x i + yj + zk (1.37)

and

(ρ̇)r = ẋ i + ẏj + żk (1.38)

where i, j, k are unit vectors fixed in the xyz frame and rotating with it. From (1.35) and
(1.36), the absolute velocity of P is

v = ṙ = Ṙ + (ρ̇)r + ω × ρ (1.39)
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9 Particle motion

The expression for the inertial acceleration a of the particle is found by first noting that

d

dt
(ρ̇)r = (ρ̈)r + ω × (ρ̇)r (1.40)

d

dt
(ω × ρ) = ω̇ × ρ + ω × ((ρ̇)r + ω × ρ)

(1.41)

Thus, we obtain the important result:

a = v̇ = R̈ + ω̇ × ρ + ω × (ω × ρ) + (ρ̈)r + 2ω × (ρ̇)r (1.42)

where ω is the angular velocity of the xyz frame. The nature of the various terms is as
follows. R̈ is the inertial acceleration of O ′, the origin of the moving frame. The term
ω̇ × ρ might be considered as a tangential acceleration although, more accurately, it rep-
resents a changing tangential velocity ω × ρ due to changing ω. The term ω × (ω × ρ) is
a centripetal acceleration directed toward an axis of rotation through O ′. These first three
terms represent the acceleration of a point coincident with P but fixed in the xyz frame.
The final two terms add the effects of motion relative to the moving frame. The term (ρ̈)r
is the acceleration of P relative to the xyz frame, that is, the acceleration of the particle, as
recorded by instruments fixed in the xyz frame and rotating with it. The final term 2ω × (ρ̇)r
is the Coriolis acceleration due to a velocity relative to the rotating frame. Equation (1.42)
is particularly useful if the motion of the particle relative to the moving xyz frame is simple;
for example, linear motion or motion along a circular path.

Instantaneous center of rotation

If each point of a rigid body moves in planar motion, it is useful to consider a lamina, or
slice, of the body which moves in its own plane (Fig. 1.5). If the lamina does not move in
pure translation, that is, if ω �= 0, then a point C exists in the lamina, or in an imaginary
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Figure 1.5.
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10 Introduction to particle dynamics

extension thereof, at which the velocity is momentarily zero. This is the instantaneous
center of rotation.

Suppose that arbitrary points A and B have velocities vA and vB . The instantaneous
center C is located at the intersection of the perpendicular lines to vA and vB . The velocity
of a point P with a position vector ρ relative to C is

v = ω × ρ (1.43)

whereω is the angular velocity vector of the lamina. Thus, if the location of the instantaneous
center is known, it is easy to find the velocity of any other point of the lamina at that instant.
On the other hand, the acceleration of the instantaneous center is generally not zero. Hence,
the calculation of the acceleration of a general point in the lamina is usually not aided by a
knowledge of the instantaneous center location.

If there is planar rolling motion of one body on another fixed body without any slipping,
the instantaneous center lies at the contact point between the two bodies. As time proceeds,
this point moves with respect to both bodies, thereby tracing a path on each body.

Example 1.1 Awheel of radius r rolls in planar motion without slipping on a fixed convex
surface of radius R (Fig. 1.6a). We wish to solve for the acceleration of the contact point
on the wheel. The contact point C is the instantaneous center, and therefore, the velocity of
the wheel’s center O ′ is

v = rωeφ (1.44)
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Figure 1.6.
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