THE CIRCUITRY OF THE HUMAN SPINAL CORD

Studies of human movement have proliferated in recent years, and there have been many studies of spinal pathways in humans, their role in movement, and their dysfunction in neurological disorders. This comprehensive reference surveys the literature related to the control of spinal cord circuits in human subjects, showing how they can be studied, their role in normal movement, and how they malfunction in disease states. The distinguished authors each bring to the book a lifetime's research and practice in neuroscience, motor control neurobiology, clinical neurology and rehabilitation. Chapters are highly illustrated and consistently organised, reviewing, for each pathway, the experimental background, methodology, organisation and control, role during motor tasks, and changes in patients with CNS lesions. Each chapter concludes with a helpful résumé that can be used independently of the main text to provide practical guidance for clinical studies. This is therefore the last word on the role of the spinal cord in human motor control. It will be essential reading for research workers and clinicians involved in the study, treatment and rehabilitation of movement disorders.

Emmanuel Pierrot-Deseilligny is Professor of Rehabilitation and Clinical Neurophysiology at the Hôpital de la Salpêtrière, University of Paris.

David Burke is Professor and Dean of Research and Development at the College of Health Sciences, University of Sydney.

THE CIRCUITRY OF THE HUMAN SPINAL CORD

Its Role in Motor Control and Movement Disorders

Emmanuel Pierrot-Deseilligny

Hôpital de la Salpêtrière

and

David Burke University of Sydney

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521825818

© Cambridge University Press 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A record for this book is available from the British Library

Library of Congress in Publication data

ISBN-13 978-0-521-82581-8 hardback ISBN-10 0-521-82581-4 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors and publisher can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.

Contents

Preface	page xv
Acknowledgements	xix
List of abbreviations	xxi
1 General methodology	1
The monosynaptic reflex : H reflex and	
tendon jerk	1
Initial studies	1
Underlying principles	2
Basic methodology	4
Limitations related to mechanisms	
acting on the afferent volley of the	
reflex	11
'Pool problems' related to the	
input–output relationship in the	
motoneurone pool	16
Normative data and clinical value	20
Critique: limitations, advantages and	l
conclusions	21
The F wave	21
Underlying principles and basic	
methodology	21
Characteristics of the F wave	22
F wave as a measure of excitability of	Ĩ
motoneurones	23
Clinical applications	24
Conclusions	24
Modulation of the on-going EMG activi	ity 24
Underlying principles and basic	
methodology	24
Changes in the on-going EMG and in	1
the H reflex need not be identical	26

v

vi Contents

Post-stimulus time histograms (PSTHs)	
of the discharge of single motor units	28
Underlying principles	29
Basic methodology	29
Assessment of the timing of the	
changes in firing probability	32
Assessment of the size and significance	
of the peaks and troughs in the PSTH	34
Critique: limitations, advantages and	
conclusions	36
Unitary H reflex	37
Underlying principles and basic	
methodology	37
Significance of changes in CFS	01
produced by conditioning stimuli	38
Critique: limitations, advantages and	00
conclusions	39
Stimulation of the motor cortex	39
EMG responses evoked by cortical	55
stimulation	39
Electrical stimulation	40
	40 42
Magnetic stimulation	42
Critique: advantages, limitations,	
conclusions	44
Spatial facilitation	45
Underlying principles	45
Spatial facilitation judged in the PSTH	
of single units recordings	46
Spatial facilitation judged from	
monosynaptic test reflexes	47
Conclusions	48
Coherence analysis between EMG/EMG	
or EEG/EMG signals	48
Cross-correlation	48
Coherence techniques	48
General conclusions	49
Methods	49
Development	49
Résumé	49
Monosynaptic reflex	49
F wave	52
Modulation of the on-going EMG	53
Post-stimulus time histograms	
(PSTHs) of the discharge of single	
motor units	53
Unitary H reflex	54

	Stimulation of the motor cortex	55
	Spatial facilitation	56
	Coherence analysis in EMG/EMG or	
	EEG/EMG signals	56
	References	56
2	Monosynaptic Ia excitation and	
-	post-activation depression	63
	Background from animal experiments	64
	Initial findings	64
	Pathway of monosynaptic Ia excitation	64
	Distribution of heteronymous	01
	monosynaptic Ia excitation	65
	The stretch reflex	66
	Methodology	66
	Underlying principles	66
	Homonymous monosynaptic Ia	00
	excitation	66
	Heteronymous monosynaptic Ia	00
	excitation	70
	Range of electrical thresholds of Ia	
	afferents when stimulating using	
	surface electrodes	77
	Organisation and pattern of connections	79
	Homonymous monosynaptic Ia	
	excitation	79
	Heteronymous monosynaptic Ia	
	excitation in the lower limb	81
	Heteronymous monosynaptic Ia	
	excitation in the upper limb	83
	Developmental changes in	
	heteronymous Ia connections	86
	Motor tasks and physiological	
	implications	87
	Homonymous monosynaptic Ia	
	excitation. Stretch reflex	
	responses	87
	Heteronymous monosynaptic Ia	
	excitation	92
	Studies in patients and clinical	
	implications	95
	Methodology	95
	Peripheral neuropathies,	
	mononeuropathies and proximal	
	nerve lesions	95
	Spasticity	96

Cambridge University Press
0521825814 - The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders
Emmanuel Pierrot-Deseilligny and David Burke
Frontmatter
More information

Contents	vii

	Post-activation depression at the Ia	
	afferent-motoneurone synapse	96
	Background from animal experiments	96
	Functional significance	97
	Methodology	97
	Post-activation depression in spastic	
	patients	99
	Conclusions	100
	Role of monosynaptic Ia excitation in	
	natural motor tasks	100
	Changes in monosynaptic Ia excitation	
	in patients	101
	Résumé	101
	Importance of studies of Ia	
	connections	101
	Background from animal	
	experiments	101
	Methodology	102
	Organisation and pattern of	
	connections	103
	Motor tasks and physiological	
	implications	104
	Studies in patients and clinical	
	implications	105
	Post-activation depression at the	
	Ia-motoneurone synapse	106
	References	106
3	Muscle spindles and fusimotor drive:	
	microneurography and other	
	techniques	113
	Background from animal experiments	113
	Initial investigations	113
	Current views of spindle structure and	
	function	114
	β (skeleto-fusimotor) neurones	117
	Methodology	117
	Discredited techniques	117
	Acceptable techniques	119
	Critique of the tests to study muscle	
	spindle afferent discharge and	
	fusimotor drive	126
	Organisation and pattern of connections	127
	Background fusimotor drive	127

Effects of cutaneous afferents on

fusimotor neurones

	Corticospinal volleys	130
	Effects of muscle vibration on human	
	muscle spindles	130
	Motor tasks and physiological	
	implications	131
	Reflex reinforcement by remote	
	muscle contraction: the Jendrassik	
	manoeuvre	131
	Effects of voluntary effort on fusimotor	
	drive to the contracting muscle	133
	Possible role of the fusimotor system	
	during normal movement	136
	Studies in patients and clinical	
	implications	138
	Spasticity	139
	Parkinson's disease	140
	Conclusions	141
	Résumé	142
	Background from animal experiments	142
	Methodology	142
	Critique of the tests to study fusimotor	
	drive	143
	Organisation and pattern of	
	connections	143
	Motor tasks and physiological	
	implications	144
	Changes in fusimotor activity in	
	patients	145
	References	145
4	Recurrent inhibition	151
-	Background from animal experiments	151
	Initial findings	151
	General features	151
	Input to Renshaw cells	152
	Projections of Renshaw cells	153
	Conclusions	154
	Methodology	154
	Using homonymous antidromic motor	
	volleys is an invalid technique in	
	humans	154
	The paired H reflex technique to	
	investigate homonymous recurrent	
	inhibition	155
	Methods for investigating	
	heteronymous recurrent inhibition	161

viii Contents

Organisation and pattern of connections	169
Homonymous recurrent projections to	
motoneurones	169
Heteronymous recurrent projections	
to motoneurones in the lower limb	169
Heteronymous recurrent projections	
to motoneurones in the upper limb	170
Recurrent inhibition of interneurones	
mediating reciprocal Ia inhibition	171
Corticospinal suppression of recurrent	
inhibition	173
Motor tasks and physiological	
implications	173
Recurrent inhibition of motoneurones	
of a muscle involved in selective	
contractions	173
Recurrent inhibition during	
contraction of the antagonistic	
muscle	180
Recurrent inhibition of antagonistic	
muscles involved in co-contraction	180
Heteronymous recurrent	
inhibition and heteronymous Ia	
excitation	183
Studies in patients and clinical	
implications	184
Spasticity	184
Patients with other movement	
disorders	187
Conclusions	187
Changes in recurrent inhibition in	
normal motor control	187
Changes in recurrent inhibition and	
pathophysiology of movement	
disorders	188
Résumé	188
Background from animal experiments	188
Methodology	188
Organisation and pattern of	
connections	190
Motor tasks and physiological	
implications	191
Studies in patients and clinical	
implications	192
References	192

5	Reciprocal Ia inhibition	197
	Background from animal experiments	197
	Initial findings	197
	General features	198
	Projections from Ia interneurones	199
	Input to Ia interneurones	199
	Presynaptic inhibition	200
	Conclusions	201
	Methodology	201
	Underlying principles	201
	Inhibition of various responses	201
	Evidence for reciprocal Ia inhibition	204
	Critique of the tests to study reciprocal	
	Ia inhibition	208
	Organisation and pattern of connections	209
	Pattern and strength of reciprocal Ia	
	inhibition at rest at hinge joints	209
	Absence of 'true' reciprocal Ia	
	inhibition at wrist level	211
	Cutaneous facilitation of reciprocal Ia	
	inhibition	214
	Descending facilitation of reciprocal Ia	
	inhibition	215
	Motor tasks and physiological	
	implications	217
	Voluntary contraction of the	
	antagonistic muscle	217
	Reciprocal Ia inhibition directed to	
	motoneurones of the active muscle	223
	Reciprocal Ia inhibition during	
	co-contraction of antagonistic	
	muscles	225
	Changes in reciprocal Ia inhibition	
	during postural activity	227
	Changes in reciprocal Ia inhibition	
	during gait	227
	Studies in patients and clinical	
	implications	229
	Methodology	229
	Spasticity	229
	Patients with cerebral palsy	233
	Patients with hyperekplexia	233
	Patients with Parkinson's disease	233
	Changes in non-reciprocal group I	
	inhibition at wrist level	234

7

Contents	ix

	Conclusions	234
	Role of reciprocal Ia inhibition in	
	motor tasks	234
	Changes in reciprocal Ia inhibition and	
	pathophysiology of movement	
	disorders	235
	Résumé	235
	Background from animal experiments	235
	Methodology	235
	Organisation and pattern of	
	connections	236
	Motor tasks and physiological	
	implications	237
	Studies in patients and clinical	
	implications	238
	References	239
0	The stand second	
6	Ib pathways	244
	Background from animal experiments	244
	Initial findings	244
	Golgi tendon organs and Ib afferents	245
	General features	245
	Projections of Ib afferents	246
	Input to Ib interneurones	247
	Contraction-induced Ib inhibition	248
	Presynaptic inhibition and	240
	post-activation depression	248
	Reflex reversal during fictive	0.40
	locomotion	248
	Methodology	249
	Ib inhibition Evidence for Ib inhibition	249 252
		252 255
	Oligosynaptic group I excitation Critique of the tests to reveal Ib effects	255 255
	-	255 256
	Organisation and pattern of connections Pattern and strength of Ib inhibition	256 256
	0	258
	Oligosynaptic group I excitation Convergence of Ia afferents onto	230
	interneurones mediating Ib	
	inhibition	260
	Effects of low-threshold cutaneous	200
	afferents	261
	Facilitation of Ib inhibition by joint	201
	afferents	263
	Effects from nociceptive afferents	265
	Enceto nom noerceptive anerento	200

Descending effects	265
Multiple convergence onto common	
interneurones	265
Conclusions: necessity for	
convergence of multiple inputs	267
Motor tasks and physiological	
implications	267
Suppression of Ib inhibition to	
voluntarily activated	
motoneurones	268
Ib inhibition directed to	
motoneurones not involved in the	
voluntary contraction	272
Changes in Ib inhibition during	212
walking	273
Studies in patients and clinical	215
implications	275
Ib inhibition	275
	275
Ib excitation in spastic patients Conclusions	
	279
Role of changes in Ib inhibition during motor tasks	270
	279
Changes in Ib pathways and the	
pathophysiology of movement disorders	270
	279
Résumé	279
Background from animal	070
experiments	279
Methodology	280
Organisation and pattern of	
connections	280
Motor tasks and physiological	
implications	281
Studies in patients and clinical	
implications	282
References	283
Group II pathways	288
Background from animal experiments	288
Initial findings	288
Muscle spindle secondary endings and	
group II afferents	289
Synaptic linkage	289
Projections from group II	
interneurones	291

x Contents

Excitatory inputs to group II	
interneurones	291
Inhibitory control systems	292
Methodology	293
Underlying principles	293
Stretch-induced homonymous	
group II excitation of leg and foot	
muscles	293
Electrically induced heteronymous	
group II excitation	293
Evidence for muscle group II excitation	297
Critique of the tests used to reveal	
group II actions	299
Organisation and pattern of connections	302
Peripheral pathway	302
Central pathway of group II excitation	303
Distribution of group II excitation	304
Convergence with other peripheral	
afferents	305
Peripheral inhibitory input to	
interneurones co-activated by group I	
and II afferents	307
Corticospinal control of peripheral	
facilitation	307
Motor tasks and physiological	
implications	310
Voluntary contractions	310
Postural tasks	312
Changes in group II excitation	
during gait	314
Studies in patients and clinical	
implications	320
Peripheral neuropathies	320
Spasticity	320
Parkinson's disease	326
Conclusions	326
Role of group II pathways in natural	
motor tasks	326
Changes in group II excitation and	
pathophysiology of movement	
disorders	328
Résumé	328
Background from animal experiments	328
Methodology	328

	Organisation and pattern of	
	connections	330
	Motor tasks and physiological	000
	implications	331
	Studies in patients and clinical	
	implications	331
	References	332
8	Presynaptic inhibition of Ia terminals	337
	Background from animal experiments	337
	Initial findings	337
	General features	337
	Inputs to PAD interneurones	339
	Selectivity of the control of presynaptic	
	inhibition	339
	Conclusions	340
	Methodology	340
	Discrepancy between the variations in	
	the on-going EMG and those in the	
	H reflex	340
	Activating PAD INs by a conditioning	
	volley to assess their excitability	340
	Background presynaptic inhibition	
	inferred from Ia facilitation of the	
	H reflex	345
	Techniques using single motor units	346
	Conclusions	347
	Organisation and pattern of	
	connections	347
	Projections on Ia terminals directed to	
	different motoneurone types	347
	Organisation in subsets with regard to	
	the target motoneurones of Ia	
	afferents	348
	Peripheral projections to PAD	
	interneurones	348
	Corticospinal projections	350
	Vestibulospinal projections	353
	Tonic level of presynaptic inhibition of	
	Ia terminals	353
	Weak sensitivity of stretch-evoked Ia	
	volleys to presynaptic inhibition	354
	Motor tasks and physiological	
	implications	355

9

Contents xi

Ia terminals on lower limb	
motoneurones involved in voluntary	
contractions	355
Ia terminals directed to motoneurones	
of inactive synergistic muscles	359
Presynaptic inhibition of Ia terminals	
during contraction of antagonistic	
muscles	360
Presynaptic inhibition of Ia terminals	
during contraction of remote	
muscles	361
Changes in presynaptic inhibition of	
Ia terminals on upper limb	
motoneurones	362
Changes in presynaptic inhibition	
during upright stance	363
Changes in presynaptic inhibition	
during gait	365
Studies in patients and clinical	
implications	367
Methodology	367
Spasticity	368
Changes in presynaptic inhibition in	
Parkinson's disease	371
Changes in presynaptic inhibition	
of Ia terminals in patients with	
dystonia	371
Conclusions	372
Role of changes in presynaptic	
inhibition of Ia terminals in normal	
motor control	372
Changes in presynaptic inhibition and	
pathophysiology of movement	
disorders	373
Résumé	373
Background from animal experiments	373
Methodology	374
Organisation and pattern of	
connections	375
Motor tasks and physiological	
implications	376
Studies in patients and clinical	
implications	377
References	378

Cutaneomuscular, withdrawal and	
flexor reflex afferent responses	384
Background from animal experiments	385
Initial findings	385
Cutaneous responses mediated	
through 'private' pathways	385
FRA reflex pathways	388
Conclusions	391
Methodology	391
Underlying principles	391
Stimuli	391
Responses recorded at rest	394
Modulation of motoneurone	
excitability	396
Critique of the tests to study cutaneous	
effects	396
Organisation, connections and	
physiological implications of withdrawal	
reflexes	399
Afferent pathway of withdrawal	
reflexes	399
Central pathway of early withdrawal	
responses	400
Functional organisation of early	
withdrawal reflexes	401
Late withdrawal responses	407
Interactions between different inputs	
in withdrawal reflex pathways	411
Changes in withdrawal reflexes	
during motor tasks	412
Organisation, connections and	
physiological implications of	
cutaneomuscular reflexes evoked by	
non-noxious stimuli	414
The different responses	414
Afferent conduction	418
Central pathway of short-latency	
responses occurring at 'spinal	
latency'	418
Central pathway for long-latency	
effects	421
Projections of cutaneous	
afferents to different types of	
motoneurones	424

xii Contents

427 432 433 hal 436 436 436 437 438 437 438 439 439 440 441 by 442 444
433 hal 433 436 437 437 438 r 438 439 439 439 440 441 by 442 444
433 hal 433 436 437 437 438 r 438 439 439 439 440 441 by 442 444
nal 433 436 437 437 438 r 438 439 439 440 441 by 442 444
433 436 436 437 437 438 438 439 439 440 441 by 442 444
433 436 436 437 437 438 438 439 439 440 441 by 442 444
433 436 436 437 437 438 438 439 439 440 441 by 442 444
436 437 438 r 438 438 439 439 439 440 441 by 442 444
437 437 438 r 438 438 439 439 439 440 441 by 442 444
437 438 r 438 439 439 439 440 441 by 442 444
438 r 438 439 439 440 441 by 442 444
r 438 438 439 439 440 441 by 442 444
438 438 439 439 440 441 by 442 444
438 439 439 440 441 by 442 444
439 439 440 441 by 442 444
439 439 440 441 by 442 444
439 440 441 by 442 444
440 441 by 442 444
440 441 by 442 444
441 by 442 444
by 442 444
442 444
444
445
452
452
ts 452
t 452
454
455
n
455
458
458
458
458 459
459

Inhibition of propriospinal neurones	
via feedback inhibitory	
interneurones	463
Interaction between excitatory and	
inhibitory inputs	467
Organisation of the cervical	
propriospinal system	468
Motor tasks and physiological	
implications	471
Evidence for propriospinal	
transmission of a part of the	
descending command	471
Propriospinally mediated facilitation	
of motoneurones during voluntary	
contraction	474
Functional implications: role of the	
propriospinal relay in normal motor	
control	476
Studies in patients and clinical	
implications	479
Patient with a discrete lesion of the	
spinal cord at the junction C6–C7	
spinal level	479
Stroke patients	481
Patients with Parkinson's disease	484
Conclusions	485
Role of propriospinal transmission of	100
a part of the descending command	485
Changes in propriospinal	100
transmission of the command in	
patients	485
Résumé	486
Background from animal	100
experiments	486
Methodology	486
Organisation and pattern of	400
connections	487
Motor tasks and physiological	407
implications	488
-	400
Studies in patients and clinical	
implications	400
implications	489
The lumbar propriospinal system	489 490
The lumbar propriospinal system Background from animal	490
The lumbar propriospinal system Background from animal experiments	490 490
The lumbar propriospinal system Background from animal	490

Cambridge University Press
0521825814 - The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders
Emmanuel Pierrot-Deseilligny and David Burke
Frontmatter
More information

Contents xiii

Non-monosynaptic excitation of	
voluntarily activated single motor	
units	491
Non-monosynaptic excitation of	
compound EMG responses	493
Rostral location of the relevant	
interneurones	493
Organisation and pattern of	
connections	494
Peripheral excitatory input to	
excitatory lumbar propriospinal	
neurones	494
Peripheral inhibitory inputs to	
lumbar propriospinal neurones	496
Peripheral inhibition of	100
motoneurones	497
Corticospinal control	498
Motor tasks and physiological	100
implications	500
Propriospinally mediated changes in	000
the quadriceps H reflex during weak	
contractions	500
Modulation of the on-going EMG	500
during different motor tasks	502
Functional implications	502
Studies in patients and clinical	002
implications	503
Spasticity	503
Patients with Parkinson's disease	503
Conclusions	505
Résumé	505
Background from animal	000
experiments	505
Methodology	505
Organisation and pattern of	000
connections	505
Motor tasks and physiological	000
implications	506
Studies in patients and clinical	000
implications	506
References	506
	000
Involvement of spinal pathways	
in different motor tasks	511
Isometric tonic contractions	512
Fusimotor drive	512

Cutaneomuscular responses	514
Suppression of transmission in	
inhibitory pathways	514
Conclusions	515
Flexion-extension movements	
involving hinge joints	515
Afferent discharges accompanying a	
voluntary flexion-extension	
movement	515
Excitation of active motoneurones	516
Control of different features of the	
movement	517
Recruitment of different types of	
motor units	518
Inhibition of antagonists	519
Timing of the different effects	520
Different strategies for proximal and	
distal movements	521
Conclusions	522
Movements involving ball joints	522
Different organisation of the	
human spinal circuitry at wrist	
level	522
Non-reciprocal group I inhibition	
during wrist movements	524
Changes in presynaptic	
inhibition on Ia terminals on wrist	
motoneurones	526
Other spinal pathways possibly	020
involved in wrist movements	526
Co-ordinated activation of various	020
synergies	527
Where are motor synergies laid	521
down?	527
Synergies based on 'hardwired'	521
spinal connections	528
-	
Cervical propriospinal system	529
State-dependent modulation of sensory feedback	520
2	530
Motor learning	530
Co-contractions of antagonists at the	501
same joint	531
Control of spinal pathways during	503
co-contraction of antagonists	531
Control of the decreased inhibition	-00
between antagonists	533

11

xiv Contents

	Joint stiffness	533	
	Control of the stretch reflex at hinge		
	joints	534	
	Control of the excitation at ball joints	534	
	Conclusions	535	
	Maintenance of bipedal stance	535	
	Normal quiet standing	535	
	Unstable postural tasks		
	requiring prolonged muscle		
	contractions	537	
	Responses to fast transient		
	perturbations of stance	538	
	Gait	542	
	Characteristics of human walking	542	
	Changes in transmission in spinal		
	pathways during normal walking	545]
	Reactions to external perturbations	547	
	Running, hopping, landing	550	
	References	550	
12	The pathophysiology of spasticity		
	and parkinsonian rigidity	556	
	Spasticity	556	
	What is spasticity? What is it not?	557]
	Spasticity and animal decerebrate		
	rigidity are unrelated	560	Index

3	Possible spinal mechanisms	
	underlying the pathophysiology	
ł	of spasticity at rest	560
ł	Why do spinal pathways	
5	malfunction?	571
5	Changes in the intrinsic	
5	properties of muscles fibres	
	(contracture)	572
	Changes in spinal pathways during	
7	movements in spasticity	573
	Pathophysiology of spasticity after	
3	cerebral lesions	575
2	Pathophysiology of spasticity after	
2	spinal lesions	580
	Conclusions	582
5	Parkinson's disease	582
7	Possible mechanisms underlying	
)	Parkinsonian rigidity	582
)	Transmission in spinal pathways	
	at rest	584
	Alterations of transmission	
	in spinal pathways during motor	
6	tasks	589
6	Conclusions	592
7	References	592
)	Index	601

Preface

Spinal mechanisms in the control of movement. In the 1910-1920s Paul Hoffmann demonstrated that percutaneous electrical stimulation of the posterior tibial nerve in human subjects produced a synchronised response in the soleus muscle with the same central delay as the Achilles tendon jerk. This landmark study long preceded Lloyd's identification of the corresponding pathway in the cat (1943). Subsequently, much of the primary knowledge about the spinal circuitry has come from animal experiments, but human studies have retained a unique role: the ability to shed direct light on how spinal mechanisms are used in the control of voluntary movement. In the 1940-1950s, many spinal pathways were analysed in 'reduced' animal preparations with regard to their synaptic input and to their projections to other neurones.

Modern views about spinal pathways began to emerge when Anders Lundberg and colleagues showed in the 1960s and 1970s that, in the cat, each set of spinal interneurones receives extensive convergence from different primary afferents and descending tracts, and that the integrative function of spinal interneurones allows the motoneurones to receive a final command that has been updated at a premotoneuronal level. Methods have now been developed to enable indirect but nevertheless valid measurements of spinal interneuronal activity in human subjects, and these techniques have demonstrated reliability, particularly when congruent results are obtained with independent methods. Their use has allowed elucidation of how the brain modulates the activity of specific spinal

xvi Preface

interneurones to control movement. This, together with the abnormalities of motor control resulting from lesions in the central nervous system (CNS) and the underlying pathophysiology of movement disorders, is the subject of this book.

Over recent years, reappraisal of the role of direct cortico-motoneuronal projections in higher primates including humans has led to the view that the control of movement resides in the motor cortical centres that drive spinal motoneurone pools to produce the supraspinally crafted movement. This view belies the complex interneuronal machinery that resides in the spinal cord. It is a thesis of this book that the final movement is only that part of the supraspinally derived programme that the spinal cord circuitry deems appropriate. While the capacity of the spinal cord to generate or sustain even simple movements, particularly in human subjects, is limited, the influence that it plays in shaping the final motor output should not be underestimated. The recent recording by Eberhard Fetz and colleagues from spinal interneurones during, and before, voluntary movement in the awake monkey well illustrates this role of the spinal cord. A goal of rehabilitation of patients with upper motor neurone lesions should be to harness the residual motor capacities of the spinal cord and, for this to occur, the information in this book is critical. The techniques described in this book will also allow assessment in patients of whether any regeneration is 'appropriate'.

Studying motor control in human subjects. There has been an explosion of studies on human movement and of the dysfunction that accompanies different neurological disorders, and the prime rationale for this book is to summarise the literature related to the control of spinal cord circuitry in human subjects. Of necessity, only some interneuronal circuits can be studied reliably in human subjects, and no one book can provide a complete overview of the role of spinal circuitry in normal and pathological movement: there are no data for the many circuits that cannot yet be studied in human subjects, let alone the cat. This book is intended to provide a comprehensive account of (i) how some well-recognised and defined circuits can be studied.

ied, (ii) how they are used in normal movement, and(iii) how they malfunction in disease states.

It is as well to retain some reservations about conclusions of studies in human subjects: (i) All studies on human subjects are indirect and cannot be controlled as rigorously as in the cat. (ii) Some pathways cannot be explored quantitatively, because their effects are contaminated by effects due to other afferents (e.g. effects due to group II afferents are always contaminated by group I effects whatever testing method is used). (iii) For methodological reasons (stability of the stimulating and recording conditions), isometric voluntary contractions have been the main motor tasks during which changes in transmission in spinal pathways have been investigated. However, recent technological advances now allow the investigation of spinal pathways during natural movements, including reaching and walking. (iv) With transcranial magnetic stimulation of the motor cortex, it is possible to investigate the corticospinal control of spinal interneurones, but there are little data for other descending controls from basal ganglia and the brainstem, other than vestibular projections. (v) In patients, spinal circuitry has usually been explored under resting conditions, but the functionally important deficits may appear only during attempted movements (reinforcement of spasticity during movement, dystonia).

Methodological advances. The H reflex has served motor control well but, over the last 30 years, other techniques have been developed to allow more accurate probing of spinal pathways in human subjects, providing data that can validate and extend the findings from H reflex studies. As a result, knowledge of the role of spinal pathways in normal and pathological motor control has increased greatly, and this provides a further motivation for this book. For example, the use of post-stimulus time histograms has allowed the investigation of single motoneurones in human subjects, the technique of spatial facilitation allows the exploration of the convergence of different volleys on spinal interneurones, and transcortical stimulation of the motor cortex allows the corticospinal control of spinal pathways to be investigated. This book details this newer knowledge for the use of

those who have an interest in the subject but who have not had time to read the rapidly accumulating original literature. Inevitably, there will be inconsistencies in conclusions from studies on intact human subjects who can respond to a stimulus. Greater validity comes from using a number of independent techniques to demonstrate the same finding, as is emphasised in the following chapters. Inconsistent or irreproducible findings can lead to controversy about the nature and the functional role of a specific pathway in normal subjects and in patients, and such inconsistencies are presented, and the validity of the method(s) used to explore that pathway is addressed. Possible future directions for the research are discussed.

Organisation of individual chapters. The different spinal pathways for which there are reliable and non-invasive methods of investigation are considered with, for each pathway:

- (i) A brief background from animal experiments. Human investigations are indirect and it is crucial to know the essential characteristics of each pathway described in animal experiments with recordings from motoneurones and/or interneurones. Caution should always be taken in extrapolating from data obtained in 'reduced preparations' (anaesthetised, decerebrate or spinalised animals) to awake intact human subjects, but the validation of a technique for exploring a given pathway may require controls only possible in animal experiments and is more credible when there is a close analogy with animal experiments.
- (ii) A critical description of the available method(s) that have been used to explore the relevant pathways selectively. Methodological details allowing the reader to use reliable methods are described.
- (iii) The organisation and descending control (in particular corticospinal) of these pathways in human subjects. The basic organisation of each pathway may well be the same in humans and cats, but the strength of the projections of individual spinal pathways on different motoneurone pools and their descending control have

been the subject of phylogenetic adaptations to different motor repertoires. For the human lower limb, more elaborate reflex assistance is required for bipedal stance and gait. That there has been this phylogenetic adaptation argues that spinal pathways have a functional role in human subjects and are not evolutionary relics.

- (iv) The changes in transmission in these pathways during various motor tasks. How spinal reflex pathways are used in motor control cannot be deduced from experiments on 'reduced' animal preparations. It requires experiments performed during natural movements, as can be done in humans. This has been one major contribution of human studies to the understanding of motor control physiology. Thus, even though many of the conclusions are speculative, this book gives a large place to the probable functional implications of the described changes in transmission in spinal pathways during movement.
- (v) Changes in transmission in these pathways in patients with various lesions of the CNS. This has provided new insights about the pathophysiology of the movement disorder in these patients.

Overall organisation of the book. The general methodologies that are used for investigating pathways are considered in a first chapter with, for each method, its advantages and its disadvantages. There is a risk that starting with a technical chapter would dissuade the non-specialist reader from delving further into the book. This *initial chapter* is useful to understand fully the particular techniques used for the investigation of the different pathways, *but it is not essential for comprehension of the following chapters*.

For those who wish to know how methods and concepts have evolved over the years and why some interpretations were erroneous even if, at the time, influential, the methods are described in detail, with their limits and caveats, and the results obtained and their interpretation(s) are critically evaluated in each chapter. Because human studies are fraught with

xviii Preface

technical difficulties, much space has been alloted to methods and potential pitfalls.

For those who want to get to the gist of the matter reasonably quickly each chapter terminates with a résumé of its salient points. The résumés can be used on their own without reference to the detailed text. They give a practical 'recipe' on the choice of the appropriate technique and its proper use in routine clinical studies, together with data on the possible functional role of the particular pathway in motor control and in the pathophysiology of movement disorders. The final two chapters summarise and synthesise the changes in transmission in spinal pathways during movement and how these changes contribute to motor control, and spinal mechanisms underlying spasticity and motor impairment in patients with Parkinson's disease. In these chapters, the physiological (Chapter 11) and pathophysiological (Chapter 12) roles of different spinal pathways, considered in the previous chapters, are presented with another approach: (i) how different motor tasks are controlled by spinal pathways (Chapter 11); (ii) how these pathways contribute to motor disorders (Chapter 12).

Acknowledgements

This book is dedicated to Evelyne and Katre. It would not have been possible if our wives had not appreciated the importance for us of bringing together in a single volume the accumulated knowledge on spinal mechanisms in the control of movement. They have encouraged, supported and tolerated us, understanding even when we were unreasonable, putting life on hold so that we could work.

We are greatly indebted to Paolo Cavallari, Jean-Michel Gracies, Hans Hultborn, Léna Jami, Stacey Jankelowitz, Elzbieta Jankowska, Dominique Mazevet, Leonor Mazières, Jens Nielsen, Uwe Proske and Marco Schieppati who have given generously of their time to read and comment on drafts of various chapters. Above all, particularly special thanks go to Paolo, Léna and Leonor who read the entire text.

Geneviève Bard and Mary Sweet have laboured long and hard in getting the text into presentable order, and we are grateful for their friendship, loyalty and meticulous attention to detail over our many years of association.

Finally, the studies summarised in the book represent the intellectual activity of collaborators, colleagues, students and staff. We are grateful to everyone who contributed to these studies, and to our colleagues and their publishers who have allowed us to reproduce Figures from their papers. Finally, the authors would like to thank INSERM and NH&MRC for support of their work.

Abbreviations

- 110	- 1 1 1
5-HT	5-hydroxytryptophan
ACh	acetylcholine
Aff.	affected
AHP	afterhyperpolarisation
APB	abductor pollicis brevis
Bi	biceps
CFS	critical firing stimulus
Co FRA	contralateral FRA
CPN	common peroneal nerve
CS or (Cort. sp.)	corticospinal
CUSUM	cumulative sum
Cut	cutaneous
Desc.	descending
DPN	deep peroneal nerve
ECR	extensor carpi radialis
ED	extensor digitorum
EDB	extensor digitorum brevis
EDL	extensor digitorum longus
EHB	extensor hallucis brevis
EHL	extensor hallucis longus
EMG	electromyogram
EPSP	excitatory post-synaptic potential
Erect sp	erector spinae
Exc	excitatory
FCR	flexor carpi radialis
FCU	flexor carpi ulnaris
FDB	flexor digitorum brevis
FDI	first dorsal interosseus
FDS	flexor digitorum superficialis
FHB	flexor hallucis brevis
FN	femoral nerve
FPL	flexor pollicis longus
_	I

xxii List of abbreviations

		DI	
FRA	flexion reflex afferent	PL	peroneus longus
Glut Max (or Glut)	gluteus maximus	PN	propriospinal neurone
GM	gastrocnemius medialis	Ps	psoas
GS	gastrocnemius-soleus	PSP	post-synaptic potential
GTO	Golgi tendon organ	PT	perception threshold
Н	hamstrings	PTN	posterior tibial nerve
IN	interneurone	Q	quadriceps
Inhib.	inhibitory	RC	Renshaw cell
IPSP	inhibitory post-synaptic	Rect Abd	rectus abdominis
	potential	RS or (Ret. Sp).	reticulo-spinal
ISI	inter-stimulus interval	Rubr. sp.	rubro-spinal
L-Ac	L-acetylcarnitine	SLR	short-latency response
LC (or Loc. coer).	locus coeruleus	Sol	soleus
MC	musculo-cutaneous	SPN	superficial peroneal nerve
MEP	motor evoked potential	SSEP	somatosensory evoked potential
MLR	medium-latency response	Stim.	stimulus
MN	motoneurone	TA	tibialis anterior
MRI	magnetic resonance imaging	TFL	tensor fasciae latae
MT	motor threshold	TMS	trans cranial magnetic stimulation
MVC	maximal voluntary	TN	tibial nerve
	contraction	Tri	triceps brachii
NA	noradrenaline	Unaff.	unaffected
NRM	nucleus raphe magnus	VI	vastus intermedius
PAD	primary afferent depolarisation	VL	vastus lateralis
Per Brev	peroneus brevis	VS	vestibulo-spinal