
Chapter 1
Introduction

Computing has become a necessary means of scientific study. Even in ancient
times, the quantification of gained knowledge played an essential role in the
further development of mankind. In this chapter, we will discuss the role of
computation in advancing scientific knowledge and outline the current status of
computational science. We will only provide a quick tour of the subject here.
A more detailed discussion on the development of computational science and
computers can be found in Moreau (1984) and Nash (1990). Progress in parallel
computing and global computing is elucidated in Koniges (2000), Foster and
Kesselman (2003), and Abbas (2004).

1.1 Computation and science

Modern societies are not the only ones to rely on computation. Ancient societies
also had to deal with quantifying their knowledge and events. It is interesting to see
how the ancient societies developed their knowledge of numbers and calculations
with different means and tools. There is evidence that carved bones and marked
rocks were among the early tools used for recording numbers and values and for
performing simple estimates more than 20 000 years ago.

The most commonly used number system today is the decimal system, which
was in existence in India at least 1500 years ago. It has a radix (base) of 10.
A number is represented by a string of figures, with each from the ten available
figures (0–9) occupying a different decimal level. The way a number is represented
in the decimal system is not unique. All other number systems have similar
structures, even though their radices are quite different, for example, the binary
system used on all digital computers has a radix of 2. During almost the same era
in which the Indians were using the decimal system, another number system using
dots (each worth one) and bars (each worth five) on a base of 20 was invented
by the Mayans. A symbol that looks like a closed eye was used for zero. It is
still under debate whether the Mayans used a base of 18 instead of 20 after the
first level of the hierarchy in their number formation. They applied these dots
and bars to record multiplication tables. With the availability of those tables, the
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Fig. 1.1 The Mayan
number system: (a)
examples of using dots
and bars to represent
numbers; (b) an example
of recording
multiplication.
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Fig. 1.2 A circle inscribed
and circumscribed by two
hexagons. The inside
polygon sets the lower
bound while the outside
polygon sets the upper
bound of the
circumference.

Mayans studied and calculated the period of lunar eclipses to a great accuracy.
An example of Mayan number system is shown in Fig. 1.1.

One of the most fascinating numbers ever calculated in human history is π ,
the ratio of the circumference to the diameter of the circle. One of the methods of
evaluating π was introduced by Chinese mathematician Liu Hui, who published
his result in a book in the third century. The circle was approached and bounded
by two sets of regular polygons, one from outside and another from inside of
the circle, as shown in Fig. 1.2. By evaluating the side lengths of two 192-sided
regular polygons, Liu found that 3.1410 < π < 3.1427, and later he improved
his result with a 3072-sided inscribed polygon to obtain π � 3.1416. Two hun-
dred years later, Chinese mathematician and astronomer Zu Chongzhi and his son
Zu Gengzhi carried this type of calculation much further by evaluating the side
lengths of two 24 576-sided regular polygons. They concluded that 3.141 592 6 <

π < 3.141 592 7, and pointed out that a good approximation was given by
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1.1 Computation and science 3

π � 355/113 = 3.141 592 9 . . . . This is extremely impressive considering the
limited mathematics and computing tools that existed then. Furthermore, no one
in the next 1000 years did a better job of evaluating π than the Zus.

The Zus could have done an even better job if they had had any additional help
in either mathematical knowledge or computing tools. Let us quickly demonstrate
this statement by considering a set of evaluations on polygons with a much smaller
number of sides. In general, if the side length of a regular k-sided polygon is
denoted as lk and the corresponding diameter is taken to be the unit of length,
then the approximation of π is given by

πk = klk . (1.1)

The exact value of π is the limit of πk as k → ∞. The value of πk obtained from
the calculations of the k-sided polygon can be formally written as

πk = π∞ + c1

k
+ c2

k2
+ c3

k3
+ · · · , (1.2)

where π∞ = π and ci , for i = 1, 2, . . . ,∞, are the coefficients to be determined.
The expansion in Eq. (1.2) is truncated in practice in order to obtain an approxi-
mation of π . Then the task left is to solve the equation set

n∑

j=1

ai j xj = bi , (1.3)

for i = 1, 2, . . . , n, if the expansion in Eq. (1.2) is truncated at the (n − 1)th
order of 1/k with ai j = 1/k j−1

i , x1 = π∞, xj = c j−1 for j > 1, and bi = πki . The
approximation of π is then given by the approximate π∞ obtained by solving the
equation set. For example, if π8 = 3.061 467, π16 = 3.121 445, π32 = 3.136 548,
and π64 = 3.140 331 are given from the regular polygons inscribing the circle, we
can truncate the expansion at the third order of 1/k and then solve the equation
set (see Exercise 1.1) to obtain π∞, c1, c2, and c3 from the given πk . The approxi-
mation of π � π∞ is 3.141 583, which has five digits of accuracy, in comparison
with the exact value π = 3.141 592 65 . . . . The values of πk for k = 8, 16, 32, 64
and the extrapolation π∞ are all plotted in Fig. 1.3. The evaluation can be further
improved if we use more πk or ones with higher values of k. For example, we
obtain π � 3.141 592 62 if k = 32, 64, 128, 256 are used. Note that we are get-
ting the same accuracy here as the evaluation of the Zus with polygons of 24 576
sides.

In a modern society, we need to deal with a lot more computations daily.
Almost every event in science or technology requires quantification of the data in-
volved. For example, before a jet aircraft can actually be manufactured, extensive
computer simulations in different flight conditions must be performed to check
whether there is a design flaw. This is not only necessary economically, but may
help avoid loss of lives. A related use of computers is in the reconstruction of an
unexpectred flight accident. This is extremely important in preventing the same
accident from happening again. A more common example is found in the cars
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Fig. 1.3 The values of πk,
with k = 8, 16, 32, and 64,
plotted together with the
extrapolated π∞.

that we drive, which each have a computer that takes care of the brakes, steering
control, and other critical components. Almost any electronic device that we use
today is probably powered by a computer, for example, a digital thermometer,
a DVD (digital video disc) player, a pacemaker, a digital clock, or a microwave
oven. The list can go on and on. It is fair to say that sophisticated computations
delivered by computers every moment have become part of our lives, permanently.

1.2 The emergence of modern computers

The advantage of having a reliable, robust calculating device was realized a long
time ago. The early abacus, which was used for counting, was in existence with
the Babylonians 4000 years ago. The Chinese abacus, which appeared at least
3000 years ago, was perhaps the first comprehensive calculating device that was
actually used in performing addition, subtraction, multiplication, and division
and was employed for several thousand years. A traditional Chinese abacus is
made of a rectangular wooden frame and a bar going through the upper middle
of the frame horizontally. See Fig. 1.4. There are thirteen evenly spaced vertical
rods, each representing one decimal level. More rods were added to later versions.
On each rod, there are seven beads that can be slid up and down with five of them
held below the middle bar and two above. Zero on each rod is represented by the
beads below the middle bar at the very bottom and the beads above at the very
top. The numbers one to four are repsented by sliding one–four beads below the
middle bar up and five is given be sliding one bead above down. The numbers six
to nine are represented by one bead above the middle bar slid down and one–four
beads below slid up. The first and last beads on each rod are never used or are
only used cosmetically during a calculation. The Japanese abacus, which was
modeled on the Chinese abacus, in fact has twenty-one rods, with only five beads
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Fig. 1.4 A sketch of a
Chinese abacus with
the number 15 963.82
shown.

on each rod, one above and four below the middle bar. Dots are marked on the
middle bar for the decimal point and for every four orders (ten thousands) of
digits. The abacus had to be replaced by the slide rule or numerical tables when
a calcualtion went beyond the four basic operations even though later versions
of the Chinese abacus could also be used to evaluate square roots and cubic
roots.

The slide rule, which is considered to be the next major advance in calculat-
ing devices, was introduced by the Englishmen Edmund Gunter and Reverend
William Oughtred in the mid-seventeenth century based on the logarithmic table
published by Scottish mathematician John Napier in a book in the early seven-
teenth century. Over the next several hundred years, the slide rule was improved
and used worldwide to deliver the impressive computations needed, especially
during the Industrial Revolution. At about the same time as the introduction of the
slide rule, Frenchman Blaise Pascal invented the mechanical calculating machine
with gears of different sizes. The mechanical calculating machine was enhanced
and applied extensively in heavy-duty computing tasks before digital computers
came into existence.

The concept of an all-purpose, automatic, and programmable computing ma-
chine was introduced by British mathematician and astronomer Charles Babbage
in the early nineteenth century. After building part of a mechanical calculating
machine that he called a difference engine, Babbage proposed constructing a
computing machine, called an analytical engine, which could be programmed to
perform any type of computation. Unfortunately, the technology at the time was
not advanced enough to provide Babbage with the necessary machinery to realize
his dream. In the late nineteenth century, Spanish engineer Leonardo Torres y
Quevedo showed that it might be possible to construct the machine conceived
earlier by Babbage using the electromechanical technology that had just been
developed. However, he could not actually build the whole machine either, due
to lack of funds. American engineer and inventor Herman Hollerith built the
very first electromechanical counting machine, which was commisioned by the
US federal government for sorting the population in the 1890 American census.
Hollerith used the profit obtained from selling this machine to set up a com-
pany, the Tabulating Machine Company, the predecessor of IBM (International
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6 Introduction

Business Machines Corporation). These developments continued in the early
twentieth century. In the 1930s, scientists and engineers at IBM built the first
difference tabulator, while researchers at Bell Laboratories built the first relay
calculator. These were among the very first electromechanical calculators built
during that time.

The real beginning of the computer era came with the advent of electronic
digital computers. John Vincent Atanasoff, a theoretical physicist at the Iowa
State University at Ames, invented the electronic digital computer between 1937
and 1939. The history regarding Atanasoff’s accomplishment is described in
Mackintosh (1987), Burks and Burks (1988), and Mollenhoff (1988). Atanasoff
introduced vacuum tubes (instead of the electromechanical devices used ear-
lier by other people) as basic elements, a separated memory unit, and a scheme
to keep the memory updated in his computer. With the assistance of Clifford
E. Berry, a graduate assistant, Atanasoff built the very first electronic computer
in 1939. Most computer history books have cited ENIAC (Electronic Numeri-
cal Integrator and Computer), built by John W. Mauchly and J. Presper Eckert
with their colleagues at the Moore School of the University of Pennsylvania in
1945, as the first electronic computer. ENIAC, with a total mass of more than
30 tons, consisited of 18 000 vacuum tubes, 15 000 relays, and several hundred
thousand resistors, capacitors, and inductors. It could complete about 5000 ad-
ditions or 400 multiplications in one second. Some very impressive scientific
computations were performed on ENIAC, including the study of nuclear fis-
sion with the liquid drop model by Metropolis and Frankel (1947). In the early
1950s, scientists at Los Alamos built another electronic digital computer, called
MANIAC I (Mathematical Analyzer, Numerator, Integrator, and Computer),
which was very similar to ENIAC. Many important numerical studies, includ-
ing Monte Carlo simulation of classical liquids (Metropolis et al., 1953), were
completed on MANIAC I.

All these research-intensive activities accomplished in the 1950s showed that
computation was no longer just a supporting tool for scientific research but rather
an actual means of probing scientific problems and predicting new scientific
phenomena. A new branch of science, computational science, was born. Since
then, the field of scientific computing has developed and grown rapidly.

The computational power of new computers has been increasing exponentially.
To be specific, the computing power of a single computer unit has doubled almost
every 2 years in the last 50 years. This growth followed the observation of Gordon
Moore, co-founder of Intel, that information stored on a given amount of silicon
surface had doubled and would continue to do so in about every 2 years since the
introduction of the silicon technology (nicknamed Moore’s law). Computers with
transistors replaced those with vacuum tubes in the late 1950s and early 1960s,
and computers with very-large-scale integrated circuits were built in the 1970s.
Microprocessors and vector processors were built in the mid-1970s to set the
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1.3 Computer algorithms and languages 7

stage for personal computing and supercomputing. In the 1980s, microprocessor-
based personal computers and workstations appeared. Now they have penetrated
all aspects of our lives, as well as all scientific disciplines, because of their afford-
ability and low maintenance cost. With technological breakthroughs in the RISC
(Reduced Instruction Set Computer) architecture, cache memory, and multiple
instruction units, the capacity of each microprocessor is now larger than that of a
supercomputer 10 years ago. In the last few years, these fast microprocessors have
been combined to form parallel or distributed computers, which can easily deliver
a computing power of a few tens of gigaflops (109 floating-point operations per
second). New computing paradigms such as the Grid were introduced to utilize
computing resources on a global scale via the Internet (Foster and Kesselman,
2003; Abbas, 2004).

Teraflop (1012 floating-point operations per second) computers are now emerg-
ing. For example, Q, a newly installed computer at the Los Alamos National
Laboratory, has a capacity of 30 teraflops. With the availability of teraflop com-
puters, scientists can start unfolding the mysteries of the grand challenges, such as
the dynamics of the global environment; the mechanism of DNA (deoxyribonu-
cleic acid) sequencing; computer design of drugs to cope with deadly viruses;
and computer simulation of future electronic materials, structures, and devices.
Even though there are certain problems that computers cannot solve, as pointed
out by Harel (2000), and hardware and software failures can be fatal, the human
minds behind computers are nevertheless unlimited. Computers will never replace
human beings in this regard and the quest for a better understanding of Nature
will go on no matter how difficult the journey is. Computers will certainly help
to make that journey more colorful and pleasant.

1.3 Computer algorithms and languages

Before we can use a computer to solve a specific problem, we must instruct the
computer to follow certain procedures and to carry out the desired computational
task. The process involves two steps. First, we need to transform the problem,
typically in the form of an equation, into a set of logical steps that a computer
can follow; second, we need to inform the computer to complete these logical
steps.

Computer algorithms

The complete set of the logical steps for a specific computational problem is called
a computer or numerical algorithm. Some popular numerical algorithms can be
traced back over a 100 years. For example, Carl Friedrich Gauss (1866) pub-
lished an article on the FFT (fast Fourier transform) algorithm (Goldstine, 1977,
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8 Introduction

pp. 249–53). Of course, Gauss could not have envisioned having his algorithm
realized on a computer.

Let us use a very simple and familiar example in physics to illustrate how a
typical numerical algorithm is constructed. Assume that a particle of mass m is
confined to move along the x axis under a force f (x). If we describe its motion
with Newton’s equation, we have

f = ma = m
dv

dt
, (1.4)

where a and v are the acceleration and velocity of the particle, respectively, and
t is the time. If we divide the time into small, equal intervals τ = ti+1 − ti , we
know from elementary physics that the velocity at time ti is approximately given
by the average velocity in the time interval [ti , ti+1],

vi � xi+1 − xi

ti+1 − ti
= xi+1 − xi

τ
; (1.5)

the corresponding acceleration is approximately given by the average acceleration
in the same time interval,

ai � vi+1 − vi

ti+1 − ti
= vi+1 − vi

τ
, (1.6)

as long as τ is small enough. The simplest algorithm for finding the position and
velocity of the particle at time ti+1 from the corresponding quantities at time ti
is obtained after combining Eqs. (1.4), (1.5), and (1.6), and we have

xi+1 = xi + τ vi , (1.7)

vi+1 = vi + τ

m
fi , (1.8)

where fi = f (xi ). If the initial position and velocity of the particle are given and
the corresponding quantities at some later time are sought (the initial-value prob-
lem), we can obtain them recursively from the algorithm given in Eqs. (1.7) and
(1.8). This algorithm is commonly known as the Euler method for the initial-value
problem. This simple example illustrates how most algorithms are constructed.
First, physical equations are transformed into discrete forms, namely, difference
equations. Then the desired physical quantities or solutions of the equations at
different variable points are given in a recursive manner with the quantities at a
later point expressed in terms of the quantities from earlier points. In the above
example, the position and velocity of the particle at ti+1 are given by the position
and velocity at ti , provided that the force at any position is explicitly given by a
function of the position. Note that the above way of constructing an algorithm is
not limited to one-dimensional or single-particle problems. In fact, we can im-
mediately generalize this algorithm to two-dimensional and three-dimensional
problems, or to the problems involving more than one particle, such as the
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1.3 Computer algorithms and languages 9

motion of a projectile or a system of three charged particles. The generalized
version of the above algorithm is

Ri+1 = Ri + τVi , (1.9)
Vi+1 = Vi + τAi , (1.10)

where R = (r1, r2, . . . , rn) is the position vector of all the n particles in the
system; V = (v1, v2, . . . , vn) and A = (a1, a2, . . . , an), with a j = f j/m j for j =
1, 2, . . . , n, are the corresponding velocity and acceleration vectors, respectively.

From a theoretical point of view, the Turing machine is an abstract represen-
tation of a universal computer and also a device to autopsy any algorithm. The
concept was introduced by Alan Turing (1936–7) with a description of the uni-
versal computer that consists of a read and write head and a tape with an infinite
number of units of binaries (0 or 1). The machine is in a specified state for a
given moment of operation and follows instructions prescribed by a finite table.
A computer algorithm is a set of logical steps that can be achieved by the Turing
machine. Logical steps that cannot be achieved by the Turing machine belong to
the class of problems that are not solvable by computers. Some such unsolvable
problems are discussed by Harel (2000).

The logical steps in an algorithm can be sequential, parallel, or iterative (im-
plicit). How to utilize the properties of a given problem in constructing a fast and
accurate algorithm is a very important issue in computational science. It is hoped
that the examples discussed in this book will help students learn how to establish
efficient and accurate algorithms as well as how to write clean and structured
computer programs for most problems encountered in physics and related fields.

Computer languages

Computer programs are the means through which we communicate with comput-
ers. The very first computer program was written by Ada Byron, the Countess of
Lovelace, and was intended for the analytical engine proposed by Babbage in the
mid-1840s. To honor her achievement, an object-oriented programming language
(Ada), initially developed by the US military, is named after her. A computer pro-
gram or code is a collection of statements, typically written in a well-defined com-
puter programming language. Programming languages can be divided into two
major categories: low-level languages designed to work with the given hardware,
and high-level languages that are not related to any specific hardware.

Simple machine languages and assembly languages were the only ones avail-
able before the development of high-level languages. A machine language is
typically in binary form and is designed to work with the unique hardware of a
computer. For example, a statement, such as adding or multiplying two integers,
is represented by one or several binary strings that the computer can recognize
and follow. This is very efficient from computer’s point of view, but extremely
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10 Introduction

labor-intensive from that of a programmer. To remember all the binary strings
for all the statements is a nontrivial task and to debug a program in binaries is
a formidable task. Soon after the invention of the digital computer, assembly
languages were introduced to increase the efficiency of programming and debug-
ging. They are more advanced than machine languages because they have adopted
symbolic addresses. But they are still related to a certain architecture and wiring
of the system. A translating device called an assembler is needed to convert an
assembly code into a native machine code before a computer can recognize the
instructions. Machine languages and assembly languages do not have portability;
a program written for one kind of computers could never be used on others.

The solution to such a problem is clearly desirable. We need high-level lan-
guages that are not associated with the unique hardware of a computer and that can
work on all computers. Ideal programming languages would be those that are very
concise but also close to the logic of human languages. Many high-level program-
ming languages are now available, and the choice of using a specific programming
language on a given computer is more or less a matter of personal taste. Most
high-level languages function similarly. However, for a researcher who is working
at the cutting edge of scientific computing, the speed and capacity of a computing
system, including the efficiency of the language involved, become critical.

A modern computer program conveys the tasks of an algorithm for a compu-
tational problem to a computer. The program cannot be executed by the computer
before it is translated into the native machine code. A translator, a program called
a compiler, is used to translate (or compile) the program to produce an executable
file in binaries. Most compilers also have an option to produce an objective file
first and then link it with other objective files and library routines to produce a
combined executable file. The compiler is able to detect most errors introduced
during programming, that is, the process of writing a program in a high-level
language. After running the executable program, the computer will output the
result as instructed.

The newest programming language that has made a major impact in the last few
years is Java, an object-oriented, interpreted language. The strength of Java lies
in its ability to work with web browsers, its comprehensive GUI (graphical user
interface), and its built-in security and network support. Java is a truly universal
language because it is fully platform-independent: “write once, run everywhere”
is the motto that Sun Microsystems uses to qualify all the features in Java. Both
the source code and the compiled code can run on any computer that has Java
installed with exactly the same result. The Java compiler converts the source code
(file.java) into a bytecode (file.class), which contains instructions in
fixed-length byte strings and can be interpreted/executed on any computer under
the Java interpreter, called JVM (Java Virtual Machine).

There are many advantages in Java, and its speed in scientific programming
has been steadily increased over the last few years. At the moment, a carefully
written Java program, combined with static analysis, just-in-time compiling, and
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