THE ART OF MOLECULAR DYNAMICS SIMULATION

The extremely powerful technique of molecular dynamics simulation involves solving the classical many-body problem in contexts relevant to the study of matter at the atomistic level. Since there is no alternative approach capable of handling this broad range of problems at the required level of detail, molecular dynamics methods have proved themselves indispensable in both pure and applied research. This book is a blend of tutorial and recipe collection, providing both an introduction to the subject for beginners and a reference manual for more experienced practitioners. It is organized as a series of case studies that take the reader through each of the steps from formulating the problem, developing the necessary software, and then using the programs to make actual measurements. This second edition has been extensively revised and enlarged. It contains a substantial amount of new material and the software used in the case studies has been completely rewritten.

Dennis Rapaport received his B.Sc. and M.Sc. degrees in physics from the University of Melbourne, and his Ph.D. in theoretical physics from King’s College, University of London. He is a Professor of Physics at Bar-Ilan University and is currently departmental chairman. He has held visiting appointments at Cornell University and IBM in New York, is an Adjunct Professor at the University of Georgia and a Fellow of the American Physical Society. His interest in computer modeling emerged during his undergraduate years and his present research interests include both the methodology of molecular dynamics simulation and its application to a variety of fields.
THE ART OF MOLECULAR DYNAMICS SIMULATION

Second Edition

D. C. RAPAPORT
Contents

Preface to the first edition
Preface to the second edition
About the software

1 Introduction

1.1 Historical background
1.2 Computer simulation
1.3 Molecular dynamics
1.4 Organization
1.5 Further reading

2 Basic molecular dynamics

2.1 Introduction
2.2 Soft-disk fluid
2.3 Methodology
2.4 Programming
2.5 Results
2.6 Further study

3 Simulating simple systems

3.1 Introduction
3.2 Equations of motion
3.3 Potential functions
3.4 Interaction computations
3.5 Integration methods
3.6 Initial state
3.7 Performance measurements
3.8 Trajectory sensitivity
3.9 Further study
Contents

4 Equilibrium properties of simple fluids 83
 4.1 Introduction 83
 4.2 Thermodynamic measurements 84
 4.3 Structure 90
 4.4 Packing studies 96
 4.5 Cluster analysis 112
 4.6 Further study 118

5 Dynamical properties of simple fluids 120
 5.1 Introduction 120
 5.2 Transport coefficients 120
 5.3 Measuring transport coefficients 124
 5.4 Space–time correlation functions 134
 5.5 Measurements 145
 5.6 Further study 152

6 Alternative ensembles 153
 6.1 Introduction 153
 6.2 Feedback methods 154
 6.3 Constraint methods 165
 6.4 Further study 174

7 Nonequilibrium dynamics 176
 7.1 Introduction 176
 7.2 Homogeneous and inhomogeneous systems 176
 7.3 Direct measurement 177
 7.4 Modified dynamics 188
 7.5 Further study 198

8 Rigid molecules 199
 8.1 Introduction 199
 8.2 Dynamics 200
 8.3 Molecular construction 216
 8.4 Measurements 222
 8.5 Rotation matrix representation 232
 8.6 Further study 243

9 Flexible molecules 245
 9.1 Introduction 245
 9.2 Description of molecule 245
 9.3 Implementation details 247
 9.4 Properties 251
 9.5 Modeling structure formation 256
Contents

9.6 Surfactant models 257
9.7 Surfactant behavior 262
9.8 Further study 266

10 Geometrically constrained molecules 267
10.1 Introduction 267
10.2 Geometric constraints 267
10.3 Solving the constraint problem 270
10.4 Internal forces 278
10.5 Implementation details 286
10.6 Measurements 291
10.7 Further study 294

11 Internal coordinates 296
11.1 Introduction 296
11.2 Chain coordinates 296
11.3 Kinematic and dynamic relations 298
11.4 Recursive description of dynamics 299
11.5 Solving the recursion equations 308
11.6 Implementation details 317
11.7 Measurements 322
11.8 Further study 325

12 Many-body interactions 326
12.1 Introduction 326
12.2 Three-body forces 326
12.3 Embedded-atom approach 332
12.4 Further study 343

13 Long-range interactions 344
13.1 Introduction 344
13.2 Ewald method 345
13.3 Tree-code approach 359
13.4 Fast-multipole method 365
13.5 Implementing the fast-multipole method 373
13.6 Results 386
13.7 Further study 389

14 Step potentials 391
14.1 Introduction 391
14.2 Computational approach 392
14.3 Event management 403
14.4 Properties 411
14.5 Generalizations 414
Contents

14.6 Further study 417

15 **Time-dependent phenomena** 418
15.1 Introduction 418
15.2 Open systems 418
15.3 Thermal convection 420
15.4 Obstructed flow 429
15.5 Further study 435

16 **Granular dynamics** 436
16.1 Introduction 436
16.2 Granular models 436
16.3 Vibrating granular layer 439
16.4 Wave patterns 443
16.5 Further study 445

17 **Algorithms for supercomputers** 446
17.1 Introduction 446
17.2 The quest for performance 446
17.3 Techniques for parallel processing 447
17.4 Distributed computation 450
17.5 Shared-memory parallelism 467
17.6 Techniques for vector processing 473
17.7 Further study 480

18 **More about software** 481
18.1 Introduction 481
18.2 Structures and macro definitions 481
18.3 Allocating arrays 487
18.4 Utility functions 488
18.5 Organizing input data 495
18.6 Configuration snapshot files 498
18.7 Managing extensive computations 500
18.8 Header files 504

19 **The future** 505
19.1 Role of simulation 505
19.2 Limits of growth 506
19.3 Visualization and interactivity 507
19.4 Coda 508

Appendix 509

References 519

Function index 532

Index 535

Colophon 549
Preface to the first edition

Molecular dynamics simulation provides the methodology for detailed microscopic modeling on the molecular scale. After all, the nature of matter is to be found in the structure and motion of its constituent building blocks, and the dynamics is contained in the solution to the N-body problem. Given that the classical N-body problem lacks a general analytical solution, the only path open is the numerical one. Scientists engaged in studying matter at this level require computational tools to allow them to follow the movement of individual molecules and it is this need that the molecular dynamics approach aims to fulfill.

The all-important question that arises repeatedly in numerous contexts is the relation between the bulk properties of matter – be it in the liquid, solid, or gaseous state – and the underlying interactions among the constituent atoms or molecules. Rather than attempting to deduce microscopic behavior directly from experiment, the molecular dynamics method – MD for short – follows the constructive approach in that it tries to reproduce the behavior using model systems. The continually increasing power of computers makes it possible to pose questions of greater complexity, with a realistic expectation of obtaining meaningful answers; the inescapable conclusion is that MD will – if it hasn’t already – become an indispensable part of the theorist’s toolbox. Applications of MD are to be found in physics, chemistry, biochemistry, materials science, and in branches of engineering.

This is a recipe book. More precisely, it is a combination of an introduction to MD for the beginner, and a cookbook and reference manual for the more experienced practitioner. The hope is that through the use of a series of case studies, in which real problems are studied, both goals can be achieved. The book can be read from cover to cover to explore the principles and capabilities of MD, or it can be used in cookbook style – with a certain amount of cross-referencing – to obtain the recipe for a particular kind of computation. Some familiarity with classical and statistical mechanics, numerical methods and computer programming is assumed.
Preface to the first edition

The case studies take the reader through all the stages from initial problem statement to the presentation of the results of the calculation. The link between these endpoints is the computer program – the recipe. The results of the simulations are ‘experimental’ observations, in the sense that the simulation is an experiment conducted on an actual, albeit highly idealized, substance. Some of these observations amount to mere measurement, while others can include the discovery of qualitatively novel effects; the custom of referring to MD simulation as computer experimentation is most certainly justified.

Computer programs are an important part of any MD project and feature prominently among the recipes. The view that programs are best kept out of sight along with the plumbing is seriously outdated, and program listings are integrated into the text, with the same status as mathematical equations. After all, a computer program is merely the statement of an algorithm (supplemented by a myriad details to assist the computer in performing its task), and an algorithm is a mathematical procedure. Without the details of the programs, the recipe oriented goal would not have been met: there are many vital, but often subtle, details that only emerge when the program is actually written, so that the program text is an essential part of any recipe and is meant to be read.

Given the near ubiquity of MD, the choice of material had to be restricted to avoid a volume of encyclopedic size. The focus is on the simplest of models, since these form the basis of almost all later developments. Even what constitutes a simple model is open to debate, and here a modest bias on the part of the (physicist) author may be discerned. The emphasis is on showing that MD can reproduce known physical phenomena at a qualitative and semiquantitative level, but without fine-tuning potential functions, molecular structures, or other parameters, for precise quantitative agreement with experiment. Exercises such as demonstrating the solid–fluid phase transition in a system of soft-disk atoms, observing the local ordering in a simple model for water, and following the gyrations of a highly idealized polymer chain, are all far more rewarding experiences for the beginner than detailed computations of specific heats or viscosities across the entire state space of the system. Quantitative detail is not neglected, however, although here some aspects will obviously appeal to more limited segments of the audience.

The model systems to be introduced in these pages can be readily extended and adapted to problems of current interest; suggestions for further work of this kind accompany the case studies, and can serve as exercises (or even research projects) in courses devoted to simulation. The same holds true for the computational techniques. We cover a variety of methods, but not all combinations of methods and problems. In some cases all that is required is a simple modification or combination of the material covered, but in other cases more extensive efforts are called for – the literature continues to report such methodological developments. While
MD can hardly be regarded as a new technique, neither can it be regarded as a fully matured method, and thus there are often several ways of approaching a particular problem, with little agreement on which is to be preferred. It is not our intent to pass judgment, and examples based on alternative methods are included.

The practical side of MD is no less important than the theoretical. A true appreciation of the capabilities and shortcomings of the various methods, an understanding of the assumptions used in the models, and a feeling for what kinds of problem are realistic candidates for MD treatment can only be obtained from experience. This is something that even users of commercial and other packaged software should be aware of. The bottom line is that the reader should be prepared to use this book like any other recipe book: off to the kitchen and start cooking!

January, 1995

Dennis C. Rapaport
Preface to the second edition

The second edition of *The Art of Molecular Dynamics Simulation* is an enlarged and updated version of the first. The principal differences between the two editions are the inclusion of a substantial amount of new material, both as additional chapters and within existing chapters, and a complete revision of all the software used in the case studies to reflect a more modern programming style. This style change is a consequence of the population shift in the research community. At the time the first edition was written older versions of the Fortran language were still in widespread use; despite this fact, C was chosen as the programming language for the book in preference to Fortran, but in a form that would appear familiar to Fortran programmers of the era. Now that C – and related languages – are in widespread use, and Fortran has even evolved to become more like C, the expressive capabilities of C can be employed to the full, resulting in software that is easier to follow. The power of desktop computers has also increased by a large factor since the case studies of the first edition were developed; in recognition of this fact some of the studies consider larger systems, reflecting a shifting view of what is considered a ‘short’ computation. Other minor changes and corrections have been incorporated throughout the text. The exhortation to employ this volume as a cookbook remains unchanged.

January, 2003

D.C.R.
About the software

Software availability
Readers interested in downloading the software described in this book in a computer-readable form for personal, noncommercial use should visit the Cambridge University Press web site at http://uk.cambridge.org, where the home page for this book and the software can be found; a listing of the programs included in the software package appears in the Appendix. Additional material related to the book, as well as contact information, can be found at the author’s website – http://www.ph.biu.ac.il/~rapaport.

Legal matters
The programs appearing in this book are provided for educational purposes only. Neither the author nor the publisher warrants that these programs are free from error or suitable for particular applications, and both disclaim all liability from any consequences arising out of their use.