

Index

Numbers in italics refer to tables and figures.

```
age and area model of geographic range
Acanthisittidae 124
acclimation potential and thermal limits
                                                     142, 143-5, 151
                                              age and area relations in mammals 6
       239
                                                conservation implications of study
Acrocephalus sechellensis 269
'Adam and Eve' strategy 69, 70-1,
                                                     results 162-3
                                                data acquisition
                                                   geographic data 149
adaptive variation, importance of
                                                   phylogenetic age 148, 149-51
      preservation 167
                                                geographic range size changes 151-3
Africa
                                                phylogenetic correlation of range sizes
  climate history and species distribution
       203, 205-7
    complexity of the picture 211
                                                   evidence from previous studies
    last glacial maximum 209-10
                                                     154-5
                                                   outliers and conservation 161-2
    late Quaternary period 206,
                                                   pattern differences from birds
       207-8
                                                     159-61
  continent formation 205-6
                                                   statistical methods 155-6
  forest-savanna ecotones see ecotones
  oceanic systems and other climate
                                                   study results 156-61
                                              age estimation, phylogenetic 148, 149-51,
       influences 203-5
                                                     402-3
  patterns of species diversity
                                              Aizoaceae of the Succulent Karoo
    present-day climatic factors 203
                                                   ecophysiology 233-5
    regions of climate stability 200
                                                   phylogenetic study 239-40
    spatial constraints 202-3
  southern African Mediterranean-climate
                                                   pollen studies 236, 237
                                              allopatry, drift and selection in 167-8
       flora 230
                                              Amaranthaceae 370, 372
    late Tertiary climatic effects 233-5,
                                              Amazonia 10
                                                areas of endemism 339
    phylogeographic analyses 231-2,
                                                   areas identified 341-2
       239-40, 410, 412
    Pleistocene climatic effects 231,
                                                   identification methods 339-41
                                                   importance 339
       235-8
    see also Fynbos biome; Succulent
                                                   protected status coverage 351-3, 354,
       Karoo biome
                                                     355
                                                conservation
  see also Eastern Arc mountains (Africa);
                                                   pioneering work 353
      Tanzania
                                                   proposals 353-6
Agauria salicifolia 217
```


Amazonia (cont.)	Bayesian inference approach to phylogeny
deforestation	31-2, 35
current extent of 350-1, 352	computer programs 33
road construction as predictor of 351,	confidence assessment 36–7
352, 353	evolutionary model checking 31
general biodiversity 337	issues about performance 32-3
primate diversity 339	use in hypothesis testing 38
correlation between measures 343–6	bears
list of genera 343, 344, 345	brown bear mtDNA phylogeography 88
regional variation 347, 349, 350	92
regional variation in biodiversity	polar bear 92, 94
biogeographic processes 347–9	conservation rankings 83
general pattern 347	Benguela current 233
geomorphological complexity and	Bhutan, carnivore heritage at risk 132
349–50	biodiversity
amino acid sequence alignment 26	aesthetic value 122
Anabatidae (climbing gouramies) 376–7	hotspots see hotspots; see also centres of
Anatidae (ducks and geese) 374, 375	biodiversity
Andropadus virens see little greenbul	measures 69, 343
Angola, carnivore heritage 132	biogeography 297
Anodorhynchus spp. 325–6	biological species concept (BSC) 58
Anolis lizards, speciation rate and island	BirdLife International threat assessments
area 408–9	
Aphelinidae 377, 377, 378	319 birds
Apicomplexa 391–2	distribution of extinct and threatened
approximately unbiased (AU) test 39	genera across hotspots 281–2
	endemism analysis 275
Apteryges 114	endemism-threat relations across
aquatic beetles, habitat type and species turnover 411	
·	hotspots 278, 280
Archaea, effects of macroscopic life mass	evolutionary history
extinction 391	held by hotspots 280–1
Arctictis binturong, range 127	loss and species loss 394–5
arthropod reclassification with PSC 61,	extinction
*-	historical 294, 318
artificial rarity 146, 147, 162	non-random risks 271–4
Astacopsis gouldi (Tasmanian freshwater	see also extinction risk analysis: bird
crayfish) 45–7	studies
Atlantic Ocean and African climate 203,	geographic range size changes 151
204	phylogenetic correlation 154–5,
Australia	159–61
ecological specialisation and bird	Gough Island 116
extinction risk 332	Indonesian 126, 127, 311
rainforests see rainforests, eastern	life-history diversification 323
Australia	phylogenetic future 394–5
Avança Brasil programme 351, 352, 353	preservation of endemic areas 69
1	reclassification by using PSC 61, 62
bacteria, human impact on diversity	Red Data Books 271
392-3	Red List of threatened genera 290–3
BAMBE 33	song characteristics and habitat 176
Bangladesh, primate heritage at risk 133	species at risk vs. history at risk 125
bats 160, 311	sunbird phylogeny and habitat 179–80

taxonomic arrangements 269	Cebus spp. (capuchin monkeys) 338
taxonomic patterns among non-natives	Cecidomyiidae (gall midges) 377, 377, 378
374-6	centres of biodiversity 200, 201, 202, 207
threats to 318, 319, 319	Centrarchidae (sunfish) 376-7
see also individual bird species	Cervidae (deer) 376
black-footed cat 305-7	character sampling 22-5
blue macaws 324-6	charisma as conservation ranking criterion
Bolivia, primate rankings 133	80
bootstrap procedure 36, 37	Chenopodiaceae (goosefoot) 370, 372
Bovidae 376	China
branch and bound searches 34	carnivore rankings 132, 133
Brassicaceae 370, 372, 373	primate species at risk 133
Brazil	chloroplast (cp) DNA 86–7
carnivore species at risk 132	Cichlidae
primate rankings 133	non-native 376–7
see also Amazonia	speciation study 405–6
Bremer support 37	clade evolutionary history (CEH) 343–6
brown bear mtDNA phylogeography 88,	climate
92	change 200
Brownian motion 301	and African species see Africa
BSC (biological species concept) 58	conservation implications for Eastern
bbe (biological species collecpt) 30	Arc 218–19
Californian quail, fecundity and survival	future effects 407–8
	and speciation 411–12
324 Callicehus ann (titi monkoya) 338 o	interannual variability and plant
Callicebus spp. (titi monkeys) 338–9	distribution 200
Cameroon, primate rankings 133 CAM photosynthesis 233–5	
	stability and species richness 200 terrestrial influences of oceans 200-1,
capuchin monkeys 338	
carbon dioxide (CO ₂) concentration and	203-4 Clustel of of o
vegetation changes 199	Clustal 25, 27, 29
African forest–savanna ecotones 182–3	codons 21
late Tertiary 232, 233	cohesion species concept (CSC) testing
Pleistocene 235	43-4
carnivores	Colombia, primate rankings 133
artificially rare 162	Columbidae (pigeons and doves) 374, 375
evolutionary heritage study 127–9	complementarity principle 103, 104, 243,
extinction risk	244, 276
and human footprint index 306,	computer software
308–9	Bayesian phylogenetic inference 33
see also extinction risk analysis:	evolutionary heritage calculation 128
primate and carnivore studies	nested clade analysis 42, 43
extinction within protected areas study	population structure analysis 172, 173–6
302	recombination detection 24
geographic range size evolution 151–3	sequence alignment 25–6, 27, 29
species at risk vs. history at risk 125	topology tests 39
see also individual carnivore species	confidence assessment 36–7
cats	CONSEL program 39
black-footed cat extinction risk 305-7	conservation
conservation rankings 83	economics 65, 284
leopard mtDNA phylogeography 88,	fatigue 64
89, 91	geopolitical scale 135–6

conservation (cont.)	Continuous program 155, 156, 297
PD as metric for 120, 121–2, 130–4	convergence 21
spatially based strategies 102-3	Cophilaxus frogs, Australian rainforests
types of action 78	250, 256–8
conservation biology	Costa Rica, carnivore heritage 133
conservation genetics as sub-discipline	costs of conservation 65, 284
94	Croll–Milankovitch cycles 199
fundamental challenge 76–7	Cyanopsitta spixii (Spix's macaw) 325
growth of the discipline I	cyclical model of geographic range 142,
macroscopic focus 388-9, 397	145–6, 151
place of phylogenetics in 19–20, 47–8,	Cyclyophora 387
94–5, 267	Cyprinidae (minnows) 377
conservation planning	
contribution of phylogenetic analyses	DADA 35
244	databases, quality concerns 134
irreplaceability	Diomedea exulans (wandering albatross)
(uniqueness)/vulnerability (threat)	324
framework 267	diplomonads 392
debate regarding application 283-4	dodo 395
relationships between variables 268	Dromaius novaehollandiae (emu) 115
prioritisation between areas 189–91,	
284	Eastern Arc mountains (Africa)
threat measurement 276–7	conservation implications of future
uniqueness measurement 274–6	climate change 205, 218–19, 220–1
uniqueness–threat relation 277–80	ecological equilibration 215–16
prioritisation between species	ecological resilience and forest
threat measurement 270–1	management 219
uniqueness measurement 269-70	endemic species
uniqueness—threat relation 271–4	elevational distribution 213–15, 219
see also conservation priority-ranking	evolution in situ 212
of species	relicts 212–13, 219
worth assessment	location 212, 213
species-based 67–8, 120	topographic diversity
species-free 68, 69, 120, 121–2	individualistic responses of plants
supra-specific group-based 69	217
conservation priority-ranking of species	survival options in changing climate
4	215, 217, 220
application 81	tests of stability vs. resilience
correlations between ranking criteria	hypotheses 217–18
80	echinoderms, reclassification by using PSC
criteria	61, 62
charisma 80	ecological importance as conservation
ecological importance 79–80	ranking criterion 79–80
economics and feasibility 80	ecologically stable areas
evolutionary distinctiveness 80,	ecological equilibration in the Eastern
81-2, 84-5	Arc 215–16
rarity 78-9	long-term 202, 220
restricted distribution 79	ecology and speciation 167, 169
need for 78	ecotones
see also phylogenetic criteria for	African forest-savanna 168, 181
conservation	classification of zones 182–3

forest–savanna boundary studies	evolutionary heritage
181–2, 183–8	concept 121, 122
human impact 182, 183–7	examples
evaluation of importance in speciation	carnivores and primates 127–9
conceptual model 169–71	Indonesian birds 126, 127
future research 188–9	proposed league tables 134-5
little greenbul study 172, 173–6,	stewardship by nations 5, 127, 129,
177–9, 188–9	135–6
sunbird phylogeny and habitat	evolutionary history
179–80	disproportionate amounts held by
Ecuador	hotspots 280–1
carnivore rankings 132	Hubbell's neutral theory 395–6
primate heritage 133	loss and species loss 101
elevational gradients 188–9	birds 394–5
emu II5	mammals 395
Encyrtidae (encyrtid wasps) 377, 377, 378	theoretical work 393-4
endemism	see also extinction: and loss of
African plants 203, 204	evolutionary history; also specific
see also Eastern Arc mountains	phylogenetics entries
(Africa): endemic species	evolutionary models, use in phylogenetic
Amazonia see Amazonia: areas of	analysis 30–1
endemism	exons 23
assessment methods 275–6	extinction
correlation with species richness 203,	birds
204, 346–7	historical 294, 318
relation with threat across hotspots 278,	non-random risk 271–4
280	see also extinction risk analysis, bird
see also rainforests, eastern Australia:	studies
herpetofaunal diversity and	data sources 318
endemism	debt 390
environmental change	and loss of evolutionary history 123,
predictions 405–6	393-4
climate change 407–8	modern-day risks 124–5
habitat conversion and fragmentation	non-random 124, 395
_	
406 species manipulation 406–7	random 123–4 mass see mass extinctions
and speciation 411–12	probability assessment 270–I
see also climate: change; habitat loss	extinction risk analysis
Ericaceae of the Fynbos biome 236, 237	IUCN status as response variable
Eukarya (microscopic), effects of	category assignment 303
macroscopic life mass extinction	circularity problem 304
391–2	equivalence among criteria 304-5
evolution	translation to interval scale 303–4
divergent mutation theory 143	local- and global-scale effects 310-13
future 400	model
preservation of process 130-2	intrinsic attributes and phylogeny
evolutionarily significant units (ESUs) 59,	296–7
68, 69, 86, 343	simple scheme 296
evolutionary distinctiveness in	phylogenetics in hypothesis testing
conservation ranking 80, 81–2,	justification for use 298–9
84-5	local and global scale studies 302
1 /	5

extinction risk analysis (cont.) matched pairs comparisons 299–302 variance distribution evaluation tool 381	genetic transmission 76, 78 GeoDis 42, 43 geographic range size as conservation ranking criterion 79
extinction risk analysis, bird studies 9, 317–18	as extinction risk correlate 297,
characteristics hypothesised to increase risk 320	geographic range size evolution 141–2 influential factors 149
comparative method 320, 322–3 ecological factor – extinction threat	methodological problems of previous studies 146–8
interactions 326–9	models 142, 142
ecological specialisation	age and area 143–5, 151
Australian birds 332	conservation implications of 146
small-bodied birds 332	cyclical 145–6, 151
evolutionary predisposition 323	random 146, 151
blue macaw example 324–6	stasis 145, 151
body size and fecundity 323-4	studies of taxa 144
quail/albatross example 324	see also age and area relations in
focus of studies 320	mammals
future research 330-1, 333	geographic sampling strategies 20-2
risk distribution across taxa 320-2	Geraniaceae (geranium family) 370, 371
extinction risk analysis, primate and	glaciation
carnivore studies 305	last glacial maximum in Africa 209–10
multiple regression models 305	Pleistocene 235
single-/two-predictor models 305	glaucous macaw 325–6
threat intensity, addition to the models	golden crayfish 44-5
305–10, 313	Gondwana 205
	Gough Island birds 116
Fabaceae (pea family) 370, 373	grasslands, Tertiary period 233
Felis nigripes (black-footed cat) 305-7	Guinea
fish (freshwater), taxonomic patterns	carnivore heritage at risk 132
among non-natives 376–7	primate rankings 133
fungi, reclassification by using PSC 61, 61 Fynbos biome 7	see also little greenbul: Upper and Lower Guinea refugia
characteristics 230	Gulf Stream 200
climatic impact	
anthropogenic change 238	habitat loss
late Tertiary 231, 233	and bird extinction 326-7
Pleistocene 231, 235-6, 238	Australian birds 332
development of flammability 233	small-bodied birds 332
explanations for species-richness 230-1	and future speciation
Phylica phylogenetic study 239	area reductions 408–10
phylogeographic analyses, conservation	increased fragmentation 410-11
importance 231–2, 240	as metric of threat 277
	predictions 408–9
Gabon, primate species at risk 133	heritage 126
GENBANK I	see also evolutionary heritage
genealogical concordance 87	heuristic tree searches 34
genealogical networks 43	hoatzin 114
gene selection 22–5	homogenisation of phylogenetic diversity
genetic modification (GM) technology	382, 406
407	horizontal genetic transfer 78

horseshoe crab	Indonesia
conservation rankings 83	birds 126, 127, 311
mtDNA phylogeography 88, 90, 93	carnivore rankings 132, 133
hotspots	primate rankings 133
documentation and analysis 275	insects, taxonomic patterns among
endemism—threat relations across 278,	non-natives 377–8
280	introduced species 368
evolutionary history captured by 280–1	introduced species 300
extinct/threatened endemic bird	-
distribution 281–2	invasive species 10
	homogenisation of phylogenetic
human population densities 278	diversity 382, 406
see also centres of biodiversity; Fynbos	prediction of invasion potential 408
biome; Succulent Karoo biome;	ecosystem properties 365–6
Tropical Andes hotspot	need for 365
Hubbell's neutral theory, application to	species-specific traits 366
rainforests 395–6	taxonomic selectivity patterns
human impact	379-82
African forest-savanna ecotones 182,	stages of invasion 368
183-7	probability of transition between 368
bacterial diversity 392-3	taxonomic selectivity patterns across
human footprint index 277, 308	368-9
and carnivore extinction risk 306,	taxonomic selectivity patterns 366–7,
308-9	369
persecution and bird extinction 326–7	birds 374–6
population densities	freshwater fish 376–7
in biodiversity hotspots 278	
and primate extinction risk 306,	insects 377–8 mammals 376
-	· · · · · · · · · · · · · · · · · · ·
309–10	plants 370–4
and species richness 278, 279	predictive power 379–82
species manipulation 406–7	irreplaceability analysis, Cophilaxus frogs
see also environmental change:	258
predictions	irreplaceability (uniqueness)
hybridisation	concept 267
biological species concept and 58	measurement
invasive and natural species 406	areas 274–6
Hydrocharitaceae (frog's bit family) 370,	species 269–70
373	relationship with vulnerability (threat)
hypothesis testing in phylogenetics	268
application to species delimitation 42,	areas 277–80
43-4	species 271–4
approaches 39	species and sites 280-3
see also extinction risk analysis:	island species distributions 115–16
phylogenetics in hypothesis	IUCN Red List of Threatened Species
testing	270-I
testing	birds 290–3
independent evolutionary histories (IEH)	category assignment 303
82	see also extinction risk analysis: IUCN
India	status as response variable
carnivore rankings 132, 133	1
primate rankings 133	kagu 269, 395
Indian Ocean and African climate 201,	kakapo 395
203, 204	keystone species 79–80

kinetoplastids 392	see also age and area relations in
Kishino and Hasegawa (KH) test 38	mammals; individual mammal
	species and clades
lambda (λ) parameter 156, 297	management units (MUs) 86
Laos, carnivore rankings 132	marine turtles
last glacial maximum (LGM) in Africa	conservation rankings 83, 82-4
climate changes 209	mtDNA phylogeography 88, 89, 89, 90,
evidence for forest cover 209–10	91–2
lateral genetic transfer 78	Markov Chain Monte Carlo (MCMC)
leaf-tail geckos 250, 252-5	method 13, 21, 32, 33
Leguminosae 370, 373	marsupials 125
leopard mtDNA phylogeography 88, 89,	mass extinctions 348
91	anthropogenic
lichens, reclassification by using PSC 61,	historical phase 389-90
61	ongoing 390
LINDO 109	of macroscopic life, effects on
little greenbul 6	Archaea 391
characteristics 171	Bacteria 393
Upper and Lower Guinea refugia	microscopic Eukarya 391–2
fitness trait divergence 172, 173-6,	prehistoric 390
188	matched-pairs comparisons 299–302
phylogenetic divergence 171	maximal covering location problems
population structure 172-3	(MCLPs), in reserve selection
song divergence between ecotone and	104-6
forest 176–9, 188–9	maximum likelihood 29, 31
study sites 169, 171	genetic algorithm 35
Lophortyx californica (Californian quail),	non-parametric tests 38-9
fecundity and survival 324	parametric tests 39
	maximum parsimony
macaws 324-6	Bremer support 37
MacClade 27	non-parametric test 38, 39
macroscopic life	principle 29
diversity represented by 387	metapopulations 21
effects of mass extinction on	Mexico, endemic species
Archaea 391	birds 65, 65
Bacteria 393	carnivores 133
microscopic Eukarya 391–2	microsporidia 391
as focus of biodiversity and conservation	minimum evolution method 29-30
biology 388-9, 397	Miocene 232
phylogenetic future 393-6	see also Tertiary climate and atmospheric
Madagascar	change
carnivore rankings 133	mitochondrial DNA (mtDNA)
primate rankings 133	in identification of management units
Maesopsis eminii 219	87–8
Malaysia, carnivore rankings 132	nuclear integration 23
MALIGN 25	in phylogeography studies 86–92
mammals	recombination 22, 23, 25
non-random extinction 395	ModelTest 31
reclassification by using PSC 61, 62	molluscs, reclassification by using PSC 61,
taxonomic patterns among non-natives	62
376	Mongolia, carnivore heritage at risk 132

Moran's <i>I</i> statistic 155–6	parrots
morpho-species concept 58	Australian, correlates of extinction risk
MrBayes 33	330-I, 333
multiple regression 300, 302	blue macaws 324–6
Muscicapidae (thrushes) 374, 375	non-native 374, 375
Mustelidae (weasels and skunks)	parsimony analysis of endemism 275
376	parsimony ratchet 35–6
Myanmar	Passeridae (Old World sparrows) 374,
carnivore rankings 132	
primate species at risk 133	375 PAUP* 34, 36
Myrtaceae (myrtle) 370, 373	PAUPRat 36
Myrtaccae (myrtae) 3/0, 3/3	PD see phylogenetic diversity (PD)
Namih desert III 222	Peru
Namib desert 115, 233	
national stewardship of evolutionary	carnivore rankings 132
heritage 5, 127, 129, 135–6	primate rankings 133
natural selection and divergence 167	Phasianidae (pheasants and quail) 374,
Nectariniidae (sunbirds) 179–80	375
neighbour-joining (NJ) method 30	phenotypic plasticity 296–8
Nepal, carnivore rankings 132	Philippines, primate heritage 133
nested clade analysis (NCA) 19–20, 41,	philopatry 23
40-3	Phylica, phylogenetic study 239
New Caledonia, species endemism	PhyloCommunity program 128
115	phylogenetics
New Zealand, species endemism 115	fundamental challenge 76
Nicobar pigeon 395	growth of the discipline 1
Nigeria, primate rankings 133	hypothesis testing see hypothesis testing
NONA 36	in phylogenetics
Normalised Difference Vegetation Index	phylogenetic correlation of geographic
(NDVI) 182, 183–8	range sizes 153
nuclear DNA	birds 154–5, 159–61
in conservation genetics 23	mammals see age and area relations in
see also recombination	mammals: phylogenetic correlation
	of range sizes
oceanic island hotspots 281, 282	phylogenetic criteria for conservation,
oceans, influences on terrestrial climate	intraspecific phylogeography
200-I, 203-4	application 88–92
Odontophoridae (New World quails) 374,	prospects 93-4
375	theory
Oestridae (bot flies) 377, 377, 378	adaptive significance of genetic
Omphalocarpum strombocarpum 217	variation 85–6
Opisthocomus hoazin (hoatzin) 114	chloroplast (cp) DNA studies 86–7
optimality criteria, phylogenetic trees 28,	evolutionary significant units 86
29–30	genealogical concordance 87
orang-utan 305–7	management units 86
Orconectes luteus (golden crayfish) 44-5	mitochondrial (mt) DNA studies
ostrich 114	86–8
	phylogenetic criteria for conservation,
palynological studies see pollen analysis of	species clades/higher taxa
past vegetation	application
Panama, carnivore heritage 133	across evolutionary groups 84
Papaveraceae (poppy family) 370, 372	within taxonomic groups 82–4
	WILLIAM GROUNTING STORES OF-T

phylogenetic criteria (cont.)	conservation implications 65, 65
prospects 84–5	economic implications 65
theory 81–2	threat implications 63
phylogenetic diversity (PD) 101–16,	phylogenetic studies of speciation 11–12,
122	401
conservation perspectives and 121-2	causes of speciation 404-5
importance for future evolution 101	in future speciation management
information content concept of 121	ideas 413
maximisation in reserve selection 106,	impracticality 413
103-7	inefficiency 413
measurement 104, 104, 343	key issues
as a metric for conservation 120, 121–2,	date estimation 402-3
130–4	influence of other processes on
spatially based conservation of 102–3	phylogeny 401
surrogacy value of species diversity 102,	knowledge of evolutionary
103, 116	relationships 402
measurement 106, 105–7	prediction of responses to
real-life situations 114–16	environmental changes 411–12
scenarios explored 108–13	natural habitat area reduction
summary of results 114	408–10
surrogacy value of taxonomic diversity	natural habitat fragmentation
345–6	4IO-II
see also evolutionary heritage phylogenetic methods 19–21	speciation rates 403–4
age estimation 148, 149–51,	phylogenetic tree structure ancient branches 114–15
	bush (balanced) 109, 109
402–3 application to conservation biology	comb (unbalanced) 109, 111
19–20, 28, 29–30, 47–8	and surrogacy value of species diversity
Astacopsis gouldi example 45–7	for PD 108–13
Orconectes luteus example 44–5	summary of results 114
genealogical networks 43	phylogeny and climate 220
hypothesis testing 39	phylogeographic analyses
phylogenetic distinctness measurement	Australian rainforest snails 250
IOI-2	little greenbul populations 171
phylogeny reconstruction 27, 29	mitochondrial DNA in 86–92
Bayesian inference 31–3	southern African flora 231–2, 239–40,
confidence assessment 36–7	410, 412
models of evolution 30-1	picoeukaryotes 392
optimality criteria 28, 29–30	Pleistocene
search strategies 33-6	climate and atmospheric change
value in conservation 77–8	effects on southern African vegetation
sampling strategies	231, 235–8
gene 22–5	global picture 235
geographic 20–2	forest fragmentation and speciation
sensitivity analyses 12	410
sequence alignment 29	Pliocene 232
species delimitation 42, 43-4	see also Tertiary climate and atmospheric
phylogenetic redundancy and species	change
richness 123, 123–5	Poaceae (grass family) 370, 372, 373
phylogenetic species concept (PSC) 3, 59	Poecilidae (livebearers) 376–7
species redefinition using 60	polar bear 92, 94

political policy on biodiversity 126 pollen analysis of past vegetation 208,	rainforests, eastern Australia 7–8 distribution
217–18	current 245, 246
Australian rainforests 246	historical, insights from snail
Fynbos and Succulent Karoo biomes	phylogeography 250
236, 237	herpetofaunal diversity and endemism
Polygonaceae (buckwheat family) 370, 371,	251
372	conservation implications
Pongo pygmaeus (orang-utan) 305–7	258–60
positional homology 21	evolutionary processes, recurrent
posterior probabilities 31–2, 36–7	themes 259
see also Bayesian inference of phylogeny	major rainforest isolates 251-5
POY 25-6, 36	sub-regions within northeast
primates	Queensland 255–8
artificially rare 162	palaeoecology 246–7
evolutionary heritage study 128–9	random model of geographic range 142,
extinction risk	146, 151
and human population density 306,	range size asymmetry 154
309–10	range size rarity 275
see also extinction risk analysis:	rarity, as conservation ranking criterion
primate and carnivore studies	78-9
geographic range size evolution	recombination
151–3	detection methods 24–5
New World genera 344	effects on phylogenetics 23–4
see also Amazonia: primate diversity	mtDNA 22, 23, 25
phylogenetic signal strength (λ) of traits	Red Data Books 271
297	Red List see IUCN Red List of Threatened
species at risk vs. history at risk 125 susceptibility to logging study 300	Species redundancy and species richness 123,
priority-ranking see conservation	
priority-ranking of species	123–5 refugia
Proteaceae, Fynbos 238	evaluation of importance in speciation
PSC see phylogenetic species concept	conceptual model 169–71
(PSC)	see also little greenbul: Upper and
Psittacidae see parrots	Lower Guinea refugia
r	shortcomings of conservation focus on
Quicke search strategy 35-6	166–7
0, 33	Succulent Karoo 236–7
rainforests	relictual species, Eastern Arc 212-13
phylogenetic future 395–6	reptiles
rate of loss 166	reclassification by using PSC 61
rainforests, Africa	see also rainforests, eastern Australia:
adaptation to stability vs. resilience to	herpetofaunal diversity and
change 198	endemism
importance for conservation	reserve network selection, maximisation of
management 198–9, 219	PD 106, 103-7
ecological dynamics 211	Restionaceae of the Fynbos biome 236,
persistence during the last glacial	237
maximum 209–10, 211	Rheidae (rheas) 375
see also Eastern Arc mountains (Africa);	Rhynochetos jubatus (kagu) 269
ecotones: African forest–savanna	Rio Tinto, eukarvotic diversity 302

road construction and deforestation 351,	conservation status list compilation 135
	delimitation 19, 42, 43–4, 68
352, 353 Rubisco (ribulose bisphosphate	diversity see species diversity
carboxylase–oxygenase) 233–5	extinction see extinction
Russia, carnivore rankings 132	hybridisation 406
Russia, Carmivore rankings 132	introduced 368
Saguinus ann (tamaring) 228	-
Saguinus spp. (tamarins) 338 Salmonidae (salmon and trout) 376–7	invasive see invasive species manipulation by humans 406–7
Saproscincus skinks, east Australian	supra-specific conservation 69, 70
rainforests 250, 252–5	threat categories 63
'Saving Private Ryan' strategy 69, 394	as units and currency 2–3
Science Citation Index searches I	vulnerability see vulnerability to threat
seagrass declines 79	species accumulation index (SAI) 107
Se-Al program 27	species diversity
search strategies in phylogeny	correlation with endemism 203, 204,
reconstruction 33–6	346–7
sequence alignment 25, 26	disturbed ecosystems 215, 217
amino acids and nucleotides 26	Eastern Arc 215–16
computer software 25–6, 27, 29	as PD surrogate 102, 103, 116
regions of ambiguity 25, 26, 27–9	measurement 106, 105–7
sequence selection 26–7	real-life situations 114–16
sequence relationship estimation 29	scenarios explored 108–13
sexual dimorphism 66	summary of results 114
Shimodaira and Hasegawa (SH) test 38–9	and phylogenetic redundancy 123, 123-5
snail phylogeography, Australian	Sphaerospira phylogeography, Australian
rainforests 250	rainforests 250
South America see Amazonia; Brazil	Sphenodon spp. see tuataras
SOWH (Swofford-Olsen-Waddell-Hillis)	Spix's macaw 325
test 39	Staphylinidae (rove beetles) 377, 377,
speciation	378
future management 413–15	stasis model of geographical range 142,
mechanisms, Fynbos and Succulent	145, 151
Karoo biomes 230–1, 233–5,	statistical methods, phylogenetic
236–8	correlation of range sizes 155–6
prediction 400-1	stromatolites 390
see also phylogenetic studies of	STRUCTURE program 172, 173–6
speciation	Struthio camelus (ostrich) 114
rate and area relation 408–9	Sturnidae (starlings and mynah) 374, 375
rate and biomass/abundance relation	Succulent Karoo biome 7
410, 412	Aizoaceae
time scale 414, 414	ecophysiology 233-5
species	phylogeny 239–40
cataloguing efforts 68	pollen studies 236, 237
central role in conservation 57	characteristics 230
concepts 58, 67	climatic impact
biological (BSC) 58	late Tertiary 231, 233-5
congruence of 59–60	Pleistocene 231, 235–8
flexible approach to use 69, 70-1	explanations for species richness 230-1
morpho-species 58	phylogeographic analyses, conservation
phylogenetic see phylogenetic species	importance 231–2, 240
concept (PSC)	sunbirds 179–80
± \ /	• •

supertrees 12	tracheids, wide-band 235
Swofford–Olsen–Waddell–Hillis (SOWH)	transitions 21
test 39	transversions 21
	tree bisection reconnections (TBRs) 21
Tamaricaceae (tamarisk family) 370, 372,	tree of life
373	example 388
tamarins 338	possible new branch 393
Tanzania	website 270
areas of ecological stability 211–12	tree ring analysis 218
map showing forest divisions 213	trichomonads 392
see also Eastern Arc mountains (Africa)	Tropical Andes hotspot 278, 279, 279
Tasmanian freshwater crayfish 45–7	tuataras 101, 102, 103, 114, 124
taxon evolutionary history (TEH) 343, 345	Type I and Type II errors 300
taxonomic distinctiveness indices 270	
taxonomic diversity and phylogenetic	ultrameric trees 108, 134
diversity 345–6	uniqueness see irreplaceability
taxon sampling 22–5	(uniqueness)
TCS program 42, 43–4	USA, carnivore rankings 132, 133
Templeton's test 38	
Tertiary climate and atmospheric change	variation in genes 22–3
CO ₂ reduction and vegetation change	Viet Nam
232, 233	carnivore rankings 132
effects on southern African vegetation	primate species at risk 133
231, 233–5, 238	vulnerability to threat
Thailand, carnivore rankings 132	concept 267
thermal limits and acclimation capacity	measurement
239	areas 276–7
threat	species 270–1
categories 63	relations with irreplaceability 268
see also extinction risk analysis;	areas 277–80
vulnerability to threat	species 271–4
time, as common currency 126, 127, 134	species and sites 280–3
titi monkeys 338–9	Vulpes velox (swift fox) 128
tokogenetics 21	
topographic diversity	wandering albatross 324
Fynbos biome 238	Welwitschia mirabilis 101, 115
see also Eastern Arc mountains (Africa):	wide-band tracheids 235
topographic diversity	Winclada 25