CAMBRIDGE TRACTS IN MATHEMATICS

General Editors

B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK

157 Affine Hecke Algebras and Orthogonal Polynomials

Cambridge University Press 0521824729 - Affine Hecke Algebras and Orthogonal Polynomials I. G. Macdonald Frontmatter More information

> I. G. Macdonald Queen Mary, University of London

Affine Hecke Algebras and Orthogonal Polynomials

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > http://www.cambridge.org

© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10/13 pt System $LAT_EX 2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Macdonald, I. G. (Ian Grant) Affine Hecke algebras and orthogonal polynomials / I.G. Macdonald. p. cm. – (Cambridge tracts in mathematics; 157) Includes bibliographical references and index. ISBN 0 521 82472 9 (hardback) 1. Hecke algebras. 2. Orthogonal polynomials. I. Title. II. Series. QA174.2 .M28 2003 512'.55 – dc21 2002031075

ISBN 0 521 82472 9 hardback

Contents

Int	troducti	<i>page</i> vii	
1	Affine	e root systems	1
	1.1	Notation and terminology	1
	1.2	Affine root systems	3
	1.3	Classification of affine root systems	6
	1.4	Duality	12
	1.5	Labels	14
2	The e	xtended affine Weyl group	17
	2.1	Definition and basic properties	17
	2.2	The length function on W	19
	2.3	The Bruhat order on W	22
	2.4	The elements $u(\lambda')$, $v(\lambda')$	23
	2.5	The group Ω	27
	2.6	Convexity	29
	2.7	The partial order on L'	31
	2.8	The functions $r_{k'}, r'_k$	34
3	The b	raid group	37
	3.1	Definition of the braid group	37
	3.2	The elements $Y^{\lambda'}$	39
	3.3	Another presentation of \mathfrak{B}	42
	3.4	The double braid group	45
	3.5	Duality	47
	3.6	The case $R' = R$	49
	3.7	The case $R' \neq R$	52

Cambridge University Press
0521824729 - Affine Hecke Algebras and Orthogonal Polynomials
I. G. Macdonald
Frontmatter
Moreinformation

vi		Contents		
4	The affine Hecke algebra		55	
	4.1	The Hecke algebra of W	55	
	4.2	Lusztig's relation	57	
	4.3	The basic representation of \mathfrak{H}	62	
	4.4	The basic representation, continued	69	
	4.5	The basic representation, continued	73	
	4.6	The operators $Y^{\lambda'}$	77	
	4.7	The double affine Hecke algebra	81	
5	Orthogonal polynomials		85	
	5.1	The scalar product	85	
	5.2	The polynomials E_{λ}	97	
	5.3	The symmetric polynomials P_{λ}	102	
	5.4	The \mathfrak{H} -modules A_{λ}	108	
	5.5	Symmetrizers	112	
	5.6	Intertwiners	117	
	5.7	The polynomials $P_{\lambda}^{(\varepsilon)}$	120	
	5.8	Norms	125	
	5.9	Shift operators	137	
	5.10	Creation operators	141	
6	5 The rank 1 case		148	
	6.1	Braid group and Hecke algebra (type A_1)	148	
	6.2	The polynomials E_m	150	
	6.3	The symmetric polynomials P_m	155	
	6.4	Braid group and Hecke algebra (type (C_1^{\vee}, C_1))	159	
	6.5	The symmetric polynomials P_m	160	
	6.6	The polynomials E_m	166	
Bi	Bibliography			
Inc	Index of notation			
Index			175	

Introduction

Over the last fifteen years or so, there has emerged a satisfactory and coherent theory of orthogonal polynomials in several variables, attached to root systems, and depending on two or more parameters. At the present stage of its development, it appears that an appropriate framework for its study is provided by the notion of an affine root system: to each irreducible affine root system *S* there are associated several families of orthogonal polynomials (denoted by E_{λ} , P_{λ} , Q_{λ} , $P_{\lambda}^{(\varepsilon)}$ in this book). For example, when *S* is the non-reduced affine root system of rank 1 denoted here by (C_1^{\vee}, C_1) , the polynomials P_{λ} are the Askey-Wilson polynomials [A2] which, as is well-known, include as special or limiting cases *all* the classical families of orthogonal polynomials in one variable.

I have surveyed elsewhere [M8] the various antecedents of this theory: symmetric functions, especially Schur functions and their generalizations such as zonal polynomials and Hall-Littlewood functions [M6]; zonal spherical functions on *p*-adic Lie groups [M1]; the Jacobi polynomials of Heckman and Opdam attached to root systems [H2]; and the constant term conjectures of Dyson, Andrews et al. ([D1], [A1], [M4], [M10]). The lectures of Kirillov [K2] also provide valuable background and form an excellent introduction to the subject.

The title of this monograph is the same as that of the lecture [M7]. That report, for obvious reasons of time and space, gave only a cursory and incomplete overview of the theory. The modest aim of the present volume is to fill in the gaps in that report and to provide a unified foundation for the theory in its present state.

The decision to treat all affine root systems, reduced or not, simultaneously on the same footing has resulted in an unavoidably complex system of notation. In order to formulate results uniformly it is necessary to associate to each affine root system *S* another affine root system *S'* (which may or may not coincide with *S*), and to each labelling (§1.5) of *S* a dual labelling of *S'*.

viii

Introduction

The prospective reader is expected to be familiar with the algebra and geometry of (crystallographic) root systems and Weyl groups, as expounded for example by Bourbaki in [B1]. Beyond that, the book is pretty well self-contained.

We shall now survey briefly the various chapters and their contents. The first four chapters are preparatory to Chapter 5, which contains all the main results. Chapter 1 covers the basic properties of affine root systems and their classification. Chapter 2 is devoted to the extended affine Weyl group, and collects various notions and results that will be needed later.

Chapter 3 introduces the (Artin) braid group of an extended affine Weyl group, and the double braid group. The main result of this chapter is the duality theorem (3.5.1); although it is fundamental to the theory, there is at this time of writing no complete proof in the literature. I have to confess that the proof given here of the duality theorem is the least satisfactory feature of the book, since it consists in checking, in rather tedious detail, the necessary relations between the generators. Fortunately, B. Ion [I1] has recently given a more conceptual proof which avoids these calculations.

The subject of Chapter 4 is the affine Hecke algebra \mathfrak{H} , which is a deformation of the group algebra of the extended affine Weyl group. We construct the basic representation of \mathfrak{H} in §4.3 and develop its properties in the subsequent sections. Finally, in §4.7 we introduce the double affine Hecke algebra \mathfrak{H} , and show that the duality theorem for the double braid group gives rise to a duality theorem for \mathfrak{H} .

As stated above, Chapter 5, on orthogonal polynomials, is the heart of the book. The scalar products are introduced in §5.1, the orthogonal polynomials E_{λ} in §5.2, the symmetric orthogonal polynomials P_{λ} in §5.3, and their variants Q_{λ} and $P_{\lambda}^{(\varepsilon)}$ in §5.7. The main results of the chapter are the symmetry theorems (5.2.4) and (5.3.5); the specialization theorems (5.2.14) and (5.3.12); and the norm formulas (5.8.17) and (5.8.19), which include as special cases almost all the constant term conjectures referred to earlier.

The final Chapter 6 deals with the case where the affine root system *S* has rank 1. Here everything can be made completely explicit. When *S* is of type A_1 , the polynomials P_{λ} are the continuous *q*-ultraspherical (or Rogers) polynomials, and when *S* is of type (C_1^{\vee}, C_1) they are the Askey-Wilson polynomials, as mentioned above.

The subject of this monograph has many connections with other parts of mathematics and theoretical physics, such as (in no particular order) algebraic combinatorics, harmonic analysis, integrable quantum systems, quantum groups and symmetric spaces, quantum statistical mechanics, deformed

Introduction

ix

Virasoro algebras, and string theory. I have made no attempt to survey these various applications, partly from lack of competence, but also because an adequate account would require a book of its own.

Finally, references to the history and the literature will be found in the Notes and References at the end of each chapter.