The Organic Codes

The genetic code appeared on Earth with the first cells. The codes of cultural evolution arrived almost 4 billion years later. These are the only codes that are recognised by modern biology. In this book, however, Marcello Barbieri explains that there are many more organic codes in nature, and their appearance not only took place throughout the history of life but marked the major steps of that history. A code establishes a correspondence between two independent "worlds", and the codemaker is a third party between those "worlds". Therefore the cell can be thought of as a trinity of genotype, phenotype and ribotype. The ancestral ribotypes were the agents which gave rise to the first cells.

The book goes on to explain how organic codes and organic memories can be used to shed new light on the problems biologists encounter in cell signalling, epigenesis and embryonic development. A mathematical model is presented to show how embryos can increase their own complexity by the use of a code and a memory.

This fascinating book will be of interest to all biologists and anyone with an interest in the origins and the evolution of life on Earth.

MARCELLO BARBIERI has conducted research on embryonic development and ribosome crystallisation at the Medical Research Council in Cambridge, UK, the National Institutes of Health in Bethesda, USA, and the Max-Planck-Institut für Molekulare Genetik in Berlin, Germany. He has published books on embryology and evolution, and has taught biophysics, molecular embryology and theoretical biology respectively at the Universities of Bologna, Sassari and Turin, Italy. Since 1992 he has taught embryology and conducted research in theoretical biology at the University of Ferrara, Italy.
THE ORGANIC CODES
An introduction to semantic biology

Marcello Barbieri
Università di Ferrara
CONTENTS

Foreword by Michael Ghiselin ix

Dedication xiii

Acknowledgements xiv

Introduction 1

Chapter 1 The microscope and the cell 9
The cell theory, 10
The problem of generation, 12
The problem of embryonic development, 15
The two versions of the cell theory, 17
Mechanism, 19
The chemical machine, 21
The computer model, 24
The autopoietic cell, 27
The epigenetic cell, 29

Chapter 2 Theories of evolution 33
Traditional biology, 34
Lamarck’s contribution, 36
Darwin’s bet, 38
Natural selection, 40
Organs of extreme perfection, 41
Common descent, 44
The second mechanism of evolution, 49
The Modern Synthesis, 51
Molecular evolution, 54
The third mechanism of evolution, 57
Macroevolution, 60
Where is biology going to? 63
Chapter 3 A new model for biology 67
The logic of embryonic development, 67
Reconstructions from incomplete projections, 69
A memory-building approach, 71
The algebraic method, 75
The theoretical limit, 79
ART: an iterative algebraic method, 80
The memory matrix, 82
Density modulation, 84
MRM: the family of memory algorithms, 86
The two general principles of MRM, 89

Chapter 4 Organic codes and organic memories 93
The characteristics of codes, 93
The organic codes’ fingerprints, 96
The bridge between genes and organism, 99
The splicing codes, 101
The signal transduction codes, 105
Contextual information, 111
Determination and cell memory, 112
The other face of pattern, 114
Hints from developing neurons, 117
The key structures of embryonic development, 119

Chapter 5 The origin of life 121
The primitive Earth, 122
Chemical evolution, 127
Postchemical evolution, 129
The metabolism paradigm, 131
The replication paradigm, 134
The RNA world, 138
Replication catastrophes, 140
Eigen’s paradox, 142
The ribotype theory, 145
The genetic code, 148
Evolution of the code, 155
The ribotype metaphor, 157
Copymakers and codemakers, 159
The handicapped replicator, 161
Contents

Chapter 6 Prokaryotes and eukaryotes 163
 The potassium world, 164
 Two forms of life, 166
 Three primary kingdoms, 168
 The last common ancestor, 173
 The origins of bacteria, 175
 The cytoskeleton, 178
 The compartments, 180
 Chromosomes, 182
 The seven kingdoms, 185
 Three thousand million years, 187

Chapter 7 The Cambrian explosion 191
 The fossil record, 192
 The experimental data, 193
 Body plans and phylotypic stages, 196
 The traditional explanations, 201
 The Cambrian singularity, 202
 The stumbling-block, 203
 The reconstruction model, 204
 Multicellular structures, 206
 Biological memories, 209
 A new model of the Cambrian explosion, 210
 The conservation of the phylotypic stage, 213

Chapter 8 Semantic biology 217
 The semantic theory of the cell, 219
 The semantic theory of embryonic development, 221
 The mind problem, 224
 The semantic theory of mental development, 226
 Artifacts and natural selection, 228
 The semantic theory of evolution, 229
 About organic codes, 234
 The language model, 236
 The Individuality Thesis, 237
 The development of semantic biology, 240
Contents

Chapter 9 A brief summary
- The first principle, 244
- The second principle, 245
- The third principle, 246
- The fourth principle, 247
- The first model, 248
- The second model, 249
- The third model, 250
- The fourth model, 251
- Conclusion, 253

Appendix Definitions of life

Afterword by Jack Cohen

References

Index
FOREWORD

Most scientific publications deal with problems that can be explained in a straightforward manner and with solutions that can be evaluated as a matter of routine. But scientific progress often occurs when somebody tries to reformulate the problem, or to suggest a different kind of solution. When that happens, it may be necessary to dwell as much upon the questions as upon the answers, and to show how a novel approach might give further significant results.

Barbieri finds that biology has been able to deal with information and with structure, but not with the connection between them. Something has been left out, and that is meaning. Semantics is the branch of logic that deals with meaning: hence the term “semantic biology”. Meaning is a difficult concept to analyse, even though we find it in everything we read or listen to, including imaginative literature. To understand a poem one needs all sorts of background information. Poetry is rich in literary allusions, so just knowing the words will not do. Meaning is largely a matter of context, and that makes it hard to pin down.

The contextuality of meaning may be called a “principle”, for it is neither a brute fact nor a law of nature. But exactly what is meant by a principle is hard to specify. We can give some familiar examples of course. In ecology there is the well-known “competitive exclusion principle”, which explains why organisms occupying exactly the same niche cannot coexist for more than a brief period of time. In logic we all use, whether we know it or not, the “principle of contradiction”, which states that two propositions that really contradict each other cannot both be true. And since, by implication, at least one of them must be false, we justify the kind of hypothetico-deductive scientific
method that Barbieri (an admirer of Popper) endorses. Principles are very important in science, more important than may seem obvious. Usually we adopt them implicitly, without giving them much thought. Principles are perhaps the most important components of Barbieri’s theoretical, or perhaps better, metatheoretical, system. One might even say that such principles are what the book is really all about.

Barbieri enunciates four general principles, all of which relate to the problems of development. He begins by considering epigenesis, and redefines it as the property of a system to increase its own complexity. He goes so far as to make the capacity for attaining such convergent complexity both a fundamental principle and a defining property of life itself. One might question that, but his definition is at least as good as any of the ones that are quoted in the Appendix. The second principle tells us that achieving such convergent complexity amounts to reconstructing a structure from incomplete information. That in turn provides a new definition of “epigenesis”. Then we get a third principle, according to which organic epigenesis requires organic memories. Here “memory” is a technical term indicating that there has to be some repository of information. And as a final principle, such epigenesis requires organic codes. Indeed codes and memories exist only because they are necessary for producing epigenetic systems.

Barbieri is a scientist, not a philosopher. He justifies his ideas on the basis of their ability to make sense out of the material universe. This he accomplishes by means of four “models”, as he calls them. Why “models” rather than “theories”? Evidently because they serve to illustrate the principles. Of course it really matters whether the particular interpretations are correct. But the point of the book could be made just as well if the hypotheses being discussed were modified in some respects. The more basic message is not the examples as such, but rather the kind of theory that might be expected to emerge out of a semantic approach to biology. Let us have a brief look at these models from that perspective.

First, Barbieri presents a theory about the origin of life. Extant organisms possess both genotype, in the form of DNA molecules, and phenotype, in the form of proteins, cells, and other products of epigenesis. Previous scenarios treated proteins or DNA as coming
first. Both of these alternatives ran into difficulties because the one cannot exist without the other. For that very reason there must have been something additional to genotype and phenotype, which he calls the ribotype. It is RNA that bridges the gap between genotype and phenotype, and it does so by endowing the system with meaning.

Cells contain all three. Those who want to define life as either as genes or as gene products will find no comfort in this view of it.

The second model illustrates the point that more than one kind of memory can be responsible for the reconstruction from incomplete information that takes place during the (epigenetic) formation of an organism. Barbieri proposes that two kinds of memory are in fact responsible for the development of multicellular animals – one for the earlier stages, the other for the later ones. He shows how the existence of these two kinds of memory might account for the pattern of macroevolution, notably the Cambrian explosion.

The third model is an application of similar considerations to mental development, especially with respect to language. One kind of organic memory accounts for the acquisition of the capacities that appear early in the ontogeny of language, then a second takes over. Again, codes are absolutely indispensable, and the emergence of new ones has been a key innovation in the history of both life and mind.

And finally, the semantic theory applies to culture as well. Cultures are like species, insofar as they are supraorganisinal wholes, and real concrete things. There are codes in both life and culture, and both life and culture have evolved through natural selection and natural conventions. In culture we find something analogous to genotypes, though they depend upon an extrasomatic memory. We also find something analogous to phenotypes, such as artifacts. But, if we are to extend Barbieri’s basic vision of organised beings to culture, there is also something more. Consider a village with its buildings. Is it blueprints that explain the existence of buildings, or buildings that explain the existence of blueprints? Barbieri suggests that we might ask more edifying questions.

Barbieri’s most ambitious claim is that life evolves through natural conventions as well as natural selection. The importance of such conventions as major evolutionary innovations becomes increasingly
obvious as he discusses one example after another. Yet let us not get carried away. There is nothing here that portends the fall of Darwinism or its replacement by an alternative paradigm. The book is, after all, concerned with the fundamental principles of development, and with how they relate to the grand picture of evolution. It belongs to the mainstream of biological thought, and finds its proper place among the works of Karl Ernst von Baer, Charles Darwin, and August Weismann.

October 2001

Michael T. Ghiselin
This book is an extension of The Semantic Theory of Evolution (1985) and is dedicated, with affection, to the four men who encouraged my long journey toward that view of life.

Karl Popper has been my most important spiritual referee, and his pronouncement, in a private letter, that the semantic theory of life is “revolutionary” gave me the strength to persevere.

René Thom has been the deus ex machina who actually engineered the publication of The Semantic Theory and gave it an impressive imprimatur by writing its preface.

Heinz-Günter Wittmann and Elmar Zeitler allowed me to perform the experimental research which led me first to the concept of ribotype and then to the idea of evolution by natural conventions.

It is from these good men that I learned what it takes to devote one’s life to an idea, even if all seems to be destined to another generation of students. Which is what really matters, in the end, because a new idea is all the more beautiful the greater is its power to convince one that it really belongs to the future.

March 2002

Marcello Barbieri
I was greatly encouraged by the comments to the first version of this book made by Robert Aunger, Noam Chomsky, Eva Jablonka, Kalevi Kull, Richard Strohman and Emile Zuckerkandl. And I have vastly profited from the suggestions sent by David Abel, James Barham, Jack Cohen, Michael Ghiselin, Chris Ottolenghi and Pietro Ramellini, and from the corrections supplied by James Barham, Richard Gordon and Romeu Guimarães. Michael Ghiselin has written a Foreword that makes an illuminating synthesis of the theoretical structure of the book, which suddenly comes to life, and for that kind of help I simply cannot find the right words. Jack Cohen has added an Afterword which puts some experimental flesh on the backbone of theory, thus ending off the book on a very encouraging note. Ward Cooper is “the” editor who adopted the book into the CUP family, where it has been carefully nursed by Carol Miller (production controller), Anna Hodson (copy editor) and Zoe Naylor (cover designer) all the way up to its present state. To all above colleagues and friends: thank you, I will never forget you.

July 2002

Marcello Barbieri