Extreme Events
A Physical Reconstruction and Risk Assessment

The assessment of risks posed by natural hazards such as floods, droughts, earthquakes, tsunamis or tropical cyclones is often based on short-term historical records that may not reflect the full range or magnitude of events possible. As human populations grow, especially in hazard-prone areas, methods for accurately assessing natural hazard risk are becoming increasingly important.

In *Extreme Events* Jonathan Nott describes the many methods used to reconstruct such hazards from natural long-term records. He demonstrates how long-term (multi-century to millennial) records of natural hazards are essential in gaining a realistic understanding of the variability of natural hazards likely to occur at a particular location. He also demonstrates how short-term historical records often do not record this variability and can therefore misrepresent the likely risks associated with natural hazards.

This book will provide a useful resource for students taking courses covering natural hazards and risk assessment. It will also be valuable for urban planners, policy makers and non-specialists as a guide to understanding and reconstructing long-term records of natural hazards.

Jonathan Nott is Professor of Geomorphology at James Cook University in Queensland, Australia. His broad research interests are in Quaternary climate change and the reconstruction of prehistoric natural hazards. Other research interests include long-term landform evolution, plunge pool deposits (terrestrial floods) and reconstructing tropical cyclone climatology from deposits of coral shingle and shell. He is a member of the National Committee for Quaternary Research, Australian Academy of Science. His research has been published in many international journals including *Nature; Earth and Planetary Science Letters; Geophysical Research Letters; Journal of Geophysical Research; Marine Geology; Palaeogeography, Palaeoclimatology, Palaeoecology; Geology; Journal of Geology; Quaternary International; Journal of Quaternary Science; Quaternary Science Reviews; Environment International;* and *Catena.*
Extreme Events
A Physical Reconstruction and Risk Assessment

Jonathan Nott
To Monkey, Blue Eyes and Curly Tops
6 Earthquakes 140
 Earthquakes and plate tectonics 140
 Earthquake magnitude and intensity 143
 High-magnitude historical earthquakes 145
 Other hazards associated with earthquakes 147
 Earthquake prediction 148
 Palaeoearthquakes 149
 Microfaults (upward fault terminations) 150
 Liquefaction features 151
 Seismic deformation of muddy sediments 155
 Landform development (raised shorelines) 158
 Point measurements of surface rupture 161
 Landslide dammed lakes 162
 Lake sediments 163
 Archaeological evidence of prehistoric earthquakes 165
 Tree-ring records (dendroseismology) and forest disturbance 171
 Coral records of earthquakes 173
 Conclusion 174

7 Landslides 176
 Historical landslides 176
 Magnitude of historical landslides 181
 Landslide impacts 183
 Palaeolandslides 183
 Lichenometry 184
 Tree-ring dating (dendrochronology) 188
 Side-scan sonar 193
 Stratigraphy 195
 Aerial photography and field surveys 197
 Statistical-modelling analysis 200
 Conclusion 200

8 Volcanoes 202
 Historical volcanoes 202
 Volcano and eruption characteristics 202
 Impacts 205
 Magnitude 206
 Palaeovolcanic eruptions 208
 Archaeological evidence 209
 Volcanoes and mythology 212
 Stratigraphy and tephrochronology 213
 Isotope and radiocarbon dating 216
 Desktop studies 218
9 Asteroids 222
Cosmic origins of asteroids 223
Asteroid types 224
Asteroid impacts with Earth 224
The risk of an asteroid impact 227
Historical events 228
Palaeoasteroid impacts with Earth 229
Impact craters: processes and effects 230
Shock processes in quartz as a diagnostic tool 234
Impact ejecta and spherules 235
Spinel 240
Iridium and other platinum-group elements (PGE) as indicators of extraterrestrial impacts 242
Zircon as an indicator for extraterrestrial impacts 246
Isotopes as indicators of extraterrestrial impacts 248
Conclusion 250

10 Extreme events over time 251
Atmospherically generated extreme events 252
Non-atmospheric events 256
Quantitative evidence for non-randomness 258
Incorporating palaeorecords into hazard risk assessments 265
Future climate change and natural hazards 266

Appendix Dating techniques 268
Radiocarbon dating 268
Cosmogenic nuclide dating 268
Optically stimulated luminescence (OSL) dating 269
Uranium-series dating 269
Argon–Argon (Ar–Ar) dating 270
Alpha-recoil-track (ART) dating 270
References 271
Index 293
Acknowledgments

I would like to thank Drs Scott Smithers and James Goff for their constructive comments on this manuscript. Their assistance was invaluable. The views expressed in this book are entirely mine.

I would also like to thank the following for permission to reproduce in part and/or full the following:
Elsevier Science for Figures 2.1, 2.8, 2.9, 5.9, 6.4, 6.5, 7.4, 7.5, 7.6, 7.7, 7.8, 8.2, 8.4.
Nature Publishing Group for Figures 2.4, 2.5, 2.6, 2.10, 4.3, 4.11.
Geological Society of America for Figures 2.2, 7.2, 7.3.
American Geophysical Union for Figures 5.7, 7.9, 7.10, 8.3.
Coastal Research Foundation or Figure 2.4.
National Atmospheric and Oceanic Administration for Figure 2.11, 2.12.
Professor S. Bondevik for Figure 5.8.
Professor V. Baker for Figure 3.2.