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Chapter 1

Getting Started

1.1 Introduction
Ordinary differential equations(ODEs) are used throughout engineering, mathematics,
and science to describe how physical quantities change, so an introductory course on ele-
mentary ODEs and their solutions is a standard part of the curriculum in these fields. Such
a course provides insight, but the solution techniques discussed are generally unable to
deal with the large, complicated, and nonlinear systems of equations seen in practice. This
book is about solving ODEs numerically. Each of the authors has decades of experience
in both industry and academia helping people like yourself solve problems. We begin
in this chapter with a discussion of what is meant by a numerical solution with standard
methods and, in particular, of what you can reasonably expect of standard software. In the
chapters that follow, we discuss briefly the most popular methods for important classes of
ODE problems. Examples are used throughout to show how to solve realistic problems.
Matlab (2000) is used to solve nearly all these problems because it is a very convenient
and widely usedproblem-solving environment(PSE) with quality solvers that are excep-
tionally easy to use. It is also such a high-level programming language that programs are
short, making it practical to list complete programs for all the examples. We also include
some discussion of software available in other computing environments. Indeed, each of
the authors has written ODE solvers widely used in general scientific computing.

An ODE represents a relationship between a function and its derivatives. One such re-
lation taken up early in calculus courses is the linear ordinary differential equation

y ′(t) = y(t) (1.1)

which is to hold for, say, 0≤ t ≤ 10. As we learn in a first course, we need more than
just an ODE to specify a solution. Often solutions are specified by means of an initial
value. For example, there is a unique solution of the ODE(1.1) for which y(0) = 1,
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2 Chapter 1: Getting Started

namelyy(t) = et . This is an example of aninitial value problem(IVP) for an ODE. Like
this example, the IVPs that arise in practice generally have one and only one solution.
Sometimes solutions are specified in a more complicated way. This is important in prac-
tice, but it is not often discussed in a first course except possibly for the special case of
Sturm–Liouville eigenproblems. Suppose thaty(x) satisfies the equation

y ′′(x)+ y(x) = 0 (1.2)

for 0 ≤ x ≤ b. When a solution of this ODE is specified by conditions at both ends of the
interval such as

y(0) = 0, y(b) = 0

we speak of aboundary value problem(BVP). A Sturm–Liouville eigenproblem like this
BVP always has the trivial solutiony(x) ≡ 0, but for certain values ofb there are non-
trivial solutions, too. For instance, whenb = 2π, the BVP has infinitely many solutions
of the formy(x) = α sin(x) for any constantα. In contrast to IVPs, which usually have a
unique solution, the BVPs that arise in practice may have no solution, a unique solution,
or more than one solution. If there is more than one solution, there may be a finite number
or an infinite number of them.

Equation(1.1) tells us that the rate of change of the solution at timet is equal to the
value of the solution then. In many physical situations, the effects of changes to the so-
lution are delayed until a later time. Models of this behavior lead todelay differential
equations(DDEs). Often the delays are taken to be constant. For example, if the situa-
tion modeled by the ODE(1.1) issuch that the effect of a change in the solution is delayed
by one time unit, then the DDE is

y ′(t) = y(t −1) (1.3)

for, say, 0≤ t ≤ 10. This problem resembles an initial value problem for an ODE; when
the delays are constant, both the theory of DDEs and their numerical solution can be based
on corresponding results for ODEs. There are, however, important differences. For the
ODE (1.1), theinitial valuey(0) = 1 is enough to determine the solution, but that cannot
be enough for the DDE (1.3). After all, whent = 0 we needy(−1) to definey ′(0), but
this is a value of the solution prior to the initial time. Thus, an initial value problem for the
DDE (1.3) involves not just the value of the solution at the starting time but also itshis-
tory. For this example it is easy enough to argue that, if we specifyy(t) for −1≤ t ≤ 0,
then the initial value problem has a unique solution.

This book is about solving initial value problems for ODEs, boundary value problems
for ODEs, and initial value problems for a class of DDEs with constant delays. For brevity
we refer throughout to these three kinds of problems as IVPs, BVPs, and DDEs. In the
rest of this chapter we discuss fundamental issues that are common to all three. Indeed,
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some are so fundamental that – even if all you want is a little help solving a specific
problem – you need to understand them. The IVPs are taken up in Chapter 2, BVPs in
Chapter 3, and DDEs in Chapter 4. The IVP chapter comes first because the ideas and the
software of that chapter are used later in the book, so some understanding of this mate-
rial is needed to appreciate the chapters that follow. The chapters on BVPs and DDEs are
mutually independent.

It is assumed that you are acquainted with the elements of programming inMatlab,
so we discuss only matters connected with solving ODEs. If you need to supplement your
understanding of the language, the PSE itself has good documentation and there are a
number of books available that provide more detail. One that we particularly like is the
MATLAB Guide(Higham & Higham 2000). Most of the programs supplied withSolving
ODEs with MATLABplot solutions on the screen in color. Because it was not practical to
provide color figures in the book, we modified the output of these programs to show the
solutions in monochrome. Version 6.5 (Release 13) ofMatlab is required for Chapter 4,
but version 6.1 suffices for the other chapters. Much of the cited software for general sci-
entific computing is available from general-purpose, scientific computing libraries such
as NAG (2002), Visual Numerics (IMSL 2002), and Harwell 2000 (H2KL), or from the
Netlib Repository (Netlib). If the source of the software is not immediately obvious, it can
be located through the classification system GAMS, the Guide to Available Mathematical
Software (GAMS).

Numerical methods and the analytical tools of classical applied mathematics are com-
plementary techniques for investigating and undertaking the solution of mathematical
problems. You might be able to solve analytically simple equations involving a very few
unknowns, especially with the assistance of a PSE for computer algebra like Maple (1998)
or Mathematica (Wolfram 1996). All our examples were computed using the Maple ker-
nel provided with the student version ofMatlab or using the Symbolic Toolbox provided
with the professional version.

First we observe that even small changes to the equations can complicate greatly the
analytical solutions. For example, Maple is used viaMatlab to solve the ODE

y ′ = y2

at the command line by

>> y = dsolve(’Dy = yˆ2’)

y = -1/(t-C1)

(Sometimes we edit output slightly to give a more compact display.) In this general solu-
tion C1 is an arbitrary constant. This family of solutions expressed in terms of a familiar
function gives us a lot of insight about how solutions behave. If the ODE is changed
“slightly” to
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y ′ = y2+1

then the general solution is found bydsolve to be

y = tan(t+C1)

This is more complicated because it expresses the solution in terms of a special function,
but it is at least a familiar special function and we understand well how it behaves. How-
ever, if the ODE is changed to

y ′ = y2 + t
then the general solution found bydsolve is

y = (C1*AiryAi(1,-t)+AiryBi(1,-t))/
(C1*AiryAi(-t)+AiryBi(-t))

which in standard mathematical notation is

y(t) = C1Ai
′(−t)+ Bi ′(−t)

C1Ai(−t)+ Bi(−t)
HereAi(t) andBi(t) are Airy functions. (The Maple kernel denotes these functions by
AiryAi and AiryBi , cf. mhelp airy ; but Matlab itself uses different names, cf.
help airy .) Again C1 is an arbitrary constant. The Airy functions are not so familiar.
This solution is useful for studying the behavior of solutions analytically, but we’d need
to plot some solutions to gain a sense of how they behave. Changing the ODE to

y ′ = y2 + t 2

changes the general solution found bydsolve to

y = -t*(C1*besselj(-3/4,1/2*tˆ2)+bessely(-3/4,1/2*tˆ2))/
(C1*besselj(1/4,1/2*tˆ2)+bessely(1/4,1/2*tˆ2))

which in standard mathematical notation is

y(t) = −t
C1J−3/4

(
t 2

2

)
+ Y−3/4

(
t 2

2

)
C1J1/4

(
t 2

2

)
+ Y1/4

(
t 2

2

)
Again the solution is expressed in terms of special functions, but now they are Bessel func-
tions of fractional order. Again, we’d need to plot some solutions to gain insight. These
equations are taken up later in Example 2.3.1.



1.1 Introduction 5

Something different happens if we change the power ofy:

>> y = dsolve(’Dy = yˆ3 + tˆ2’)
Warning: Explicit solution could not be found.

This example shows that even simple-looking equations may not have a solutiony(t) that
can be expressed in terms of familiar functions by Maple. Such examples are not rare,
and usually when Maple fails to find an explicit solution it is because none is known. In
fact, for a system of ODEs it is rare that an explicit solution can be found.

For these scalar ODEs it was easy to use a computer algebra package to obtain an-
alytical solutions. Let us now consider some of the differences between solving ODEs
analytically and numerically. The analytical solutions of the examples provide valuable
insight, but to understand them better we’d need to evaluate and plot some particular solu-
tions. For this we’d need to turn to numerical schemes for evaluating the special functions.
But if we must use numerical methods for this, why bother solving them analytically at
all? A direct numerical solution might be the best way to proceed for a particular IVP, but
Airy and Bessel functions incorporate behavior that can be difficult for numerical meth-
ods to reproduce – namely, some have singularities and some oscillate very rapidly. If this
is true of the solution that interests us or if we are interested in the solution ast →∞,
then we may not be able to compute the solution numerically in a straightforward way.
In effect, the analytical solution isolates the difficulties and we then rely upon the quality
of the software for evaluating the special functions to compute an accurate solution. As
the examples show, small changes to the ODE can lead to significant changes in the form
of the analytical solution, though this may not imply that the behavior of the solution it-
self changes much. In contrast, there is really no difference solving IVPs numerically for
these equations, including the one for whichdsolve did not produce a solution. This
illustrates the most important virtue of numerical methods: they make it easy to solve a
large class of problems. Indeed, our considerable experience is that if an IVP arises in a
practical situation, most likely you will not be able to solve it analytically yet you will be
able to solve it numerically. On the other hand, the analytical solutions of the examples
show how they depend on an arbitrary constantC1. Because numerical methods solve
one problem at a time, it is not easy to determine how solutions depend on parameters.
Such insight can be obtained by combining numerical methods with analytical tools such
as variational equations and perturbation methods. Another difference between analytical
and numerical solutions is that the standard numerical methods of this book apply only to
ODEs defined by smooth functions that are to be solved on a finite interval. It is not un-
usual for physical problems to involve singular points or an infinite interval. Asymptotic
expansions are often combined with numerical methods to deal with these difficulties.

In our view, analytical and numerical methods are complementary approaches to solv-
ing ODEs. This book is about numerical methods because they are easy to use and broadly
applicable, but some kinds of difficulties can be resolved or understood only by analytical
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means. As a consequence, the chapters that follow feature many examples of using ap-
plied mathematics (e.g., asymptotic expansions and perturbation methods) to assist in the
numerical solution of ODEs.

1.2 Existence, Uniqueness, and
Well-Posedness

From the title of this section you might imagine that this is just another example of mathe-
maticians being fussy. But it is not: it is about whether you will be able to solve a problem
at all and, if you can, how well. In this book we’ll see a good many examples of physi-
cal problems that do not have solutions for certain values of parameters. We’ll also see
physical problems that have more than one solution. Clearly we’ll have trouble comput-
ing a solution that does not exist, and if there is more than one solution then we’ll have
trouble computing the “right” one. Although there are mathematical results that guaran-
tee a problem has a solution and only one, there is no substitute for an understanding of
the phenomena being modeled.

Existence and uniqueness are much simpler for IVPs than BVPs, and the class of DDEs
we consider can be understood in terms of IVPs, so we concentrate here on IVPs and de-
fer to later chapters a fuller discussion of BVPs and DDEs. The vast majority of IVPs that
arise in practice can be written as a system ofd explicit first-order ODEs:

y ′1(t) = f1(t, y1(t), y2(t), . . . , yd(t))

y ′2(t) = f2(t, y1(t), y2(t), . . . , yd(t))

...

y ′d(t) = fn(t, y1(t), y2(t), . . . , yd(t))

For brevity we generally write this system in terms of the (column) vectors

y(t) =


y1(t)

y2(t)
...

yd(t)

, f(t, y(t)) =


f1(t, y(t))

f2(t, y(t))
...

fd(t, y(t))


as

y ′(t) = f(t, y(t)) (1.4)

An IVP is specified by giving values of all the solution components at an initial point,

y1(a) = A1, y2(a) = A2, . . . , yd(a) = Ad
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or, in vector notation,

y(a) = A =


A1

A2
...

Ad

 (1.5)

Using vectors, a system of first-order equations resembles a single equation; in fact, the
theory is much the same. However, writing problems as first-order systems is not only
convenient for the theory, it is critically important in practice. We’ll explain this later and
show how to do it.

Roughly speaking, if the functionf(t, y) is smooth for all values(t, y) in a regionR
that contains the initial data(a,A), then the IVP comprising the ODE (1.4) and the ini-
tial condition (1.5) has a solution and only one. This settles the existence and uniqueness
question for most of the IVPs that arise in practice, but we need to expand on the issue of
where the solution exists. The solution extends to the boundary of the regionR, but that
is not the same as saying that it exists throughout a given intervala ≤ t ≤ b contained in
the regionR. An example makes the point. The IVP

y ′ = y2, y(0) = 1

has a functionf(t, y) = y2 that is smooth everywhere; in other words, it is smooth in the
region

R = {−∞ < t <∞, −∞ < y <∞}
Yet the unique solution

y(t) = 1

1− t
“blows up” ast → 1 and hence does not exist on a whole interval 0≤ t ≤ 2 (say) that is
entirely contained inR. This does not contradict the existence result because ast → 1,
the solution approaches the boundary of the regionR in they variable, a boundary that
happens to be at infinity. This kind of behavior is not at all unusual for physical problems.
Correspondingly, it is usually reasonable to ask that a numerical scheme approximate a
solution well until it becomes too large for the arithmetic of the computer used. Exer-
cises 1.2 and 1.3 take up similar cases.

The form of the ODEs (1.4) and the initial condition (1.5) is standard for IVPs, and in
Section 1.3 we look at some examples showing how to write problems in this form. Exis-
tence and uniqueness is relatively simple for this standard explicit form, but the properties
are more difficult to analyze for equations in the implicit form

F(t, y(t), y ′(t)) = 0
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Very simple examples show that both existence and uniqueness are problematic for such
equations. For instance, the equation

(y ′(t))2 +1= 0

obviously has no (real) solutions. A more substantial example helps make the point. In
scientific and engineering applications there is a great deal of interest in how the solutions
y of a system of algebraic equations

F(y, λ) = 0

depend on a (scalar) parameterλ. Differentiating with respect to the parameter, we find
that

∂F

∂y

dy

dλ
+ ∂F
∂λ
= 0

This is a system of first-order ODEs. If for someλ0 we can solve the algebraic equations
F(y, λ0) = 0 for y(λ0) = y0, then this provides an initial condition for an IVP fory(λ).
If the Jacobian matrix

J = ∂F

∂y
=
(
∂Fi

∂yj

)
is nonsingular, we can write the ODEs in the standard form

dy

dλ
= −J−1∂F

∂λ

However, if the Jacobian matrix is singular then the questions of existence and unique-
ness are much more difficult to answer. This is a rather special situation, but in fact it is
often the situation with the most interesting science. It is when solutions bifurcate – that
is, the number of solutions changes. If we are to apply standard codes for IVPs at such a
singular (bifurcation) point, we must resort to the analytical tools of applied mathemat-
ics to sort out the behavior of solutions near this point. Exercise 1.1 considers a similar
problem.

As a concrete example of bifurcation, suppose that we are interested in steady-state
(constant) solutions of the ODE

y ′ = y2 − λ
The steady states are solutions of the algebraic equation

0= y2 − λ ≡ F(y, λ)
It is obvious that, forλ ≥ 0, one steady-state solution isy(λ) = √λ. However, to study
more generally how the steady state depends onλ, we could compute it as the solution of
the IVP
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Figure 1.1: (0,0) is a singular point for 2yy ′ −1= 0.

2y
dy

dλ
−1= 0, y(1) = 1

Provided thaty 6= 0, the ODE can be written immediately in standard form and solved for
values ofλ decreasing from 1. However, the equation is singular wheny(λ) = 0, which
is true forλ = 0. The singular point(0,0) leaves open the possibility that there is more
than one solution of the ODE passing through this point, and so there is:y(λ) = −√λ is
a second solution. Using standard software, we can start atλ = 1 and integrate the equa-
tion easily until close to the origin, where we run into trouble becausey ′(λ) → ∞ as
λ→ 0. See Figure1.1.

For later use in discussing numerical methods, we need to be a little more precise about
what we mean by asmoothfunctionf(t, y). We mean that it is continuous in a regionR
and that it has continuous derivatives with respect to the dependent variables there – as
many derivatives as necessary for whatever argument we make. A technical condition is
thatf must satisfy aLipschitz conditionin the regionR. That is, there is a constantL
such that, for any points(t, u) and(t, v) in the regionR,

‖f(t, u)− f(t, v)‖ ≤ L‖u− v‖

In the case of a single equation, the mean value theorem states that
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f(t, u)− f(t, v) = ∂f

∂y
(t, ζ)(u− v)

sof(t, y) satisfies a Lipschitz condition if
∣∣ ∂f(t,y)

∂y

∣∣ is bounded in the regionR by a con-

stantL. Similarly, if the first partial derivatives
∣∣ ∂fi(t,y1,y2,. . . ,yd )

∂yj

∣∣ are all bounded in the
regionR, then the vector functionf(t, y) satisfies a Lipschitz condition there.

Roughly speaking, awell-posed problemis one for which small changes to the data
lead to small changes in the solution. Such a problem is also said to bewell-conditioned
with respect to changes in the data. This is a fundamental property of a physical prob-
lem and it is also fundamental to the numerical solution of the problem. The methods that
we study can be regarded as producing the exact solution to a problem with the data that
defines the problem changed a little. For a well-posed problem, this means that the nu-
merical solution is close to the solution of the given problem. In practice this is all blurred
because it depends both on how much accuracy you want in a solution and on the arith-
metic you use in computing it. Let’s now discuss a familiar example that illuminates some
of the issues.

Imagine that we have a pendulum: a light, rigid rod hanging vertically from a friction-
less pivot with a heavy weight (the bob) at the free end. With a particular choice of units,
the angleθ(t) that the pendulum makes with the vertical at timet satisfies the ODE

θ ′′ + sin(θ) = 0 (1.6)

Suppose that the pendulum is hanging vertically so that the initial angleθ(0) = 0 and that
we thump the bob to give it an initial velocityθ ′(0). When the initial velocity is zero, the
pendulum does not move at all. If the velocity is nonzero and small enough, the pendu-
lum will swing back and forth. Figure 1.2 showsθ(t) for several such solutions, namely
those with initial velocitiesθ ′(0) = −1.9, 1.5, and 1.9. There is another kind of solution.
If we thump the bob hard enough, the pendulum will swing over the top and, with no fric-
tion, it will whirl around the pivot forever. This is to say that if the initial velocityθ ′(0)
is large enough thenθ(t) will increase forever. The figure shows two such solutions with
initial velocitiesθ ′(0) = 2.1 and 2.5. If you think about it, you’ll realize that there is a
very special solution that occurs as the solutions change from oscillatory to increasing.
This solution is the dotted curve in Figure 1.2. Physically, it corresponds to an initial ve-
locity that causes the pendulum to approach and then come to rest vertically and upside
down. Clearly this solution is unstable – an arbitrarily small change to the initial velocity
gives rise to a solution that is eventually very different. In other words, the IVP for this
initial velocity is ill-posed (ill-conditioned) on long time intervals.

Interestingly, we can deduce the initial velocity that results in the unstable solution of
(1.6). This is a conservative system, meaning that theenergy

E(t) = 0.5(θ ′(t))2− cos(θ(t))
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Figure 1.2: θ(t), the angle from the vertical of the pendulum.

is constant. To prove this, differentiate the expression forE(t) and use the fact thatθ(t)
satisfies the ODE (1.6) to see that the derivativeE ′(t) is zero for allt. On physical grounds,
the solution of interest satisfies the conditionθ(∞) = π and, a fortiori,θ ′(∞) = 0. Along
with the initial valueθ(0) = 0, conservation of energy tells us that for this solution

0.5× (θ ′(0))2 − cos(0) = 0.5× 02 − cos(π)

and hence thatθ ′(0) = 2. With this we have the unstable solution defined as the solution
of the IVP consisting of equation (1.6) and initial valuesθ(0) = 0 andθ ′(0) = 2. The
other solutions of Figure 1.2 were computed using theMatlab IVP solverode45 and
default error tolerances, but these tolerances are not sufficiently stringent to compute an
accurate solution of the unstable IVP.

The unstable solution is naturally described as the solution of a boundary value prob-
lem. It is the solution of the ODE (1.6) with boundary conditions

θ(0) = 0, θ(∞) = π (1.7)

When modeling a physical situation with a BVP, it is not always clear what boundary con-
ditions to use. We have already commented that, on physical grounds,θ ′(∞) = 0 also.
Should we add this boundary condition to (1.7)? No; just as with IVPs, two conditions
are needed to specify the solution of a second-order equation and three are too many. But
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should we use this boundary condition at infinity or should we useθ(∞) = π? A clear
difficulty is that, in addition to the solutionθ(t) that we want, the BVP with boundary
conditionθ ′(∞) = 0 has (at least) two other solutions, namely−θ(t) andθ(t) ≡ 0. We
computed the unstable solution of Figure 1.2 by solving the BVP (1.6) and (1.7) with the
Matlab BVP solverbvp4c . The solution of the BVP is well-posed, so we could use the
default error tolerances. On the other hand, the BVP is posed on an infinite interval, which
presents its own difficulties. All the codes we discuss in this book are intended for prob-
lems defined on finite intervals. As we see here, it is not unusual for physical problems
to be defined on infinite intervals. Existence, uniqueness, and well-posedness are not so
clear then. One approach to solving such a problem, which we actually used for the fig-
ure, follows the usual physical argument of imposing the conditions at a finite point so
distant that it is idealized as being at infinity. For the figure, we solved the ODE subject
to the boundary conditions

θ(0) = 0, θ(100) = π
It turned out that taking the interval as large as [0,100] was unnecessarily cautious be-
cause the steady state ofθ is almost achieved fort as small as 7. For the BVP (1.6) and
(1.7), we can use the resultθ ′(0) = 2 derived earlier as a check on the numerical solution
and in particular to check whether the interval is long enough. With default error toler-
ances,bvp4c produces a numerical solution that has an initial slope ofθ ′(0) = 1.999979,
which is certainly good enough for plotting the figure.

Another physical example shows that some BVPs do not have solutions and others have
more than one. The equations

y ′ = tan(φ)

v ′ = −g sin(φ)+ νv2

v cos(φ)

φ ′ = − g
v2

(1.8)

describe a projectile problem, the planar motion of a shot fired from a cannon. Here the
solution componenty is the height of the shot above the level of the cannon,v is the ve-
locity of the shot, andφ is the angle (in radians) of the trajectory of the shot with the
horizontal. The independent variablex measures the horizontal distance from the can-
non. The constantν represents air resistance (friction) andg = 0.032 is the appropriately
scaled gravitational constant. These equations neglect three-dimensional effects such as
cross winds and rotation of the shot. The initial height isy(0) = 0 and there is a given
muzzle velocityv(0) for the cannon. The standard projectile problem is to choose the ini-
tial angleφ(0) of the cannon (and hence of the shot) so that the shot will hit a target at
the same height as the cannon at distancex = xend. That is, we requirey(xend) = 0. All
together, the boundary conditions are



1.2 Existence, Uniqueness, and Well-Posedness 13

Figure 1.3: Two ways to hit a target atxend= 5 whenv(0) = 0.5 andν = 0.02.

y(0) = y(xend) = 0, v(0) given

Notice that we specify three boundary conditions. Just as with IVPs, for a system of three
first-order equations we need three boundary conditions to determine a solution. Does this
boundary value problem have a solution? It certainly does not forxend beyond the range
of the cannon. On the other hand, ifxend is small enough then we expect a solution, but is
there only one? No, suppose that the target is close to the cannon. We can hit it by shoot-
ing with an almost flat trajectory or by shooting high and dropping the shot on the target.
That is, there are (at least) two solutions that correspond to initial anglesφ(0) = φ low ≈ 0
andφ(0) = φhigh ≈ π/2. As it turns out, there are exactly two solutions. Now, letxend in-
crease. There are still two solutions, but the larger the value ofxend, the smaller the angle
φhigh and the larger the angleφ low. Figure 1.3 shows such a pair of trajectories. If we keep
increasingxend, eventually we reach the maximum distance possible with the given muz-
zle velocity. At this distance there is just one solution,φ low = φhigh. In summary, there is
a critical value ofxend for which there is exactly one solution. Ifxend is smaller than this
critical value then there are exactly two solutions; if it is larger, there is no solution at all.

For IVPs we have an existence and uniqueness result that deals with most of the prob-
lems that arise physically. There are mathematical results that assert existence and say
something about the number of solutions of BVPs, but they are so special that they are sel-
dom important in practice. Instead you must rely on your understanding of the problem
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to have any confidence that it has a solution and is well-posed. Determining the number
of solutions is even more difficult, and in practice about the best we can do is look for a
solution close to a guess. There is a real possibility of computing a “wrong” solution or
a solution with unexpected behavior.

Stability is the key to understanding numerical methods for the solution of IVPs de-
fined by equation (1.4) and initial values (1.5). All the methods that we study produce
approximationsyn ≈ y(tn) on a mesh

a = t0 < t1 < t2 < · · · < tN = b (1.9)

that is chosen by the algorithm. The integration starts with the given initial valuey0 =
y(a) = A and, on reachingtn with yn ≈ y(tn), the solver computes an approximation at
tn+1 = tn + hn. The quantityhn is called thestep size,and computingyn+1 is described
as taking a step fromtn to tn+1.

What the solver does in taking a step is not what you might expect. Thelocal solution
u(t) is the solution of the IVP

u′ = f(t, u), u(tn) = yn (1.10)

In taking a step, the solver tries to findyn+1 so that thelocal error

u(tn+1)− yn+1

is no larger than error tolerances specified by the user. This controls thetrue (global)
error

y(tn+1)− yn+1

only indirectly. The propagation of error can be understood by writing the error attn+1 as

y(tn+1)− yn+1= [u(tn+1)− yn+1] + [y(tn+1)− u(tn+1)]

The first term on the right is the local error, which is controlled by the solver. The sec-
ond is the difference attn+1 of two solutions of the ODE that differ byy(tn) − yn at tn.
It is a characteristic of the ODE and hence cannot be controlled directly by the numerical
method. If the IVP is unstable – meaning that some solutions of the ODEs starting near
y(t) spread apart rapidly – then we see from this that the true errors can grow even when
the local errors are small at each step. On the other hand, if the IVP is stable so that solu-
tions come together, then the true errors will be comparable to the local errors. Figure 1.2
shows what can happen. As a solver tries to follow the unstable solution plotted with dots,
it makes small errors that move the numerical solution on to nearby solution curves. As
the figure makes clear, local solutions that start near the unstable solution spread out; the
cumulative effect is a very inaccurate numerical solution, even when the solver is able to
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follow closely each local solution over the span of a single step. It is very important to
understand this view of numerical error, for it makes clear a fundamental limitation on all
the numerical methods that we consider. No matter how good a job the numerical method
does in approximating the solution over the span of a step, if the IVP is unstable then you
will eventually compute numerical solutionsyj that are far from the desired solution val-
uesy(tj ). How quickly this happens depends on how accurately the method tracks the
local solutions and how unstable the IVP is.

A simple example will help us understand the role of stability. The solution of the ODE

y ′ = 5(y − t 2) (1.11)

with initial valuey(0) = 0.08 is

y(t) = t 2+ 0.4t + 0.08

The IVP and its solution seem innocuous, but the general solution of the ODE is

(t 2 + 0.4t + 0.08)+ Ce5t (1.12)

for an arbitrary constantC. The ODE is unstable because a solution withC = C1 and a
solution withC = C2 differ by (C1− C2)e

5t , a quantity that grows exponentially fast in
time. To understand what this means for numerical solution of the IVP, suppose that in
the first step we make a small local error so thaty1 is not exactly equal toy(t1). In the
next step we try to approximate the local solutionu(t) defined by the ODE and the initial
conditionu(t1) = y1. It has the form(1.12)with a small nonzero value ofC determined
by the initial condition. Suppose that we make no further local errors, so that we compute
yn = u(tn) for n = 2,3, . . . . The true error then isy(tn)− u(tn) = Ce5tn. No matter how
small the error in the first step, before long the exponential growth of the true error will
result in an unacceptable numerical solutionyn.

For the example of Figure 1.2, the solution curves come together when we integrate
from right to left, which is to say that the dotted solution curve is stable in that direction.
Sometimes we have a choice of direction of integration, and it is important to appreciate
that the stability of IVPs may depend on this direction. The direction field and solution
curves for the ODE

y ′ = cos(t)y (1.13)

displayed in Figure 1.4 are illuminating. In portions of the interval, solutions of the ODE
spread apart; hence the equation is modestly unstable there. In other portions of the in-
terval, solutions of the ODE come together and the equation is modestly stable. For this
equation, the direction of integration is immaterial. This example shows that it is an over-
simplification to say simply that an IVP is unstable or stable. Likewise, the growth or
decay of errors made at each step by a solver can be complex. In particular, you should
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Figure 1.4: Direction field and solutions of the ODE
y ′ = cos(t)y.

not assume that errors always accumulate. For systems of ODEs, one component of the
solution can be stable and another unstable at the same time. The coupling of the compo-
nents of a system can make the overall behavior unclear.

A numerical experiment shows what can happen. Euler’s method is a basic scheme
discussed fully in the next chapter. It advances the numerical solution ofy ′ = f(t, y) a
distanceh using the formula

yn+1= yn + hf(tn, yn) (1.14)

The solution of the ODE(1.13)with initial valuey(0) = 2 is

y(t) = 2esin(t)

The local solutionu(t) is the solution of(1.13)that goes through the point(tn, yn), namely

u(t) = yne(sin(t)−sin(tn))

Figure 1.5 shows the local and global errors when a constant step size ofh = 0.1 is used
to integrate fromt = 0 to t = 3. Although we are not trying to control the size of the local
errors, they do not vary greatly. By definition, the local and global errors are the same in
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Figure 1.5: Comparison of local and global errors.

the first step. Thereafter, the global errors grow and decay according the stability of the
problem, as seen in Figure 1.4.

Backward error analysishas been an invaluable tool for understanding issues arising
in numerical linear algebra. It provides a complementary view of numerical methods
for ODEs that is especially important for the methods of theMatlab solvers. All these
solvers produce approximate solutionsS(t) on the whole interval [a, b] that are piecewise
smooth. For conceptual purposes, we can define a piecewise-smooth functionS(t) with
S(tn) = yn for each valuen that plays the same role for methods that do not naturally
produce such an approximation. Theresidualof such an approximation is

r(t) = S ′(t)− f(t, S(t))
Put differently,S(t) is theexactsolution of the perturbed ODE

S ′(t) = f(t, S(t))+ r(t)
In the view of backward error analysis,S(t) is a good approximate solution if it satisfies
an ODE that is “close” to the one given – that is, if the residualr(t) is “small”. This is a
perfectly reasonable definition of a “good” solution, but if the IVP is well-posed then it
also implies thatS(t) is “close” to the true solutiony(t), the usual definition of a good ap-
proximation. In this view, a solver tries to produce an approximate solution with a small
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residual. The BVP solver ofMatlab does exactly this, and the IVP and DDE solvers do
it indirectly.

� EXERCISE 1.1
Among the examples available through theMatlab commandhelp dsolve is the IVP

(y ′)2+ y2 = 1, y(0) = 0

In addition to showing how easy it is to solve simple IVPs analytically, the example has
interesting output:

>> y = dsolve(’(Dy)ˆ2 + yˆ2 = 1’,’y(0) = 0’)

y = [ sin(t)]
[ -sin(t)]

According todsolve , this IVP has two solutions. Is this correct? If it is, reconcile this
with the existence and uniqueness result for IVPs of Section 1.2.

� EXERCISE 1.2
Prove that the functionf(t, y) in

y ′ = f(t, y) = +√|y|
does not satisfy a Lipschitz condition on the rectangle|t | ≤ 1, |y| ≤ 1. Show by example
that this ODE has more than one solution that satisfiesy(0) = 0. Show thatf(t, y) does
satisfy a Lipschitz condition on the rectangle|t | ≤ 1, 0 < α ≤ y ≤ 1. The general result
discussed in the text then says that the ODE has only one solution with its initial value in
this rectangle.

� EXERCISE 1.3
The interval on which the solution of an IVP exists depends on the initial conditions. To
see this, find the general solution of the following ODEs and consider how the interval of
existence depends on the initial condition:

y ′ = 1

(t −1)(t − 2)

y ′ = −3y 4/3 sin(t)

� EXERCISE 1.4
The programdfs.m that accompanies this book provides a modest capability for com-
puting a direction field and solutions of a scalar ODE,y ′ = f(t, y). The first argument of
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dfs.m is a string definingf(t, y). In this the independent variable must be calledt and the
dependent variable must be calledy. The second argument is an array[wL wR wB wT]
specifying a plot window. Specifically, solutions are plotted for valuesy(t) with wL ≤
t ≤ wR, wB ≤ y ≤ wT. The program first plots a direction field. If you then indicate a
point in the plot window by placing the cursor there and clicking, it computes and plots
the solution of the ODE through this point. Clicking at a point outside the window termi-
nates the run. For example, Figure 1.4 can be reproduced with the command

>> dfs(’cos(t)*y’,[0 12 -6 6]);

and clicking at appropriate points in the window. Usedfs.m to study graphically the sta-
bility of the ODE(1.11). Aplot window appropriate for the IVP studied analytically in the
text is given by[0 5 -2 20] .

� EXERCISE 1.5
Compare local and global errors as in Figure 1.5 when solving equation(1.11)with y(0) =
0.08. Use Euler’s method with the constant step sizeh = 0.1 to integrate from 0 to 2. The
stability of this problem is studied analytically in the text and numerically in Exercise 1.4.
With this in mind, discuss the behavior of the global errors.

1.3 Standard Form
Ordinary differential equations arise in the most diverse forms. In order to solve an ODE
problem, you must first write it in a form acceptable to your code. By far the most com-
mon form accepted by IVP solvers is the system of first-order equations discussed in
Section 1.2,

y ′ = f(t, y) (1.15)

TheMatlab IVP solvers accept ODEs of the more general form

M(t, y)y ′ = F(t, y) (1.16)

involving a nonsingularmass matrixM(t, y). These equations can be written in the form
(1.15)with f(t, y) = M(t, y)−1F(t, y), but for some kinds of problems the form(1.16) is
more convenient and more efficient. With either form, we must formulate the ODEs as a
system of first-order equations. The usual way to do this is to introduce new dependent
variables. You must introduce a new variable for each of the dependent variables in the
original form of the problem. In addition, a new variable is needed for each derivative
of an original variable up to one less than the highest derivative appearing in the original
equations. For each new variable, you need an equation for its first derivative expressed
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in terms of the new variables. A little manipulation using the definitions of the new vari-
ables and the original equations is then required to write the new equations in the form
(1.15) (or (1.16)). This is harder to explain in words than it is to do, so let’s look at some
examples. To put the ODE (1.6) describing the motion of a pendulum in standard form,
we begin with a new variabley1(t) = θ(t). The second derivative ofθ(t) appears in the
equation, so we need to introduce one more new variable,y2(t) = θ ′(t). For these vari-
ables we have

y ′1(t) = θ ′(t) = y2(t)

y ′2(t) = θ ′′(t) = −sin(θ(t)) = −sin(y1(t))

From this we recognize that

y ′1 = y2

y ′2 = −sin(y1)

that is, the two components of the vector functionf(t, y) of (1.15) are given byf1(t, y) =
y2 andf2(t, y) = −sin(y1). When we solved an IVP for this ODE we specified initial
values

y1(0) = θ(0) = 0

y2(0) = θ ′(0)
and when we solved a BVP we specified boundary values

y1(0) = θ(0) = 0

y1(b) = θ(b) = π
As another example consider Kepler’s equations describing the motion of one body

around another of equal mass located at the origin under the influence of gravity. In ap-
propriate units they have the form

x ′′ = − x
r 3
, y ′′ = − y

r 3
(1.17)

wherer =
√
x 2 + y2. Here(x(t), y(t)) are the coordinates of the moving body relative

to the body fixed at the origin. With initial values

x(0) = 1− e, y(0) = 0, x ′(0) = 0, y ′(0) =
√

1+ e
1− e (1.18)

there is an analytical solution in terms of solutions of Kepler’s (algebraic) equation that
shows the orbit is an ellipse of eccentricitye. These equations are easily written as a
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first-order system. One choice is to introduce variablesy1 = x andy2 = y for the un-
knowns and then, because the second derivatives of the unknowns appear in the equations,
to introduce variablesy3 = x ′ andy4 = y ′ for their first derivatives. You should verify
that the first-order system is

y ′1 = y3

y ′2 = y4

y ′3 = −
y1

r 3

y ′4 = −
y2

r 3

wherer =
√
y2

1 + y2
2, and that the initial conditions are

y1(0) = 1− e, y2(0) = 0, y3(0) = 0, y4(0) =
√

1+ e
1− e

Both of these examples illustrate the fact that mechanical problems described by New-
ton’s laws of motion lead to systems of second-order equations and, if there is no dissi-
pation, there are no first derivatives. Equations like this are calledspecial second-order
equations. They are sufficiently common that some codes accept IVPs in the standard
form

y ′′ = f(t, y)
with initial position y(a) and initial velocityy ′(a) given. As we have seen, it is easy
enough to write such problems as first-order systems, but since there are numerical meth-
ods that take advantage of the special form it is both efficient and convenient to work
directly with the system of second-order equations (cf. Brankin et al. 1989).

Sometimes it is useful to introduce additional unknowns in order to compute quanti-
ties related to the solution. An example arises in formulating the solution of the Sturm–
Liouville eigenproblem consisting of the ODE

y ′′(x)+ λy(x) = 0

with boundary conditionsy(0) = 0 andy(2π) = 0. The task is to find an eigenvalueλ for
which there is a nontrivial (i.e., not identically zero) solution, known as an eigenfunction.
For some purposes it is appropriate to normalize the solution so that

1=
∫ 2π

0
y2(t) dt

A convenient way to impose this normalizing condition is to introduce a variable
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y3(x) =
∫ x

0
y2(t) dt

Then, along with variablesy1(x) = y(x) andy2(x) = y ′(x), we have the first-order
system

y ′1 = y2

y ′2 = −λy1

y ′3 = y2
1

The definition of the new variable implies thaty3(0) = 0, and we seek a solution of the
system of ODEs for whichy3(2π) = 1. All together we have three equations and one
unknown parameterλ. The solution of interest is to be determined by the four boundary
conditions

y1(0) = 0, y1(2π) = 0, y3(0) = 0, y3(2π) = 1

Here we use the device of introducing a new variable for an auxiliary quantity to deter-
mine a solution of interest. Another application is to put the problem in standard form.
The Matlab BVP solverbvp4c accepts problems with unknown parameters, but this
facility is not commonly available. Most BVP solvers require that the parameterλ be re-
placed by a variabley4(t). The parameter is constant, so the new unknown satisfies the
ODE

y ′4 = 0

In this way we obtain a system of four first-order ODEs that does not explicitly involve
an unknown parameter,

y ′1 = y2

y ′2 = −y4y1

y ′3 = y2
1

y ′4 = 0

and the boundary conditions are unchanged. Exercises 1.8 and 1.9 exploit this technique
of converting integral constraints to differential equations.

Often a proper selection of unknowns is key to solving a problem. The following ex-
ample arose in an investigation by chemical engineer F. Song (pers. commun.) into the
corrosion of natural gas pipelines under a coating with cathodic protection. The equations
are naturally formulated as
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d2x

dz2
= γ (ex + µcexωFe+ λHexωH + λO2e

xωO2 )

d2pO2

dz2
= πpO2e

xωO2 + βpO2 + κ

This is a BVP with boundary conditions at the origin and infinity. It is possible to eliminate
the variablepO2(z) to obtain a fourth-order equation for the solution variablex(z) alone.
Reducing a set of ODEs to a single, higher-order equation is often useful for analysis, but
to solve the problem numerically the equation must then be reformulated as a system of
first-order equations. If you forget about the origin of the fourth-order ODE forx(z) here,
you might reasonably introduce new variables in the usual way,

y1= x, y2 = x ′, y3 = x ′′, y4 = x ′′′

This is not a good idea because it does not directly account for the behavior of the cor-
rodant,pO2(z). It is much better practice here to start with the original formulation and
introduce the new variables

w1= x, w2 = x ′, w3 = pO2, w4 = p ′O2

It is easier to select appropriate error tolerances for quantities that can be interpreted phys-
ically. Also, by specifying error tolerances forw3, we require the solver to compute
accurately the fundamental quantitypO2. When solving BVPs you must provide a guess
for the solution. It is easier to provide a reasonable guess for quantities that have physical
significance. In Song’s work, a suitable formulation of this problem and a corresponding
guess was important to the successful solution of this BVP. It is worth noting that here
“solving” the problem was not just a matter of computing the solution of a single BVP. As
is so often the case in practice, the BVP was to be solved for a range of parameter values.

� EXERCISE 1.6
Consider the two-point BVP consisting of the second-order ODE

(p(x)y ′)′ + q(x)y = r(x)
with boundary conditions

y(0) = 0, p(1)y ′(1) = 2

The functionp(x) is differentiable and positive for allx ∈ [0,1]. Usingp ′(x), write this
problem in the form of a first-order system using as unknownsy1= y andy2 = y ′. In ap-
plications it is often natural to use the fluxpy ′ as an unknown instead ofy ′. Indeed, one
of the boundary conditions here states that the flux has a given value. Show that with the
flux as an unknown, you can write the problem in the form of a first-order system without
needing to differentiatep(x).
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� EXERCISE 1.7
Kamke (1971, p. 598) states that the IVP

y(y ′′)2 = e2x, y(0) = 0, y ′(0) = 0

describes space charge current in a cylindrical capacitor.

• Find two equivalent explicit ODEs in special second-order form.
• Formulate the second-order equations as systems of first-order equations.

� EXERCISE 1.8
Murphy (1965) extends the classical Falkner–Skan similarity solutions for laminar incom-
pressible boundary layer flows to flows over curved surfaces. He derives a BVP consisting
of the ODE

f ′′′′ + (�+ f )f ′′′ +�ff ′′ − (2β −1)[f ′f ′′ +�(f ′)2] = 0

to be solved on 0≤ η ≤ b with boundary conditions

f(0) = f ′(0) = 0, f ′(b) = e−�b, f ′′(b) = −�e−�b

Here� is a curvature parameter,β is a pressure–gradient parameter, andb is large enough
that the exponential terms in the boundary conditions describe the correct asymptotic be-
havior. Physically significant quantities are the displacement thickness

1∗ =
∫ b

0
[1− f ′(η)e�η] dη

and the momentum thickness

θ =
∫ b

0
f ′(η)e�η[1− f ′(η)e�η] dη

Formulate the BVP in terms of a system of first-order equations. Add equations and ini-
tial values so that the displacement thickness and the momentum thickness can each be
computed along with the solutionf(η).

� EXERCISE 1.9
Caughy (1970) describes the large-amplitude whirling of an elastic string by a BVP con-
sisting of the ODE

µ′′ + ω2

(
1− α2

H

1√
1+ µ2

+ α2

)
µ = 0

and boundary conditions
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µ′(0) = 0, µ′(1) = 0

Hereα is a physical constant with 0< α < 1. Because the whirling frequencyω is to be
determined as part of solving the BVP, there must be another boundary condition. Caughy
specifies the amplitudeε of the solution at the origin:

µ(0) = ε

An unusual aspect of this problem is that an important constantH is defined in terms of
the solutionµ(x) throughout the interval of integration:

H = 1

α2

[
1− (1− α2)

∫ 1

0

dx√
1+ µ2(x)

]

Formulate this BVP in standard form. As in the Sturm–Liouville example, you can in-
troduce a new variabley3(x), a first-order ODE, and a boundary condition to deal with
the integral term in the definition ofH. The trick to dealing withH is to let it be a new
variabley4(x). It is a constant, so this new variable satisfies the first-order differential
equationy ′4 = 0. It is given the correct constant value by the boundary condition resulting
from the definition ofH :

y4(1) = 1

α2
[1− (1− α2)y3(1)]

� EXERCISE 1.10
This exercise is based on material from the textbookContinuous and Discrete Signals and
Systems(Soliman & Srinath 1998). A linear, time-invariant (LTI) system is described by
a single linear, constant-coefficient ODE of the form

y(N )(t)+
N−1∑
i=0

aiy
(i)(t) =

N∑
i=0

bi x
(i)(t) (1.19)

Herex(t) is a given signal andy(t) is the response of the system. A simulation diagram is
a representation of the system using only amplifiers, summers, and integrators. This might
be described in many ways, but there are two canonical forms. A state-variable descrip-
tion of a system has some advantages, one being that it is a first-order system of ODEs that
is convenient for numerical solution. The two canonical forms for simulation diagrams
lead directly to two state-variable descriptions. Letv(t) = (v1(t), v2(t), . . . , vN(t))

T be a
vector of state variables. The description corresponding to the first canonical form is
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v ′(t) =


−aN−1 1 0 . . . 0
−aN−2 0 1 . . . 0
...

...
...

...
...

−a1 0 0 . . . 1
−a0 0 0 . . . 0

v(t)+

bN−1− aN−1bN

bN−2− aN−2bN
...

b1− a1bN

b0 − a0bN

x(t)

The outputy(t) is obtained from the equation

y(t) = (1,0, . . . ,0)Tv(t)+ bNx(t)
Show directly that you can solve the ODE(1.19) bysolving this system of first-order
ODEs. Keep in mind that all the coefficients are constant.Hint: Using the identity

y(t) = v1(t)+ bNx(t)
rewrite the equations so that, fori < N,

v ′i(t) = (bN−i x(t)− aN−iy(t))+ vi+1(t)

Differentiate the equation forv ′1(t) and use the equation forv ′2(t) to obtain an equa-
tion for v ′′1(t) involving v3(t). Repeat until you have an equation forv(N )1 (t), equate it to
(y(t)− bNx(t))(N ), and compare the result to the ODE(1.19).

The description corresponding to the second canonical form is

v ′(t) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −aN−1

v(t)+


0
0
...

0
1

x(t)

Obtaining the output is more complicated for this form. The formula is

y(t) = [(b0 − a0bN), (b1− a1bN), . . . , (bN−1− aN−1bN)]
Tv(t)+ bNx(t)

Show directly that you can solve the ODE(1.19) bysolving this system of first-order
ODEs.Hint: Define the functionw(t) as the solution of the ODE

w(N)(t)+
N−1∑
j=0

ajw
(j)(t) = x(t)

and then show by substitution that the function
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y(t) =
N∑
i=0

biw
(i)(t)

satisfies the ODE(1.19).Finally, obtain a set of first-order ODEs for the functionw(t) in
the usual way.

It is striking that the derivativesx(i)(t) do not appear in either of the two canonical sys-
tems. Show that they play a role when you want to find a set of initial conditionsvi(0) that
corresponds to a set of initial conditions fory(i)(0) andx(i)(0) in the original variables.

1.4 Control of the Error
ODE solvers ask how much accuracy you want because the more you want, the more the
computation will cost. TheMatlab solvers have error tolerances in the form of a scalar
relative error tolerancere and a vector of absolute error tolerancesae. The solvers pro-
duce vectorsyn = (yn,i ) that approximate the solutiony(tn) = (yi(tn)) on the mesh (1.9).
Stated superficially, at each point in the mesh they aim to produce an approximation that
satisfies

|yi(tn)− yn,i | ≤ re|yi(tn)| + aei (1.20)

for each component of the solution. Variants of this kind of control are seen in all the
popular IVP solvers. For the convenience of users, theMatlab solvers interpret a scalar
absolute error tolerance as applying to all components of the solution. Also for conve-
nience, default error tolerances are supplied. They are 10−3 for the relative error tolerance
and a scalar 10−6 for the absolute error tolerance. The default relative error tolerance has
this value because solutions are usually interpreted graphically inMatlab. A relative er-
ror tolerance of 10−5 is more typical of general scientific computing.

For a code with a vector of relative error tolerances RTOL and a vector of absolute
error tolerances ATOL, Brenan, Campbell, & Petzold (1996, p.131)state:

We cannot emphasize strongly enough the importance of carefully selecting these tolerances
to accurately reflect the scale of the problem.In particular, for problems whose solution
components are scaled very differently from each other, it is advisable to provide the code
with vector valued tolerances. For users who are not sure how to set the tolerances RTOL
and ATOL, we recommend starting with the following rule of thumb. Letm be the number
of significant digits required for solution componentyi. Set RTOLi = 10−(m+1). Set ATOLi
to the value at which|yi | is essentially insignificant.

Because we agree about the importance of selecting appropriate error tolerances, we have
devoted this section to a discussion of the issues. This discussion will help you understand
the rule of thumb.
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The inequality (1.20) defines amixederror control. If all the valuesaei = 0, it cor-
responds to a purerelative error control; if the valuere = 0, it corresponds to a pure
absoluteerror control. The pure error controls expose more clearly the roles of the two
kinds of tolerances and the difficulties associated with them. First suppose that we use a
pure relative error control. It requires that∣∣∣∣yi(tn)− yn,iyi(tn)

∣∣∣∣ ≤ re
for each solution component. There are two serious difficulties. One is that a pure relative
error control is not appropriate if the solution might vanish. The formal difficulty is that
the denominatoryi(tn) might vanish. However, we are attempting to control the error in
a function, so the more fundamental question is: What should we mean by relative error if
yi(t) might vanish at some isolated pointt = t∗? The solvers commonly compare the er-
ror to some measure of the size ofyi(t) neartn rather than just the value|yi(tn)| of (1.20).
This is a reasonable and effective approach, but it does not deal with a componentyi(t)

that is zero throughout an interval abouttn. Solvers must therefore recognize the possi-
bility that a relative error control is not well-defined, even in some extended sense, and
terminate the integration with a message should this occur. You can avoid the difficulty by
specifying a nonzero absolute error tolerance in a mixed error test. For robustness some
solvers, including those ofMatlab, require that absolute error tolerances be positive.

Before taking up the other difficulty, we need to make some comments about com-
puter arithmetic. Programming languages like Fortran 77 and C include both single and
double precision arithmetic. Typically this corresponds to about 7 and 16 decimal dig-
its, respectively.Matlab has only one precision, typically double precision. Experience
says that, when solving IVPs numerically, it is generally best to use double precision. The
floating point representation of a number is accurate only to a unit roundoff, which is de-
termined by the working precision. InMatlab it is calledeps and for a PC it is typically
2.2204·10−16, corresponding to double precision in the IEEE-754 definition of computer
arithmetic that is used almost universally on today’s computers. Throughout this book we
assume that the unit roundoff is about this size when we speak of computations inMatlab.

A relative error tolerance specifies roughly how many correct digits you want in an
answer. It makes no sense to ask for an answer more accurate than the floating point rep-
resentation of the true solution – that is, it is not meaningful to specify a valuere smaller
than a unit roundoff. Of course, a tolerance that is close to a unit roundoff is usually also
too small because finite precision arithmetic affects the computation and hence the accu-
racy that a numerical method can deliver. For this reason theMatlab solvers require that
re be larger than a smallish multiple ofeps , with the multiple depending on the particu-
lar solver. You might expect that a code would fail in some dramatic way if you ask for
an impossible accuracy. Unfortunately, that is generally not the case. If you experiment
with a code that does not check then you are likely to find that, as you decrease the tol-
erances past the point where you are requesting an impossible accuracy: the cost of the
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integration increases rapidly; the results are increasinglylessaccurate; and there is no in-
dication from the solver that it is having trouble, other than the increase in cost.

Now we turn to a pure absolute error control. It requires that

|yi(tn)− yn,i | ≤ aei
for each solution component. The main difficulty with an absolute error control is that
you must make a judgment about the likely sizes of solution components, and you can get
into trouble if you are badly wrong. One possibility is that a solution component is much
larger in magnitude than expected. A little manipulation of the absolute error control in-
equality leads to ∣∣∣∣yi(tn)− yn,iyi(tn)

∣∣∣∣ ≤ aei

|yi(tn)|
This makes clear that a pure absolute error tolerance ofaei onyi(t) corresponds to a rela-
tive error tolerance ofaei/|yi(tn)| on this component. If|yi(tn)| is sufficiently large, then
specifying an absolute error tolerance that seems unremarkable can correspond to asking
for an answer that is more accurate in a relative sense than a unit roundoff. As we have
just seen, that is an impossible accuracy request. The situation can be avoided by speci-
fying a nonzero relative error tolerance and thus a mixed error control. Again for the sake
of robustness, theMatlab solvers do this by requiring that the relative error tolerance be
greater than a few units of roundoff.

The other situation that concerns us with pure absolute error control is when a solution
component is much smaller than its absolute error tolerance. First we must understand
what the error control means for such a component. If (say)|yi(tn)| < 0.5aei, thenany
approximationyn,i for which |yn,i | < 0.5aei will pass the error test. Accordingly, an ac-
ceptable approximation may havenocorrect digits. You might think that you always need
some accuracy, but for many mathematical models of physical processes there are quan-
tities that have negligible effects when they fall below certain thresholds and are then no
longer interesting. The danger is that one of these quantities might later grow to the point
that it must again be taken into account. If a solution component is rather smaller in magni-
tude than its absolute error tolerance and if you require some accuracy in this component,
you will need to adjust the tolerance and solve the problem again. It is an interesting and
useful fact that you may very well compute some correct digits in a “small” component
even though you did not require it by means of its error tolerance. One reason is that the
solver may have computed this component with some accuracy in order to achieve the
accuracy specified for a component that depends on it. Another reason is that the solver
selects a step size small enough to deal with the solution component that is most difficult
to approximate to within the accuracy specified. Generally this step size is smaller than
necessary for other components, so they are computed more accurately than required.

The first example of Lapidus, Aiken, & Liu (1973) is illustrative. Proton transfer in a
hydrogen–hydrogen bond is described by the system of ODEs
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Figure 1.6: Solution componentsx1(t) andx2(t) of the proton transfer
problem.

x ′1 = −k1x1+ k2y

x ′2 = −k4x2 + k3y

y ′ = k1x1+ k4x2 − (k1+ k3)y

(1.21)

to be solved with initial values

x1(0) = 0, x2(0) = 1, y(0) = 0

on the interval 0≤ t ≤ 8 ·105. The coefficients here are

k1= 8.4303270·10−10, k2 = 2.9002673·1011,

k3 = 2.4603642·1010, k4 = 8.7600580·10−6

This is an example of astiff problem. We solved it easily with theMatlab IVP solver
ode15s using default error tolerances, but we found that the quickly reacting interme-
diate componenty(t) is very much smaller than the default absolute error tolerance of
10−6. Despite this, it was computed accurately enough to give a general idea of its size.
Once we recognized how small it is, we reduced the absolute error tolerance to 10−20

and obtained the solutions displayed in Figures 1.6 and 1.7. It is easy and natural in
exploratory computations with theMatlab ODE solvers to display all the solution com-
ponents on one plot. If some components are invisible then you might want to determine
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Figure 1.7: Solutiony(t) of proton transfer problem,semilogx plot.

the maximum magnitudes of the solution components – both to identify components for
plotting separately on different scales and for choosing tolerances for another, more ac-
curate computation.

Often in modeling chemical reactions, concentrations that have dropped below a cer-
tain threshold have negligible effects and so are of no physical interest. Then it is natural
to specify absolute error tolerances of about the sizes of these thresholds. The concentra-
tionsyi(t) are positive, but when tracking a componentyi(t) that decays to zero a solver
might generate a “small” solution componentyn,i < 0. As we have seen, the error control
permits this and it sometimes happens. A small negative approximation to a concentra-
tion may just be an annoyance, but some models are not stable in these circumstances and
the computation blows up. It is ironic that a quantity so small that it is unimportant phys-
ically can destroy the numerical solution. An IVP popularized by Robertson (1966) as a
test problem for solvers intended for stiff IVPs provides a concrete example. A chemical
reaction is described by the system of ODEs

y ′1 = −0.04y1+104y2y3

y ′2 = 0.04y1−104y2y3− 3 ·107y2
2

y ′3 = 3 ·107y2
2

(1.22)

with initial conditions
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Figure 1.8: Robertson’s problem; asemilogx plot of the solution.

 y1(0)
y2(0)
y3(0)

 =
 1

0
0


It is not difficult to show that, for all timest > 0, the solution components are nonnega-
tive and sum to 1. This is an example of a linear conservation law that we will discuss in
some detail in the next section.

Thehb1ode demonstration program ofMatlab integrates this problem withode15s
from time t = 0 to near steady state att = 4 · 106. A small modification of its output
resulted in Figure 1.8. Hindmarsh & Byrne (1976) use this problem to illustrate the perfor-
mance of their codeEPISODEfor solving stiff IVPs. With a moderately stringent absolute
error tolerance of 10−6, they find that if they continue the integration then a small non-
physical negative concentration is computed that begins growing rapidly in magnitude.
Soon the numerical solution is completely unacceptable. A portion of one of their tables
of results is given in Table1.1. Weemphasize that the unsatisfactory performance is a
consequence of the problem and what is asked of the solver; something similar happens
when other solvers are used, includingode15s . For more details about this example see
Hindmarsh & Byrne (1976) and Shampine (1994). Different but related problems are con-
sidered in Exercises1.12 and 1.13.

We have seen that you cannot ask for too much accuracy in a relative sense. We take
this opportunity to advise you not to ask for too little. This is a temptation because the
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Table1.1: Robertson’s problem; steady-state solution
computed usingEPISODE.

t y1 y2 y3

4e5 4.9394e−03 1.9854e−08 9.9506e−01
4e7 3.2146e−05 1.2859e−10 9.9997e−01
4e9 −1.8616e+06 −4.0000e−06 1.8616e+06

more accuracy you want, the more the computation will cost. It is especially tempting
when the data of a problem is known only to a digit or two. (We have solved IVPs for
which even the order of magnitude of measured data was in doubt.) Nevertheless, ask-
ing for too little accuracy is both dangerous and pointless. The basic algorithms are valid
only when the step sizes are sufficiently small. If you do not ask for enough accuracy, a
solver might choose step sizes that are too large for reliable results. A quality solver may
recognize that it must use smaller step sizes for reliability and in effect reduce the error
tolerances that you specify. As explained in Section 1.2, the solvers control local errors
and only indirectly control the error in the solutiony(t). They maintain these local er-
rors somewhat smaller than the tolerances. How much smaller is “tuned” for the solver
so that, for typical IVPs, the error iny(t) is smaller than (or comparable to) the toler-
ances specified. If your IVP is somewhat unstable or you expect the solution to oscillate
often in the interval of interest, then you should be cautious about asking for too little ac-
curacy because you might well be disappointed in the accuracy that you get. That is the
least of your worries: You might compute a solution that is not physically realistic, or one
that is physically realistic but incorrect, or the computation might fail entirely. In con-
sidering this it is important to appreciate that the solver is doing exactly what you tell it
to do – namely, to control the local error so that it is no larger than the specified toler-
ances. Unsatisfactory results are usually a consequence of the instability of the IVP, not
of the solver. Figure 1.9 of Section 1.5 shows what can happen. The dotted curve is an
orbit of one body about another that was computed with default error tolerances. These
default error tolerances were intended to be satisfactory for plotting the solutions of typi-
cal problems, but in this instance the orbit is not even qualitatively correct. Displayed as
a solid curve is the same orbit computed with more stringent error tolerances. It is quali-
tatively correct. Clearly it is important not to ask for too little accuracy when solving this
problem.

When solving a newly formulated IVP, it may be necessary to experiment with the
choice of error tolerances. To do this, you may need to inspect solutions to verify that you
are using an appropriate error control. You may also want to try reducing the error tol-
erances to verify by consistency that you are asking for sufficient accuracy to reflect the
qualitative behavior of the solution.
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� EXERCISE 1.11
To simplify their user interface, some codes ask for a single error toleranceτ. For exam-
ple,DVERK(Hull, Enright, & Jackson 1975) requires that, at each step,

|yi(tn)− yn,i | ≤ τ max(1, |yi(tn)|)
andMIRKDC(Enright & Muir 1996) requires the equivalent of

|yi(tn)− yn,i | ≤ τ(1+ |yi(tn)|)
Argue that these are roughly equivalent to the error control (1.20) withre = τ andaei = τ
for eachi. People sometimes get into trouble with this kind of error control because they
do not realize that they are specifying an absolute error tolerance that is not appropriate
for the problem they are solving.

� EXERCISE 1.12
The solution of

y ′ = f(t, y) =
√

1− y2, y(0) = 0

is sin(t). When computing this solution numerically, why should you expect to get into
trouble as you approacht = 0.5π? There are two kinds of difficulties, one involving the
error control and one involving uniqueness.

� EXERCISE 1.13
If you solve the IVP

y ′ =
(

2 ln(y)+ 8

t
− 5

)
y, y(1) = 1

with a code written inMatlab, you might compute approximations toy(t) that are
complex-valued for “large”t. Codes in other computing environments might fail out-
right. What is going on? To answer this question it is helpful to know that the solution is

y(t) = e−t 2+5t−4

1.5 Qualitative Properties
We have seen several examples of solutions with certain qualitative properties that are
implied by the ODEs. It is commonly assumed that numerical solutions inherit these
properties, but with one major exception they donot. The best we can say for standard
methods is that the numerical solutions have approximately the same behavior as the an-
alytical solutions. There are ways of making standard methods do better in this regard
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and there are methods that preserve certain qualitative properties, but we do not pursue
such specialized aspects of solving ODEs in this book. For further information about
these matters you might turn to Sanz-Serna & Calvo (1994), Shampine (1986), Stuart &
Humphries (1996), and the references therein.

We begin our discussion of qualitative properties with one thatis inherited by virtu-
ally all standard methods. If there is a constant (column) vectorc such thatcTf(t, y) ≡
0, then the solution of the ODE system

y ′ = f(t, y), y(a) = A
satisfies thelinear conservation law,

cTy(t) ≡ cTA

This follows on observing that

d

dt
(cTy(t)) = cTy ′(t) = cTf(t, y(t)) ≡ 0

and hencecTy(t) is constant. Linear conservation laws express physical laws such as con-
servation of mass and charge balance. The hydrogen–hydrogen bond problem (1.21) and
Robertson’s problem (1.22) are examples. With the initial values specified, the solutions
of both these problems have components that sum to 1. As it turns out (Shampine 1998),
all the standard numerical methods for IVPs preserve all linear conservation laws. For
example, if the components of the solution sum to 1, then so do the components of the nu-
merical approximation (to within roundoff errors). The fact that the numerical solution
satisfies one or more conservation laws does not mean that it is accurate – even the ter-
rible numerical solution of Robertson’s problem found in Table 1.1 has components that
sum to 1. On the other hand, if a linear conservation law is not satisfied by the numerical
solution to roundoff level, then there is a bug in the program that produced it or the com-
putations were overwhelmed by the effects of finite precision arithmetic. We turn now to
properties that are not preserved by standard methods.

In Section 1.2 we found that solutions of the pendulum equation (1.6) have a constant
energy. Generally the numerical solutions computed with standard software have an en-
ergy that is only approximately constant. To see that it is at least approximately constant,
suppose that the equation is written as a first-order system. Further suppose that, at time
tn, the solver produces approximations

yn,1= θ(tn)+ e1, yn,2 = θ ′(tn)+ e2

with small errorse1 ande2. By linearization we approximate the energy of the numerical
solution as
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0.5(yn,2)
2− cos(yn,1) = 0.5(θ ′(tn)+ e2)

2 − cos(θ(tn)+ e1)

≈ E + θ ′(tn)e2 + sin(θ(tn))e1

This tells us that the error in the energy is comparable to the errors in the solution com-
ponents; hence the energy is approximately constant. Often this is satisfactory. However,
the long-term qualitative behavior of solutions may depend on the energy and it may be
important to conserve energy. One way to do this is simply to solve the equations very ac-
curately using a standard code. This may be satisfactory for short to medium time scales.
Alternatively, there are codes based on standard methods that optionally perturb the nu-
merical solution so that it satisfies specified nonlinear conservation laws. There are also
codes based on methods that automatically conserve certain physically important quanti-
ties, usually energy and/or angular momentum. Whether it is more efficient to use one of
these specialized codes or to ask for more accuracy from a standard code is a matter for
experimentation. In many cases conservation of a nonlinear conservation law may only
be achieved at a high cost or at the expense of accuracy in the solution.

Solutions of the two-body problem(1.17)satisfy two nonlinear conservation laws. The
energy

x ′(t)2 + y ′(t)2
2

− 1

r(t)

(where the distancer(t) =
√
x(t)2+ y(t)2 ) and the angular momentum

x(t)y ′(t)− y(t)x ′(t)
are constant. Figure 1.9 shows the solution of the ODE system(1.17)with initial condi-
tions (1.18)when the eccentricitye = 0.9. The path of the moving body displayed as a
solid curve was computed with moderately stringent tolerances. The other path was com-
puted with default error tolerances. The fixed body at the origin is shown as an asterisk.
For this problem and particular choice of integrator, the energy of the numerical solu-
tion computed with default error tolerances decreases steadily from−0.5000 to−0.7874
while the angular momentum decreases from 0.4359 to 0.3992. A steady loss of energy in
the physical problem corresponds to the moving body spiraling in to the fixed body. What
happens in a numerical computation will depend on the method used and the details of the
problem. The point, however, is that the numerical solution satisfies the conservation laws
only approximately. Over a time interval sufficiently long, the numerical solution might
have a behavior that is qualitatively different from the mathematical solution. Because
this particular integrator is losing energy steadily for this particular problem, the effect is
pronounced. On the other hand, when we tell the integrator to compute a more accurate
answer by specifying smaller error tolerances, we compute a solution on [0,20] that has
the expected behavior. There has been a small loss of energy by timet = 20 in this inte-
gration, but it is too small for the effect on the computed solution to be visible in the plot.
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Figure 1.9: Two-body problem fore = 0.9 and 0≤ t ≤ 20.

There are methods that preserve (at least approximately) certain qualitative proper-
ties of IVPs over extended integrations. For example, for ODEs that define symplectic or
time-reversible maps, it is possible to construct numerical methods with the corresponding
property. These methods bound the error in the Hamiltonian energy and, in some cases,
conserve angular momentum; see Sanz-Serna & Calvo (1994) or Stuart & Humphries
(1996) for details. Of course, these desirable properties come at a price. The additional
constraints placed on the methods to achieve a special property such as symplecticness
potentially reduce the accuracy that can be achieved in the computation of the solution at
a given cost.

� EXERCISE 1.14
The differential equations

y ′1 = −y1

y ′k = (k −1)yk−1− kyk for k = 2,3, . . . ,9

y ′10 = 9y9

describe the evolution of a chemical reaction. Show that this system of ODEs satisfies
a linear conservation law. Specifically, show that the sum of the solution components is
constant.
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� EXERCISE 1.15
Volterra’s model of predator–prey interaction can be formulated as

x ′ = a(x − xy)
y ′ = −c(x − xy)

• Show that solutions of this system of ODEs satisfy the nonlinear conservation law

G(t, x, y) = x−cy−aecx+ay = constant

• Write aMatlab program to integrate the differential equations with Euler’s method
and constant step sizeh. Using parameter valuesa = 2 andc = 1 and initial values
x(0) = 1 andy(0) = 3, integrate the IVP for 0≤ t ≤ 10. Plot the solution in the
phase plane; that is, plot(x(t), y(t)). Also, calculate and plot the conserved quan-
tity G(t, x(t), y(t)). The theory says thatG is constant and the solution is periodic,
hence the curve plotted in the phase plane is closed. Experiment with the step size
h to find a value for whichG is approximately constant and the curve you compute
appears to be closed. After you have learned to use theMatlab IVP solvers in the
next chapter, you may want to revisit this problem and solve it withode45 instead
of Euler’s method.


