RATIONAL HERDS

Economic Models of Social Learning

Penguins jumping off a cliff, economic forecasters predicting a recovery in the business cycle, financial advisors for the stock market speculating against a currency, and farmers using new seeds in India are all practicing social learning. Such learning from the behavior of others can lead to herds, crashes, and booms. These issues have become, over the last ten years, an exciting field of research in theoretical and applied economics, finance, and other social sciences. This book provides both an informal introduction and in-depth insights into the most recent advances.

The properties of social learning depend on the context in which learning and actions take place. Each chapter is devoted to a separate issue: Individuals learn from the observations of actions, from the outcomes of these actions, and from what others say. They may delay or make an immediate decision; they may compete against others or gain from cooperation; they make decisions about capital investment, crop choices, and financial investments. The book highlights the similarities and the differences between the various cases. A recurrent theme is that society may learn more if individuals are less than perfectly rational in their interpretation of others’ behavior.

Christophe Chamley is Professor of Economics at Boston University and a Director of Studies at the Ecole des Hautes Etudes en Sciences Sociales, Paris. He has also held teaching or visiting positions at Yale University, the Hoover Institution, the World Bank, Universidad Carlos III (Madrid), the Université Louis Pasteur (Strasbourg), and MIT. Professor Chamley’s research has appeared in the leading journals in economics, including the American Economic Review, Econometrica, the Journal of Political Economy, the Quarterly Journal of Economics, and the Review of Economic Studies. He was named a Fellow of the Econometric Society in 1995. His research interests continue to focus on the economics of information, theoretical macro-economics, monetary economics, public economics, and public economics history. Professor Chamley received his doctorate from Harvard University.
Rational Herds

ECONOMIC MODELS OF SOCIAL LEARNING

CHRISTOPHE P. CHAMLEY
To the memory of my father
Contents

Preface
page xiii

1 Introduction
1.1 Overview
1.2 A Bit of History
1.3 How to Use This Book
17

PART ONE. Social Learning
2 Bayesian Tools
2.1 The Bayesian Framework
2.2 Binary and Gaussian Information
2.2.1 The Binary Model
2.2.2 The Gaussian Model
2.2.3 Comparison of the Two Models
2.2.4 The Rate of Convergence of Learning
2.3 Private Signals and Beliefs
2.3.1 Equivalence between Private Signals and Private Beliefs
2.3.2 Examples of Distributions of Beliefs with Two States
2.3.3 Other Constructions of Private Information
2.4 Martingales
2.4.1 Convergence of Beliefs
EXERCISES
3 Social Learning with a Common Memory
3.1 A Canonical Model of Social Learning
3.1.1 The Model
3.1.2 The Process of Social Learning
3.2 Efficient Learning
3.2.1 The Gaussian–Quadratic Model
3.3 Observation Noise
3.3.1 One Action per Period
3.3.2 Large Number of Agents
3.3.3 Application: A Market Equilibrium
42
Contents

3.4 Extensions 53
 3.4.1 Learning with a Private Cost of Information 53
 3.4.2 Policy 54
EXERCISES 55
3.5 Appendix 55

4 Cascades and Herds 58
 4.1 The Basic Model of Herding 62
 4.1.1 The 2-by-2-by-2 Model 63
 4.1.2 Informational Cascades 63
 4.2 The Standard Model with Bounded Beliefs 67
 4.2.1 Social Learning 68
 4.2.2 Bounded Beliefs 69
 4.3 The Convergence of Beliefs 71
 4.3.1 Unbounded Beliefs: Convergence to the Truth 71
 4.4 Herds and the Slow Convergence of Beliefs 74
 4.4.1 Herds 74
 4.4.2 The Asymptotic Rate of Convergence Is Zero 75
 4.4.3 Why Do Herds Occur? 76
 4.4.4 Discrete Actions and the Slow Convergence of Beliefs 77
 4.5 Pricing the Informational Externality 77
 4.5.1 The Social Optimum 78
 4.5.2 A Monopoly 81
 4.6 Crashes and Booms 84
 4.7 Bibliographical Notes 86
EXERCISES 87
4.8 Appendix 90
 4.8.1 Proofs 90
 4.8.2 A Model of Learning with Two Types of Agents 91

5 Limited Memories 95
 5.1 The Sequential Model with Sampling 97
 5.1.1 The Case of One Observation \((N = 1)\): Asymptotic Herding 99
 5.1.2 The Case of More than One Observation \((N \geq 2)\) 100
 5.2 The Welfare-Improving Principle 103
 5.2.1 The Average Welfare Function 103
 5.2.2 The Welfare-Improving Principle 104
 5.2.3 Convergence 105
 5.3 Sampling in a Very Large Population 107
 5.3.1 Two Examples 108
 5.3.2 Convergence 110
 5.4 Social Learning or Sampling in a Large Population? 112
EXERCISES 113

6 Delays 115
 6.1 The Simplest Model 118
 6.2 A General Model with Heterogeneous Beliefs 123
 6.2.1 Characterization and Existence of Equilibria 124
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Properties</td>
<td>127</td>
</tr>
<tr>
<td>6.3.1 Arbitrage</td>
<td>127</td>
</tr>
<tr>
<td>6.3.2 Representation of Beliefs</td>
<td>128</td>
</tr>
<tr>
<td>6.3.3 Herds: A Comparison with Exogenous Sequences</td>
<td>129</td>
</tr>
<tr>
<td>6.3.4 Two Agents</td>
<td>130</td>
</tr>
<tr>
<td>6.3.5 Strategic Complementarity and Substitutability</td>
<td>132</td>
</tr>
<tr>
<td>6.3.6 Period Length</td>
<td>133</td>
</tr>
<tr>
<td>6.3.7 Large Number of Agents</td>
<td>134</td>
</tr>
<tr>
<td>EXERCISES</td>
<td>136</td>
</tr>
<tr>
<td>6.4 Appendix</td>
<td>137</td>
</tr>
<tr>
<td>6.4.1 A Continuum of Agents with Observation Noise</td>
<td>137</td>
</tr>
<tr>
<td>6.4.2 Investments of Variable Size</td>
<td>141</td>
</tr>
<tr>
<td>6.4.3 Proofs</td>
<td>145</td>
</tr>
<tr>
<td>7 More Delays</td>
<td>149</td>
</tr>
<tr>
<td>7.1 The Length of a Period</td>
<td>151</td>
</tr>
<tr>
<td>7.1.1 Are Longer Periods More Efficient?</td>
<td>151</td>
</tr>
<tr>
<td>7.1.2 Vanishingly Short Periods</td>
<td>151</td>
</tr>
<tr>
<td>7.2 Continuous Time</td>
<td>152</td>
</tr>
<tr>
<td>7.2.1 The Nonexistence of an Equilibrium with Discrete Actions</td>
<td>152</td>
</tr>
<tr>
<td>7.2.2 Nondiscrete Actions</td>
<td>153</td>
</tr>
<tr>
<td>7.3 Buildup of Private Information</td>
<td>158</td>
</tr>
<tr>
<td>7.4 Observation of Payoffs</td>
<td>161</td>
</tr>
<tr>
<td>EXERCISES</td>
<td>163</td>
</tr>
<tr>
<td>7.5 Appendix</td>
<td>165</td>
</tr>
<tr>
<td>8 Outcomes</td>
<td>167</td>
</tr>
<tr>
<td>8.1 Incomplete Learning</td>
<td>170</td>
</tr>
<tr>
<td>8.1.1 A Monopoly Facing a Zero–One Demand</td>
<td>170</td>
</tr>
<tr>
<td>8.1.2 A Linear Demand</td>
<td>174</td>
</tr>
<tr>
<td>8.2 The Determinant of Economic Success: Luck or Effort?</td>
<td>175</td>
</tr>
<tr>
<td>8.2.1 One-Dimensional Beliefs</td>
<td>175</td>
</tr>
<tr>
<td>8.2.2 Two-Dimensional Beliefs</td>
<td>176</td>
</tr>
<tr>
<td>8.3 Complete Learning with a Diversity of Private Beliefs</td>
<td>181</td>
</tr>
<tr>
<td>8.3.1 The Framework</td>
<td>181</td>
</tr>
<tr>
<td>8.3.2 Some General Properties of the Learning Mechanism</td>
<td>183</td>
</tr>
<tr>
<td>8.3.3 Learning from the Whole History and Sequential Actions</td>
<td>184</td>
</tr>
<tr>
<td>8.3.4 Extensions</td>
<td>186</td>
</tr>
<tr>
<td>8.3.5 Observation of Outputs May Reduce Welfare</td>
<td>187</td>
</tr>
<tr>
<td>8.4 Bibliographical Notes</td>
<td>188</td>
</tr>
<tr>
<td>EXERCISES</td>
<td>189</td>
</tr>
<tr>
<td>8.5 Appendix</td>
<td>191</td>
</tr>
<tr>
<td>9 Networks and Diffusion</td>
<td>193</td>
</tr>
<tr>
<td>9.1 Optimization and Diffusion of Innovations</td>
<td>196</td>
</tr>
<tr>
<td>9.1.1 Learning about the Profitability of an Innovation</td>
<td>196</td>
</tr>
<tr>
<td>9.1.2 Learning How to Use a New Technology</td>
<td>200</td>
</tr>
<tr>
<td>9.2 Learning in Networks</td>
<td>203</td>
</tr>
<tr>
<td>9.2.1 Neighbors</td>
<td>205</td>
</tr>
<tr>
<td>9.2.2 The Curse of Information</td>
<td>207</td>
</tr>
</tbody>
</table>
10 Words

10.1 Advice by One Expert
10.1.1 Evaluation Payoff after Verification
10.1.2 Equilibrium with an Evaluation Based on Reputation
10.1.3 Reputation for Nonmanipulation: PC Behavior?
10.2 Larger Sets of States and Messages
10.2.1 A Set of Signals Richer Than the Set of States
10.2.2 A Continuum of States and Messages
10.2.3 “Yes Men” for a Partially Informed Receiver
10.3 Panel of Experts
10.3.1 Reputational Herding
10.3.2 Who Should Speak First: The Strongly or the Weakly Informed?
10.3.3 The Receiver Does Not Make the Evaluation
10.4 Bibliographical Notes

PART TWO. Coordination

11 Guessing to Coordinate
11.1 Overview
11.1.1 The Coordination of Simultaneous Actions
11.1.2 Rationalizable Strategies and Iterative Elimination
11.2 Eductive Stability in a Standard Market
11.2.1 The Model and Its Equilibrium
11.2.2 Supply Decisions in a Sequence
11.2.3 Discussion
11.3 Strategic Complementarities
11.3.1 The Gaussian Distribution of Investment Costs
11.3.2 The Cumulative Value Function and the SREE
11.3.3 Stag Hunts
11.4 Speculative Attacks against a Fixed Exchange Rate
11.5 Bibliographical Notes

12 Learning to Coordinate
12.1 A Distribution with a Cluster
12.1.1 An Analytical Model
12.1.2 The Equilibrium under Imperfect Information
12.1.3 Application to Policy
12.1.4 Observation Lags and Random Walks with Drift
12.2 Observation Noise
12.3 Appendix
12.3.1 An Analytical Model of Regime Switches
12.3.2 The Model with Noise
13 Delays and Payoff Externalities

13.1 Strategic Substitutability
13.1.1 Learning the Demand
13.1.2 Learning the Supply
13.2 Strategic Complementarities
13.2.1 Pivotal Effects: Learning through Time May Foster Coordination
13.2.2 Large Number of Agents: Learning May Prevent Coordination
13.2.3 Interactions with Complementarities and Learning

EXERCISES

PART THREE. Financial Herding

14 Sequences of Financial Trades
14.1 Learning in the Model of Glosten and Milgrom
14.2 Herds
14.3 Avalanches
14.4 Herding in Auctions

15 Gaussian Financial Markets
15.1 Actions in the CARA–Gauss Model
15.1.1 The Individual
15.1.2 The Demand of a Large Number of Agents with Independent Information
15.2 Markets
15.2.1 The Transmission of the Information through the Market
15.2.2 Elasticities of Demand
15.2.3 The Variance of the Price
15.2.4 The Aggregation of Independent Private Information
15.3 The Convergence of Beliefs
15.3.1 Limit Orders and Fast Learning
15.3.2 Market Orders and Slow Learning
15.4 Multiple Equilibria, Crashes, and Booms
EXERCISES
15.5 Appendix

16 Financial Frenzies
16.1 Speculative Attacks against a Fixed Exchange Rate
16.1.1 The Model
16.1.2 Equilibria
16.1.3 An Example with Gaussian Noise
16.1.4 A Numerical Example
16.1.5 Defense Policies
16.2 Information Delays in Financial Markets
16.2.1 The Model
16.2.2 Equilibria
16.3 The Crash of a Bubble

References
Author Index
Subject Index
Preface

Learning by individuals from the behavior of others and imitation pervade the social life. Issues related to such learning have been debated since the beginning of the social sciences, more than a century ago. However, in the last ten years or so they have stimulated a revival and very active research in economics, with extensions to other “human sciences” (sociology, psychology, political science). The purpose of this book is to give an account of these studies. Perhaps it will induce others to enter the field and provide them with some training.

The setting is one of rational agents with limited information who share that information with others through their actions. The properties of the learning process are analyzed from a theoretical point of view, but some empirical studies are discussed in relation to the theoretical results.

Special attention is devoted to the pathologies of social learning by rational agents. Herds appear to be obvious examples of failures of social learning. Indeed, herds, fads, bubbles, crashes, and booms are cited as proofs of the irrationality of individuals. However, most of these colorful events will appear in the models of rational agents studied in this book.

The assumption of rationality may seem a bit narrow. Indeed, at this stage of the evolution of research, the concept of rationality itself is beginning to be seriously investigated. In this book, the usefulness of the assumption goes beyond the standard “benchmark” justification: a recurrent issue will be that despite the rationality of individual behavior, and often because of that rationality, the process of social learning may be inefficient or fail completely. The results hint at some social benefits of nonrational behavior by individuals, but that topic is beyond the scope of the present work.

Readers

The book can be read at two levels: the first, nontechnical and the second, more formal. Both levels will demand some intellectual concentration, however.

Each chapter is devoted to a specific issue. Examples are the various channels for the transmission of information (actions, outcomes of the actions, words, and so on), the coordination of agents, and price fluctuations in a financial market. For each chapter, the results and the methodology are described in an informal introduction.
Preface

In some of the main chapters, a first section presents a reduced model that exhibits most of the essential properties. These parts of the book should be accessible to a wide audience of readers who are interested in the issues and are prepared to follow logical arguments, sometimes with a bit of formalism.

For graduate students and researchers in social sciences (mainly economics and finance, but also other social sciences), the book provides an introduction to the technical literature. The main subjects have been selected with a personal bias, and are presented in their essence. The models are analyzed rigorously without some of the baggage that is sometimes required by professional journals. In a number of cases, the analysis had to be adapted, or even rewritten, for that purpose. The techniques do not use highbrow mathematics. Most of the model manipulations use first principles.

The models are simple, but a major goal is to give the student sufficient understanding of the internal structure of these models to develop his own intuition about their “deep” properties. A model is not an exercise with cute results or a quick “validation” of some story, but it is a tool to make an argument that goes beyond its technical boundaries. It is my view that the understanding of these properties cannot be grasped from a survey, and that, in the field of social learning, it takes a considerable amount of time to develop this understanding if one has to read the technical literature. The purpose of the book is to shorten that time for the student before he goes to the frontline papers and does research about theoretical or empirical topics.

Acknowledgments

A number of people have made contributions to this book, some decisive for its completion. The project is the product of séminaires of the Ecoles des Hautes Etudes en Sciences Sociales at DELTA, and its realization would not have been possible without the participation of this unique group of students. Jay Surti at Boston University was an ideal Ph.D. student and made numerous suggestions. Lones Smith provided stimulating discussions. I am very much in debt to people who have been generous with their comments and their time: Markus Brunnermeier, Andrew Caplin, Benjamin Carton, Zachary Dorsey, Douglas Gale, Todd Gormley, Sanjeev Goyal, Roger Guesnerie, Ward Hanson, William Hawkins, Andrew Hertzberg, David Hirshleifer, Alan Kirman, Laurence Kotlikoff, Elie Mincer, Pierre Pestieau, Marek Pycia, Iulia Rodionova, Peter Sørensen, Christopher Udry, Xavier Vives, anonymous referees, and students in classes taught from the book at Boston University and MIT. My colleagues at Boston University provided intellectual camaraderie. The MIT Economics Department offered a stimulating setting for the last stage of the project. Scott Parris of Cambridge University Press was a strong believer from the start many years ago and never doubted.

To Mari-Cruz, Paul, and Sebastian, apologies and gratitude.