PLANT BREEDING AND BIOTECHNOLOGY

Societal Context and the Future of Agriculture

This accessible survey of modern plant breeding traces its history from the earliest experiments at the dawn of the scientific revolution in the seventeenth century to the present day and the existence of high-tech agribusiness. Denis Murphy tells the story from the perspective of a scientist working in this field, offering a rational and evidence-based insight into its development. Crop improvement is examined from both a scientific and socio-economic perspective, and the ways in which these factors interact and impact on agricultural development are discussed. In conclusion, some concerns over the future of plant breeding are highlighted, as well as potential options to enable us to meet the challenges of feeding the world in the twenty-first century. This thoroughly interdisciplinary and balanced account will serve as an essential resource for everyone involved with plant breeding research, policy and funding, as well as those wishing to engage with current debates about agriculture and its future.

DENIS J. MURPHY is Professor of Biotechnology at the University of Glamorgan, UK. His career in plant biotechnology research spans three decades, including ten years on the management team of the John Innes Centre, arguably Europe's premier research centre in plant science. He is currently highly involved with the ongoing debate on genetically modified food and crops, both locally and internationally, providing expertise and advice to numerous organisations and government agencies, as well as engaging with the general public and the media.

Plant Breeding and Biotechnology

Societal Context and the Future of Agriculture

DENIS J. MURPHY University of Glamorgan

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521823890

© D. J. Murphy 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-82389-0 hardback ISBN 978-0-521-53088-0 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In the frozen midwinter of 1941–1942, the great metropolis of Leningrad began its epic 900-day siege by the encircling German army. Throughout the ruined city, thousands of people were dying of cold, starvation, and shellfire. In the world's oldest seed bank, at the Institute of Plant Industry, a dedicated team of breeders and curators sought to guard and preserve their priceless samples for posterity. This collection of over 160 000 plant varieties had been set up in the 1920s by Nikolai Vavilov, the doyen of twentieth century plant breeding. Hardly any food reached the biologists as they maintained their protective vigil. One by one, they succumbed to starvation, surrounded by bags of edible seeds and tubers. The oats curator L. M. Rodina died, as did rice curator D. S. Ivanov, and peanut curator A. G. Shtchukin, and seven more of their heroic colleagues, one of whom even expired at his desk, working until the end. When the city was eventually liberated in January 1944, the entire collection was intact. It has since been used to supply new edible plant varieties to millions of people around the world.

This book is dedicated to all the many heroes of plant breeding, both past and present, including: Norman Borlaug, Robert Carsky, Charles Darwin, Thomas Fairchild, Jack Harlan, Monkombu Swaminathan, Nikolai Vavilov, those brave workers from Leningrad and from other more recently threatened seed banks in Asia and Africa; and, of course, the untold generations of anonymous farmer-breeders, most of whom were women.

It is to you that we truly owe our daily bread.

Contents

	Preface	page xv
	Acknowledgements	xvii
	Using this book	xviii
	Nomenclature and terminology	xix
	Abbreviations and glossary	xx
	Introduction	1
Pa	art I The science of plant breeding	7
1	Origins of plant breeding	9
	Introduction – the development of agriculture	9
	Non-intentional selection	10
	Variation and selection in breeding	12
	Figure 1	15
	Pre-scientific empirical breeding	16
	Scientific breeding	17
	Beginnings of practical scientific breeding	17
	Hybrids	17
	Mutations	19
	Quantitative genetics	21
2	Creating new genetic variation	23
	Introduction	23
	Hybrid crops	24

Cambridge University Press
78-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture
Denis J. Murphy
Frontmatter
Aore information

viii	Contents	
	Maize and other intraspecific hybrids	24
	Intergenic hybrids – triticale, a new manmade crop species	28
	Induced mutagenesis	29
	Radiation and chemical mutagenesis	29
	Somaclonal mutagenesis	31
	Mutagenesis – an acceptable technology for genetic	
	manipulation?	32
	Wide crossing	33
	Wide crosses in rice	34
	Wide crosses in brassicas	35
3	Modern high-tech breeding	38
	Introduction	38
	Tissue culture technologies	39
	Chromosome doubling	39
	Mass propagation	41
	Somatic hybridisation	42
	Haploids and doubled haploids	44
	Sterile plant varieties	45
	Transgenesis	46
	Comparison with other technologies for variation enhancement	47
	Screening and selection	49
	Selecting non-visible traits	49
	DNA marker-assisted selection (MAS)	51
	New technologies for high-tech breeding	53
Par	rt II The societal context of plant breeding	57
4	Rise of the public sector and the US pioneers	59
	Introduction	59
	New technologies, old problems	60
	Agricultural research as a public good	62
	Emergence of public sector research in the USA	63
	Morrill and the land grant institutions	65
	The USDA and its botanisers	68
	Extension services	71

Cambridge University Press 978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture Denis J. Murphy Frontmatter <u>More information</u>

	Contents	ix
5	Public sector breeding in the UK	73
	Introduction	73
	The UK – a <i>laissez-faire</i> approach	74
	Rothamsted	76
	John Innes Centre	77
	Welsh Plant Breeding Station	78
	Cambridge Plant Breeding Institute	79
	Order versus chaos or control versus initiative?	81
6	Breeding goes global: the Green Revolution and beyond	83
	Introduction	83
	US philanthropy exported	84
	CIMMYT and wheat in Mexico	86
	IRRI and rice in the Philippines	87
	National research organisations	88
	The Green Revolution	89
	Wheat	90
	Rice	93
	Global impact	94
	The emergence of CGIAR in the 1970s	95
Pa	art III Turmoil and transition: the legacy of the 1980s	99
7	Resurgence of the private sector	101
	Introduction	101
	A phoenix reborn	103
	Favourable regulatory environments	105
	Patents and breeders' rights	105
	The problem of broad claims	110
	Startups and multinationals	112
8	Emergence of a new crop improvement paradigm	115
	Introduction	115
	Obsolescence and impoverishment	118
	Effects on breeding programmes	121
	Genetic erosion	122

Cambridge University Press	
978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context	and the Future of Agriculture
Denis J. Murphy	
Frontmatter	
More information	

	Contents	
	Adapting crops to commercial agronomy	122
	A technology focus based on short-term profitability rather	
	than long-term utility	12.
	The private sector triumphant?	12:
9	Decline of the public sector	120
	Introduction	120
	Privatisation, integration and globalisation	12
	The Plant Breeding Institute	13
	The Agricultural Development and Advisory Service	13.
	Aftermath of the UK privatisations	13
10	Reaping the consequences	13
	Introduction – privatisation exported	13
	The Anglosphere	13
	Europe	13
	Developing countries	14
	Academisation of public research	14
	Academisation and research assessments	14
	Dangerous liaisons – partnerships with the private sector	14
	The penny drops	14
Pai	t IV The agbiotech paradigm	15
	Achiatach: ganas and draams	1.5
11	Agnoteen, genes and ureans	15
11	Introduction	15
11	Introduction The artificial dichotomy of GM and non-GM	15 15 16
11	Introduction The artificial dichotomy of GM and non-GM Origins of a false premise	15 15 16 16
11	Introduction The artificial dichotomy of GM and non-GM Origins of a false premise Spot the difference?	15 15 16 16 16
11	Introduction The artificial dichotomy of GM and non-GM Origins of a false premise Spot the difference? Gene transfer within and between plant genomes	15 15 16 16 16 16
11	Introduction The artificial dichotomy of GM and non-GM Origins of a false premise Spot the difference? Gene transfer within and between plant genomes Genetic manipulation or manipulation of genomes?	15 15 16 16 16 16 16
11	Introduction The artificial dichotomy of GM and non-GM Origins of a false premise Spot the difference? Gene transfer within and between plant genomes Genetic manipulation or manipulation of genomes? We are all genetic manipulators	15 15 16 16 16 16 16 16
11	Introduction The artificial dichotomy of GM and non-GM <i>Origins of a false premise</i> <i>Spot the difference?</i> Gene transfer within and between plant genomes <i>Genetic manipulation or manipulation of genomes?</i> <i>We are all genetic manipulators</i> Agbiotech today – the worst of all possible worlds?	15 15 16 16 16 16 16 16 16 16
11	Introduction The artificial dichotomy of GM and non-GM <i>Origins of a false premise</i> <i>Spot the difference?</i> Gene transfer within and between plant genomes <i>Genetic manipulation or manipulation of genomes?</i> <i>We are all genetic manipulators</i> Agbiotech today – the worst of all possible worlds? <i>A headless chicken?</i>	15 15 16 16 16 16 16 16 16 16
11	Agbiotech: genes and ureansIntroductionThe artificial dichotomy of GM and non-GMOrigins of a false premiseSpot the difference?Gene transfer within and between plant genomesGenetic manipulation or manipulation of genomes?We are all genetic manipulatorsAgbiotech today – the worst of all possible worlds?A headless chicken?Rise and fall of the 'life-sciences' biotech business model	15 15 16 16 16 16 16 16 16 16 16 17

Cambridge University Press	
978-0-521-82389-0 - Plant Breeding and Biotechnology: Societ	al Context and the Future of Agriculture
Denis J. Murphy	
Frontmatter	
Moreinformation	

	Contents	xi
12	The future of transgenic crops I: improving	
	the technology	178
	Introduction	178
	Obsolete technologies?	179
	Selectable markers	180
	Transgene insertion	182
	Biological confinement	184
	Other technologies	185
	Management, segregation and other challenges	186
13	The future of transgenic crops II: improving	
	the products	189
	Introduction	189
	Input traits	189
	Biotic stress tolerance	190
	Abiotic stress tolerance	191
	Output traits	194
	Enhanced vitamins	195
	Biofortification with essential minerals	198
	Improved oils	199
	Biopharming – the killer app?	202
	The vision	202
	Flawed strategies	203
	Improved strategies	206
Par	t V Increasing global crop production:	
	the new challenges	211
14	Feeding the world – fallacies and realities	213
	Introduction	213
	Population, economic growth and food production	215
	Targeting disadvantaged regions	216
	Economic growth and sustainability	217
	Expanding the area of crop cultivation	219
	Reclaiming abandoned and set-aside land	221
		222

Cambridge University Press
978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture
Denis J. Murphy
Frontmatter
More information

xii	Contents	
15	The roles of management, subsidies and breeding in crop improvement	226
	Introduction	226
	Improved management	227
	Case study I: Malaysian oil palm	227
	Case study II: Ukraine and Vietnam	230
	Agricultural overproduction and subsidies	233
	Subsidies and tariffs stifle development	233
	Improved crop breeding	235
	What is the role of transgenic crops?	237
Par	t VI Plant breeding in the twenty-first century	239
16	The future of international plant breading	241
10	Introduction	241
	Whither CGIAR?	2+1 244
	National research centres	244
	Participatory plant breeding	248
	A decade of progress	248
	Partnerships with farmers	249
	Projects in India	219
	Seed banks and germplasm conservation	252
	National and regional seed banks	252
	Vulnerability of international seed banks	254
	UC Davis and the Iranian National Seed Bank	254
	ICARDA and the Iraqi National Seed Bank	255
	WARDA in Côte d'Ivoire and Liberia	256
	Seed banks and reconstruction	257
	The tsunami of 2004	257
	Rebuilding agriculture across the world	257
	The future of gene banks	258
	International patrimony or restricted property?	259
	A challenge from the USA	260
	A way forward?	262

Cambridge University Press
978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture
Denis J. Murphy
Frontmatter
More information

	Contents	xiii
17	Rebalancing our approach to crop improvement	264
	Introduction	264
	Revitalising the public sector	265
	The seductive allure of basic research	265
	Rebalancing plant science research	266
	Rebalancing the public debate on agriculture	269
	Why is the UK so anti-GM?	269
	The UK farm-scale evaluations	271
	Developing a sense of perspective	274
18	Where do we go from here?	276
	Introduction	276
	Empowering and recruiting the private sector	277
	Diversifying and outsourcing	278
	A new market-based public sector paradigm	281
	Solving the IPR problem	281
	Open access technologies in plant breeding	283
	Re-entering the marketplace	286
	Domesticating new crops – an alternative to transgenesis	288
	Innovative applied R&D – the USA leads (again)	290
19	Conclusions and recommendations	294
	Introduction	294
	Perspectives from the USA	295
	Late twenty-first century agriculture	298
	Recommendations	300
	Notes	303
	References	366
	Index	411

Preface

This book is an evidence-based and, in places, a personal account of the development of scientific plant breeding over the past two hundred years. The work is informed by my background and experiences as a biologist who, while largely trained in the UK, has also worked extensively in the USA, Germany, Australia and, more recently, in the Far East. It is the story of how breeding evolved from an empirical endeavour, practised for millennia by farmers and amateur enthusiasts, to become the globalised corporate agribusiness enterprise of today. I was moved to write this account after spending over two decades working at the interface of academic plant science and its practical application in crop breeding. During this time I have witnessed the steady erosion of plant breeding as a worthwhile and respected aspect of plant science, especially in the public sector. One of my principal motives in writing the book is to raise the profile of plant breeding as a valued and useful profession. I also wish to highlight some of the many imbalances that now bedevil our approach to breeding, some of which have coloured today's often contentious discourse on agriculture and crop improvement in general.

There are many misapprehensions, among scientists and the general public alike, about the way that plant breeders go about their business. In particular, the supposedly revolutionary nature of the 'new' (actually now more than two decades old) technologies of genetic engineering has been exaggerated by virtually everybody involved in the debate, whether they be researchers, politicians, agbiotech companies or anti-GM (genetic manipulation) campaigners. The current fixation on this at times overhyped phenomenon is coupled with a worrying dearth of knowledge and understanding about the many other (non-transgenic) forms of plant breeding which, as I will show, can in principle be subjected to many of the same objections that are levelled against GM technologies. So, why is it that this particular aspect of plant breeding is deemed so threatening that it can elicit violence and disorder among often idealistic and well-intentioned anti-GM activists, while the same people know little of the rudiments of plant breeding in the wider sense? And it is not just anti-GM campaigners who have little knowledge of the broader socio-scientific dimensions of

Cambridge University Press 978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture Denis J. Murphy Frontmatter <u>More information</u>

xvi

Preface

plant breeding; a similar charge can be levelled against many people in the broader realms of science, politics, the media etc.

In Part I, we will begin to address these issues by discussing the basic scientific background of plant breeding. These three chapters are the only ones that focus on science per se. The remaining five parts of the book are devoted to examining the interface between science/technology and society, and the manner in which these forces have mutually influenced each other in the case of plant breeding and the production of improved crops. In this analysis, I will take it as read that science and technology are deeply embedded in the wider socio-economic milieux from which they both arise. This is particularly true in the case of plant science and its applications via various technologies to effect improvements in crop performance. As we will see, an 'improvement' is normally so defined by the improver; hence one person's improvement might even be another's curse. Science and society are respectively made up of many players, all of whom interact with and affect one another, often in subtle ways that are not always obvious to the casual observer. In the case of GM crops, the peculiar, and unusually contentious, trajectory of this technology has been determined by interactions between a host of factors including scientific discoveries (how to transfer genes), legislative measures (patenting plants), the economic environment (privatisation), political opportunism (policy based on pressure groups), ideology (policy based on belief systems), and so on. I will show how it was a particular conjunction of circumstances in the 1980s and 1990s that has led to the current, and arguably inappropriate, domination of the agbiotech/GM phenomenon in both scientific and public discourse. A key message that I wish to convey is the need to rediscover a sense of perspective in our attitude to crop improvement and to raise our gaze beyond the narrow confines of the GM debate, so that we can behold the real challenges and opportunities that confront international agriculture in the twenty-first century.

Acknowledgements

I am indebted to the many friends and colleagues who have, wittingly or not, inspired and assisted me in various ways during the writing of this book. This includes those colleagues at the John Innes Centre and University of Glamorgan with whom I have had numerous fruitful discussions over the past 15 years. Special thanks are due to Eddie Arthur and Ray Matthias with whom I tried (and failed) to interest funding agencies in the domestication of new crops – rest assured, our time will come. As an initially somewhat reductionist molecular biologist, I was challenged in the early 1990s by Colin Law who remained a true believer in traditional plant breeding, and a sceptic of the many chilastic claims of agbiotech. I guess some of his sentiments must have eventually rubbed off on me, as this book shows. Other colleagues, including Ian Bartle, Gerry Roberts and Colette Murphy provided valuable feedback on various drafts of the manuscript, as did various anonymous referees. Finally, many thanks to Katrina Halliday and the staff at Cambridge University Press for their patience and encouragement during the gestation of this project.

Denis J. Murphy

Glamorgan, Wales, April 2006

Using this book

This book is aimed at several audiences, from botanists to economists, and from business people to agronomists. Each group of readers will have different technical backgrounds and different types of expertise. The book is therefore written on three levels, namely the main text, a series of more than 900 endnotes, and a bibliography. For the general reader or specialist in other areas, the main text of each chapter should suffice to convey its key message. However, for those wishing to follow up points in more detail, the endnotes provide additional information that is in turn linked to a comprehensive bibliography of over 750 citations, mostly from the peerreviewed primary literature. Wherever possible, I have also provided web links to the many articles that are now available online. Many of the better scientific journals now make their articles freely available on the Internet within a year of publication, and such web links tend to be relatively stable. These primary research articles can often be surprisingly accessible, even to the interested layperson, and I recommend interested readers to consult at least one or two examples.

Secondary literature sources, e.g. scholarly reviews, government reports, conference papers etc., are also often available on the Internet and can frequently be useful resources, especially for the technical specialist from a different field. Such articles generally give a broader perspective than primary research papers, but may not necessarily be peer reviewed. 'Tertiary' sources, including newspaper and magazine articles, are rarely peer reviewed. Such articles tend to be more 'fresh' and accessible in their content, but can also be less factually reliable, and rarely provide a broad overview of the topic in question. Tertiary sources also tend to be more ephemeral in their Internet locations (hence, *caveat lector* and my apologies in advance if some of the web links no longer work). Nevertheless, newspaper and magazine articles often add a welcome degree of colour and immediacy to a discussion that contrasts favourably with the more sober and restrained tone of most mainstream scientific literature.

Nomenclature and terminology

Measurements and dates

The metric system is used throughout for all physical measurements. All prices are given in US dollars (\$) and, unless stated otherwise, they relate to the period in question, i.e. prices are not corrected to present-day values. Some historical dates are expressed as BCE (before common era) or CE (common era). All unqualified dates refer to CE.

Initials and acronyms

I have tried to forebear, as much as possible, from using unfamiliar initials and acronyms in the main text. Where this is impractical, I give the full version of each term in the text when it is first used. A full list of such terms, plus some additional explanation of their significance, is also given in the Abbreviations and glossary section (see below).

Industrial and developing countries

In describing the major global economic blocs, the term 'industrial' is used to describe those countries that have already completed a thorough industrialising process. In many cases such countries are now at a post-industrial stage of development. Included here are the major globalised economies of North America, Europe, Australasia and Japan. I use the term 'developing' to describe those countries in which industrialisation is still proceeding, albeit often at an advanced stage. This group includes the Asian giants India and China, as well as most of the remainder of Asia, Africa and Latin America. This terminology is by no means perfect and there will always be exceptions. Neither is it meant as a value judgement since all countries are always in the process of some sort of development. But it remains, withal, a useful shorthand.

Abbreviations and glossary

ADAS	Agricultural Development and Advisory Service (UK) – The former public sector agricultural advisory service for England and Wales. ADAS was gradually privatised during the 1990s until it became a private company in 1997.
AEBC	Agriculture and Environment Biotechnology Commission (UK) – the UK government strategic advisory body on biotechnology issues affecting agriculture and the environment. Established in 2000, the AEBC was wound up in 2005, following criticisms of its narrow remit and dissension among members.
BBSRC	Biotechnology and Biological Sciences Research Council (UK) – the major UK public sector funding agency for research in biological sciences, with an annual budget of about \$550 million.
BIOS	Biological Innovation for Open Society – an initiative of CAMBIA to 'foster democratic innovation in applications of biological technologies to sustainable development'.
Bt	<i>Bacillus thuringiensis</i> – a bacterium that produces a variety of insecticidal protein toxins. Bt sprays (containing bacterial spores and toxin crystals) are regularly used as insecticides by organic farmers, while the Bt toxin gene has been added to some crops to provide inbuilt insect protection.
CAMBIA	Center for the Application of Molecular Biology to International Agriculture – non-profit, Australian-based scientific organisation working for the development of new open access technologies for crop improvement across the world.

Cambridge University Press	
978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agricul	ture
Denis J. Murphy	
Frontmatter	
More information	

xxi

- CGIAR Consultative Group on International Agricultural Research an alliance of countries, international and regional organisations, and private foundations that supports 15 Research Centres. The Centres work with national agricultural research systems and civil society organisations including the private sector and generate global public goods that are freely available to all. CGIAR research centres include CIAT, CIFOR, CIMMYT, CIP, ICARDA, ICRAF, ICRISAT, IFPRI, IITA, ILRI, IPGRI, IRRI, IWMU, WARDA and WFC.
- CIAT Centro Internacional de Agricultura Tropical (Columbia) one of the CGIAR crop improvement centres.
- CIFOR Center for International Forestry Research (Indonesia) one of the CGIAR crop improvement centres.
- CIMMYT Centro Internacional de Mejoramiento de Maiz y Trigo (International Maize and Wheat Improvement Center Mexico) – one of the **CGIAR** crop improvement centres.
- CIP Centro Internacional de la Papa (Peru) one of the CGIAR crop improvement centres.
- CSIRO Commonwealth Scientific and Industrial Research Organisation the principal public sector research organisation in Australia that covers agribusiness; information, manufacturing and minerals; and sustainable energy and environment. CSIRO manages several research centres that work on crop-related topics. One of the best known of these is CSIRO Plant Industry in Canberra, which is especially noted for its research on plant molecular and developmental biology. The annual budget is about \$700 million.
- Cultivar a cultivated variety of a crop such varieties have normally been selected by breeding and are adapted for a particular agricultural use or climatic region.
- DEFRA Department for Environment, Food and Rural Affairs (UK) formerly known as **MAFF**, DEFRA was created in 2001 in the wake of the BSE scandal but lost its role in food safety to the new Food Standards Agency (**FSA**).
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária–Brazilian Agricultural Research Corporation.

Cambridge University Press 978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture Denis J. Murphy Frontmatter <u>More information</u>	
xxii	Abbreviations and glossary
EST	expressed sequence tag – a small portion of a gene that can be used to help identify unknown genes and to map their positions within a genome.
<i>Ex situ</i> conservation	the maintenance of biological specimens away from their normal habitat, normally under closely controlled conditions, such as in arboretums (trees), and botanical (plants) or zoological (animals) gardens. The term also refers to the keeping of stocks, such as seeds, cuttings, or other propagules in germplasm repositories.
FAO	Food and Agriculture Organisation – United Nations agency, set up in 1945, whose mandate is: 'to raise levels of nutrition, improve agricultural productivity, better the lives of rural populations and contribute to the growth of the world economy.' Its annual \$750 million budget covers both ongoing programmes and emergency relief work.
Farm-scale evaluations	a \$9 million research exercise in the UK to determine the on-farm effects to fauna and flora of growing and managing herbicide tolerant crops compared to non-tolerant varieties of the same crops.
FMD	foot and mouth disease – also known as hoof and mouth disease in the USA, this virulent viral disease spread across the UK in 2001. Following scientific advice that has since been questioned, the UK government implemented a drastic cull that resulted in the slaughter of 6 million animals, at an estimated cost to the economy of \$15 billion.
FSA	Food Standards Agency (UK) – established in 2000 'to protect the public's health and consumer interests in relation to food.'
Germplasm	the genetic material, i.e. the DNA, of an organism. The term is often used in connection with the collection or conservation of seeds, cuttings, cell cultures, or other germplasm resources, in repositories such as gene banks.
GM	genetically modified or genetically manipulated – a term normally used to describe an organism into which DNA, containing one or more genes, has been transferred from elsewhere. The transferred DNA is never itself actually from another organism, but may be an exogenous copy of DNA (i.e. from a different species).

978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agricultur
Denis J. Murphy
Frontmatter
More information

xxiii

Alternatively the transferred DNA may be an extra copy of an endogenous gene (i.e. from the same species). Finally, the transferred DNA may be completely synthetic and hence of nonbiological origin. An organism containing any of these categories of introduced gene is called **transgenic**.

- Heterosis also called hybrid vigour, the phenomenon whereby a hybrid of genetically distinct (but often inbred) parents is sometimes much more vigorous than either parent. In crop terms, hybrids exhibiting heterosis can out-yield their parents by as much as 30-40%.
- HRI Horticulture Research Institute (UK) also called Horticulture Research International, HRI is a former public sector plant science research centre that was transferred to ownership of the University of Warwick in 2005.
- Hybrid an organism resulting from a cross between parents of differing genotypes. Hybrids may be fertile or sterile, depending on qualitative and/or quantitative differences in the genomes of the two parents. Hybrids are most commonly formed by sexual cross-fertilisation between compatible organisms, but cell fusion and tissue culture techniques now allow their production from less related organisms.
- ICARDA International Center for Agricultural Research in the Dry Areas this CGIAR-affiliated centre, established in 1977 with its headquarters in Aleppo, Syria, has a mission 'to improve the welfare of poor people and alleviate poverty through research and training in dry areas of the developing world, by increasing the production, productivity and nutritional quality of food, while preserving and enhancing the natural resource base.'
- ICRAF World Agroforestry Centre (Kenya) one of the CGIAR crop improvement centres.
- ICRISAT International Crops Research Institute for the Semi-Arid Tropics (India) – one of the CGIAR crop improvement centres.
- IFPRI International Food Policy Research Institute (USA) one of the CGIAR agricultural improvement centres.

978-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture
Denis J. Murphy
Frontmatter
More information

xxiv	Abbreviations and glossary
IGER	Institute for Grassland and Environmental Research (UK – formed by a merger between the Welsh Plant Breeding Station and the Grassland Research Institute at Hurley.
IITA	International Institute of Tropical Agriculture (Nigeria) – one of the CGIAR crop improvement centres.
ILRI	International Livestock Research Institute (Kenya) – one of the CGIAR crop improvement centres.
Input trait	a genetic character that affects how the crop is grown without changing the nature of the harvested product. For example, herbicide tolerance and insect resistance are agronomically useful input traits in the context of crop management, but they do not normally alter seed quality or other so-called output traits that are related to the useful product of the crop.
In situ conservation	the maintenance of a species or population in its normal biological habitat. In the case of plants, this applies particularly to natural populations of crop species and/or their wild relatives that may be future sources of genetic variation, as well as to endangered species in general. <i>In situ</i> conservation is especially useful in the preservation of traditional crop landraces , many of which are under threat from the increasing use of higher yielding but more genetically uniform modern varieties in agriculture.
IPGRI	International Plant Genetic Resources Institute (Italy) $-$ an international CGIAR -affiliated research institute with a mandate to advance the conservation and use of genetic diversity for the well being of present and future generations.
IPR	Intellectual Property Rights – as defined by the World Trade Organization: 'Intellectual property rights are the rights given to persons over the creations of their minds. They usually give the creator an exclusive right over the use of his/her creation for a certain period of time.' IPR covers literary and artistic works (via copyright) in addition to industrial inventions (via patents and trademarks) and typically lasts for about 20 years. IPR protection of living organisms, such as plant varieties, is a more recent and controversial development.

Cambridge University Press			
978-0-521-82389-0 - Plant Breeding and Biote	chnology: Societal	Context and the	Future of Agricultur
Denis J. Murphy			
Frontmatter			
More information			

XXV

IRRI	International Rice Research Institute (Philippines) – an independent, non-profit agricultural research and training organisation and CGIAR centre that is focused on rice improvement. IRRI was established in 1960 by the Ford and Rockefeller foundations in cooperation with the Philippines government with its main site at Los Baños, near Manila
ISNAR	International Service for National Agricultural Research (USA) – assists developing countries in improving the performance of their national agricultural research systems and organisations by promoting appropriate agricultural research policies, sustainable research institutions, and improved research management.
IWMU	International Water Management Institute (Sri Lanka) – one of the CGIAR crop improvement centres.
JIC	John Innes Centre (UK) – a BBSRC -funded plant and microbial science research centre near Norwich.
Land Grant Universities	US network of agriculturally focused universities established by the Morill Act in 1862.
Landrace	a genetically diverse and dynamic population of a given crop produced by traditional breeding. Landraces largely fell out of favour in commercial farming during the twentieth century and many have died out. Landraces are often seen as potentially useful sources of novel genetic variation and efforts are under way to conserve the survivors.
MAFF	Ministry of Agriculture, Fisheries and Food (UK) – the government department responsible for oversight of UK agriculture, including the commissioning of some research areas. MAFF was reorganised as DEFRA in 2001.
NSDO	National Seed Development Organisation – commercial arm of PBI in the UK.
Nutraceutical	a neologism combining nutritional with pharmaceutical and mean- ing a food product that has been determined to have a specific physiological benefit for human health. The term has no regulatory definition and is primarily used in promotion and marketing.

Cambridge University Press	
78-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agricultur	е
Denis J. Murphy	
Frontmatter	
Moreinformation	

xxvi	Abbreviations and glossary
Open access technology (OAT)	technology that may be protected but which is made available in the public domain. Some OATs might be freely available for unrestricted use, while others might only be available to members of a consortium who agree to use the technologies in a particular manner, e.g. solely as non-profit public goods. The best known OAT is the Linux computer operating system, but analogous OATs have recently been developed in the field of agbiotech, most notably by CAMBIA .
Output trait	a genetic character that alters the quality of the crop product itself, e.g. by altering its starch, protein, vitamin or oil composition.
PBI	Plant Breeding Institute – widely regarded as the premier centre of plant breeding research in the UK, based in Cambridge, PBI was privatised in 1989 and subsequently sold on to a series of multinational companies.
PBR	Plant breeders' rights – a form of intellectual property protection in the European Union (via UPOV) designed specifically for new varieties of plants.
PCR	Polymerase chain reaction – a technique for rapidly copying a particular piece of DNA in the test tube (rather than in living cells). PCR has made possible the detection of tiny amounts of specific DNA sequences in complex mixtures. It is now used for DNA fingerprinting in police work, in genetic testing and in plant and animal breeding.
PSIPRA	Public Sector Intellectual Property Resource for Agriculture (USA) – initiative of the Rockefeller and McKnight Founda- tions, in collaboration with ten of the major US Land Grant Universities. As with CAMBIA, this US initiative is designed to support plant biotechnology research in developing countries.
PVPA	Plant Variety Protection Act – legislation enacted in 1970 by the US Congress that extended UPOV-like legal protection to plant germplasm.
Quantitative genetics	the study of continuous traits (such as height or weight) and its underlying mechanisms.

Cambridge University Press	
978-0-521-82389-0 - Plant Breeding and Biotechnolo	gy: Societal Context and the Future of Agriculture
Denis J. Murphy	
Frontmatter	
More information	

xxvii

Quantitative trait locus (QTL)	DNA region associated with a particular trait, such as plant height. While QTLs are not necessarily genes themselves, they are closely linked to the genes that regulate the trait in question. QTLs normally regulate so called complex or quantitative traits that vary continuously over a wide range. While a complex trait may be regulated by many QTLs, the majority of the variation in the trait can sometimes be traced to a few key genes.
RAE	Research Assessment Exercise – method used in the UK to rank university research on the basis of the perceived quality of a 'unit of assessment' that normally corresponds to a department. This ranking is then used to apportion funding selectively in favour of higher ranked departments.
SAES	State Agricultural Experiment Station (USA) – established by the Hatch Act of 1887, the nationwide network of SAESs works with Land Grant Universities to carry out a joint research/teaching/ extension mission.
Species	a group of organisms capable of interbreeding freely with each other but not with members of other species (this is a much simplified definition, the species concept is much more complex). A species can also be defined as a taxonomic rank below a genus, consisting of similar individuals capable of exchanging genes or interbreeding.
Teosinte	the original wild grass, native to Mexico, from which cultivated maize is derived; it is now classified as part of the same species as maize, <i>Zea mays</i> .
TILLING	Targeting Induced Local Lesions IN Genomes – the directed identification of random mutations controlling a wide range of plant characters. A more sophisticated DNA-based version of mutagenesis breeding, TILLING does not involve transgenesis .
Transgenesis	the process of creating a transgenic organism.
Transgenic	an organism into which DNA, normally containing one or more genes, has been transferred from elsewhere (see GM).
UPOV	Union for the Protection of New Varieties – established in 1960 by six European nations to extend legal ownership rights to plant germplasm.

Cambridge University Press
78-0-521-82389-0 - Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture
Denis J. Murphy
Frontmatter
Aore information

xxviii	Abbreviations and glossary
USDA	United States Department of Agriculture (USA) – established by President Lincoln in 1862, USDA is the government department responsible for all matters pertaining to agriculture, including aspects of trade policy, food safety and the environment.
WARDA	Africa Rice Center (formerly called West Africa Rice Develop- ment Association) – one of the CGIAR crop improvement centres.
WFC	World Fish Center (Malaysia) – one of the CGIAR agricultural improvement centres.
Wide crossing	in plant breeding this refers to a genetic cross where one parent is from outside the immediate gene pool of the other, e.g. a wild relative from one species crossed with a modern crop cultivar of another species.
Wild relative	plant or animal species that is taxonomically related to crop or livestock species and serves as a potential source of genes for breeding new crops or livestock varieties.