LIGHT-EMITTING DIODES

This book covers all aspects of the technology and physics of infrared, visible-spectrum, and white-light-emitting diodes (LEDs) made from III–V semiconductors. The book reviews elementary properties of LEDs such as the electrical and optical characteristics. The author also reviews advanced device physics including high-efficiency device designs, light extraction, radiative and non-radiative recombination dynamics, spontaneous recombination in resonant-cavity structures, and packaging. The reader is introduced to areas related to visible-spectrum and white LEDs such as human vision, photometry, colorimetry, and color rendering. Application of infrared and visible-spectrum LEDs in silica fiber, plastic fiber, and free-space communication is discussed. Extensive semiconductor material data, device design data, and analytic formulas governing the operation of LEDs are provided. Exercises and illustrative examples are used to reinforce the topics discussed. An introductory chapter reviews the historical developments and milestones of LED research and development.

This textbook will be of interest to scientists and engineers working on LEDs, notably in lighting, illumination and signage, and also to graduate students in electrical engineering, applied physics, and materials science.

E. FRED SCHUBERT received his MS degree in Electrical Engineering (Dipl.-Ing.) with honors from the University of Stuttgart, Germany, in 1981, and his Ph.D. degree (Dr.-Ing.) with honors in 1986, also in Electrical Engineering from the University of Stuttgart. From 1981 to 1985 he worked on compound semiconductor crystal growth at the Max Planck Institute for Solid State Research, Stuttgart, as a doctoral student. In 1985, he joined AT&T Bell Laboratories in Holmdel, NJ as a Postdoctoral Fellow. From 1988 to 1995, he was Principal Investigator in the Research Division of AT&T Bell Laboratories in Murray Hill, NJ. In 1995, he joined Boston University and was appointed tenured Full Professor in the Department of Electrical and Computer Engineering and Affiliated Member of the Photonics Center. At Boston University, he was responsible for GaN materials characterization and the fabrication and testing of compound semiconductor devices, in particular GaN-based devices. In 2002 he was appointed Professor of Electrical, Computer, and Systems Engineering at Rensselaer Polytechnic Institute in Troy, New York. At Rensselaer, he holds the Constellation Chair in Future Chips.
LIGHT-EMITTING DIODES

E. FRED SCHUBERT
Rensselaer Polytechnic Institute
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 History of light-emitting diodes</td>
<td>1</td>
</tr>
<tr>
<td>1.1 History of SiC LEDs</td>
<td>1</td>
</tr>
<tr>
<td>1.2 History of GaAs and AlGaAs infrared and red LEDs</td>
<td>3</td>
</tr>
<tr>
<td>1.3 History of GaAsP LEDs</td>
<td>7</td>
</tr>
<tr>
<td>1.4 History of GaP and GaAsP LEDs doped with optically active impurities</td>
<td>9</td>
</tr>
<tr>
<td>1.5 History of GaN metal–semiconductor emitters</td>
<td>14</td>
</tr>
<tr>
<td>1.6 History of blue, green, and white LEDs based on GaInN p–n junctions</td>
<td>16</td>
</tr>
<tr>
<td>1.7 History of AlGaNp visible-spectrum LEDs</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
</tr>
<tr>
<td>2 Radiative and non-radiative recombination</td>
<td>26</td>
</tr>
<tr>
<td>2.1 Radiative electron–hole recombination</td>
<td>26</td>
</tr>
<tr>
<td>2.2 Radiative recombination for low-level excitation</td>
<td>27</td>
</tr>
<tr>
<td>2.3 Radiative recombination for high-level excitation</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Bimolecular rate equations for quantum well structures</td>
<td>32</td>
</tr>
<tr>
<td>2.5 Luminescence decay</td>
<td>33</td>
</tr>
<tr>
<td>2.6 Non-radiative recombination in the bulk</td>
<td>34</td>
</tr>
<tr>
<td>2.7 Non-radiative recombination at surfaces</td>
<td>40</td>
</tr>
<tr>
<td>2.8 Competition between radiative and non-radiative recombination</td>
<td>44</td>
</tr>
<tr>
<td>References</td>
<td>46</td>
</tr>
<tr>
<td>3 Theory of radiative recombination</td>
<td>48</td>
</tr>
<tr>
<td>3.1 The van Roosbroeck–Shockley model</td>
<td>48</td>
</tr>
<tr>
<td>3.2 The Einstein model</td>
<td>53</td>
</tr>
<tr>
<td>References</td>
<td>54</td>
</tr>
</tbody>
</table>
Contents

4 LED basics: electrical properties
 4.1 Diode current–voltage characteristic 55
 4.2 Deviations from the ideal $I-V$ characteristic 59
 4.3 Evaluation of diode parasitic resistances 60
 4.4 Emission energy 62
 4.5 Carrier distribution in p-n homojunctions 62
 4.6 Carrier distribution in p-n heterojunctions 63
 4.7 The effect of heterojunctions on device resistance 64
 4.8 Carrier loss in double heterostructures 68
 4.9 Carrier overflow in double heterostructures 71
 4.10 Electron blocking layers 75
 4.11 Diode voltage 77
 4.12 Temperature dependence of diode voltage 79
 4.13 Constant-current and constant-voltage DC drive circuits 81
 References 83

5 LED basics: optical properties
 5.1 Internal, extraction, external, and power efficiency 84
 5.2 Emission spectrum 85
 5.3 The light escape cone 89
 5.4 The lambertian emission pattern 92
 5.5 Epoxy encapsulants 96
 5.6 Temperature dependence of the emission intensity 97
 References 98

6 High internal efficiency LED designs
 6.1 Double heterostructures 99
 6.2 Doping of active region 102
 6.3 P-n junction displacement 103
 6.4 Doping of the confinement regions 105
 6.5 Non-radiative recombination 108
 6.6 Lattice matching 109
 References 112

7 High extraction efficiency structures
 7.1 Absorption of below-band light in semiconductors 114
 7.2 Double heterostructures 118
 7.3 Shaping of LED dies 119
 7.4 Current-spreading layer 123
 7.5 Theory of current spreading 128
Contents

7.6 Current crowding in LEDs on insulating substrates 131
7.7 Cross-shaped contacts and other contact geometries 135
7.8 Transparent substrate technology 136
7.9 Anti-reflection optical coatings 138
7.10 Epoxy dome 139
7.11 Distributed Bragg reflectors 140
7.12 Current-blocking layers 147
7.13 Reflective and transparent contacts 148
7.14 Flip-chip packaging 149
References 150

8 Visible-spectrum LEDs 155
8.1 The GaAsP, GaP, GaAsP:N, and GaP:N material systems 155
8.2 The AlGaN/GaAs material system 160
8.3 The AlGaN/GaAs material system 163
8.4 The GaN material system 166
8.5 General characteristics of high-brightness LEDs 167
8.6 Optical characteristics of high-brightness LEDs 171
8.7 Electrical characteristics of high-brightness LEDs 173
References 174

9 Spontaneous emission from resonant cavities 178
9.1 Modification of spontaneous emission 178
9.2 Fabry–Perot resonators 180
9.3 Reflectors 183
9.4 Optical mode density in a one-dimensional resonator 187
9.5 Spectral emission enhancement 191
9.6 Integrated emission enhancement 192
References 194

10 Resonant cavity light-emitting diodes 198
10.1 Introduction and history 198
10.2 RCLED design rules 199
10.3 GaInAs/GaAs RCLEDs emitting at 930 nm 203
10.4 AlGaN/GaAs RCLED emitting at 650 nm 209
10.5 Large-area photon recycling LEDs 211
10.6 Thresholdless lasers 213
10.7 Other RCLED devices 215
10.8 Other novel confined-photon emitters 215
References 216
Contents

11 Human vision

11.1 Light receptors of the human eye 219
11.2 Basic radiometric and photometric units 220
11.3 Eye sensitivity function, luminous efficacy, and luminous efficiency 222
11.4 Color matching functions and chromaticity diagram 226
11.5 Color purity 229
11.6 LEDs in the chromaticity diagram 231
11.7 White illuminants and color temperature 232
11.8 Additive color mixing 234
11.9 Color-rendering index 236
 References 240
 Appendix 11.1 242
 Appendix 11.2 243

12 White-Light LEDs

12.1 Generation of white light 245
12.2 Wavelength converter materials 247
12.3 White LEDs based on phosphor converters 250
12.4 UV-pumped phosphor-based white LEDs 252
12.5 White LEDs based on semiconductor converters (PRS-LED) 253
12.6 Calculation of the power ratio of PRS-LED 254
12.7 Calculation of the luminous performance of PRS-LED 255
12.8 Spectrum of PRS-LED 257
12.9 White LEDs based on dye converters 259
 References 259

13 Optical communication

13.1 Types of optical fibers 261
13.2 Attenuation in silica and plastic optical fibers 263
13.3 Modal dispersion in fibers 265
13.4 Material dispersion in fibers 266
13.5 The numerical aperture of fibers 269
13.6 Coupling with lenses 271
13.7 Free-space optical communication 273
 References 276

14 Communication LEDs

14.1 LEDs for free-space communication 277
14.2 LEDs for fiber-optic communication 277
Contents

14.3 Surface-emitting Burrus-type communication LEDs emitting at 870 nm 278
14.4 Surface-emitting communication LEDs emitting at 1300 nm 279
14.5 Communication LEDs emitting at 650 nm 281
14.6 Edge-emitting superluminescent diodes (SLDs) 283
References 287

15 LED modulation characteristics 288
15.1 Rise and fall times, 3 dB frequency, and bandwidth in linear circuit theory 288
15.2 Rise and fall time in the limit of large diode capacitance 290
15.3 Rise and fall time in the limit of small diode capacitance 291
15.4 Voltage dependence of the rise and fall times 293
15.5 Carrier sweep-out of the active region 294
15.6 Current shaping 295
15.7 dB frequency 297
15.8 Eye diagram 297
15.9 Carrier lifetime and 3 dB frequency 297
References 299

Appendix 1 List of frequently used symbols 301
Appendix 2 Physical constants 305
Appendix 3 Periodic system of elements 306
Appendix 4 Room-temperature properties of semiconductors 307

Index 309
Technical progress in the field of light-emitting diodes (LEDs) has been breathtaking during the last few decades. State-of-the-art LEDs are small, rugged, reliable, bright, and efficient. In contrast to many other light sources, LEDs have the potential of converting electricity to light with near-unity efficiency.

The success story of LEDs has not ended but is still in full progress. Great technological advances will surely continue to be made. As a result, it is expected that LEDs will play an increasingly important role as light sources and will become the dominant light source in the future.

LEDs were discovered by accident early in the last century and the first LED results were published in 1907. LEDs became forgotten only to be rediscovered in the 1920s and again in the 1950s. In the 1960s, several groups pursued the demonstration of semiconductor lasers. The first viable LEDs were by-products in this pursuit. During the last 40 years, LEDs have become devices in their own right and today are versatile light sources with a bright future.

This book is dedicated to the technology and physics of LEDs. It reviews the electrical and optical fundamentals of LEDs as well as advanced device structures. Recent technological breakthroughs are also discussed. The book deals with LEDs made from III–V semiconductors. However, much of the science and technology discussed is relevant to other solid-state light emitters, including emitters made of polymers. Several application areas of LEDs are discussed as well, including illumination and communication applications.

Many colleagues have provided information not readily available and have given invaluable suggestions on the manuscript. In particular, I wish to thank Drs. M. George Craford (LumiLeds Corp.), Nick Holonyak Jr. (University of Illinois), Mike Krames (LumiLeds Corp.), Ralph Logan (retired, formerly with AT&T Bell Laboratories), Fred Long (Rutgers University), Paul Maruska (Crystal Photonics Corp.), Gerd Mueller (LumiLeds Corp.), Shuji Nakamura (University of California, Santa Barbara), Yoshihiro Ohno (National Institute of Standards and Technology) and my students and colleagues at the University of California, Berkeley.
Preface

Technology), Jacques Pankove (Astralux Corp.), Manfred Pilkuhn (University of Stuttgart, Germany), Hans Rupprecht (retired, formerly with IBM Corp.), Klaus Streubel (Osram Opto Semiconductors Corp., Germany), Li-Wei Tu (National Sun Yat-Sen University, Taiwan), Jerry Woodall (Yale University), and Walter Yao (Advanced Micro Devices Corp.).

E. F. Schubert