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1
QFT: language and goals

Under the calm mask of matter
The divine fire burns.

Vladimir Solovyev

The reason why the terms ‘quantum field theory’ and ‘statistical mechanics’ are used to-
gether so often is related to the essential equivalence between these two disciplines. Namely,
a quantum field theory of a D-dimensional system can be formulated as a statistical me-
chanics theory of a (D + 1)-dimensional system. This equivalence is a real godsend for
anyone studying these subjects. Indeed, it allows one to get rid of noncommuting operators
and to forget about time ordering, which seem to be characteristic properties of quantum
mechanics. Instead one has a way of formulating the quantum field theory in terms of
ordinary commuting functions, more or less conventional integrals, etc.

Before going into formal developments I shall recall the subject of quantum field the-
ory (QFT). Let us consider first what classical fields are. To begin with, they are entities
expressed as continuous functions of space and time coordinates (x, t). A field �(x, t)
can be a scalar, a vector (like an electromagnetic field represented by a vector potential
(φ, A)), or a tensor (like a metric field gab in the theory of gravitation). Another important
thing about fields is that they can exist on their own, i.e. independent of their ‘sources’ –
charges, currents, masses, etc. Translated into the language of theory, this means that a
system of fields has its own action S[�] and energy E[�]. Using these quantities and
the general rules of classical mechanics one can write down equations of motion for the
fields.

Example

As an example consider the derivation of Maxwell’s equations for an electromagnetic field
in the absence of any sources. I use this example in order to introduce some valuable
definitions. The action for an electromagnetic field is given by

S = 1

8π

∫
dtd3x[E2 − H 2] (1.1)
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where E and H are the electric and the magnetic fields, respectively. These fields are not
independent, but are expressed in terms of the potentials:

E = −∇φ + 1

c

∂ A
∂t

H = ∇ × A
(1.2)

The relationship between (E, H ) and (φ, A) is not unique; (E, H ) does not change when
the following transformation is applied:

φ → φ + 1

c

∂χ

∂t
A → A + ∇χ

(1.3)

This symmetry is called gauge symmetry. In order to write the action as a single-valued
functional of the potentials, we need to specify the gauge. I choose the following:

φ = 0

Substituting (1.2) into (1.1) we get the action as a functional of the vector potential:

S = 1

8π

∫
dtd3x

[
1

c2
(∂t A)2 − (∇ × A)2

]
(1.4)

In classical mechanics, particles move along trajectories with minimal action. In field
theory we deal not with particles, but with configurations of fields, i.e. with functions of
coordinates and time A(t, x). The generalization of the principle of minimal action for fields
is that fields evolve in time in such a way that their action is minimal. Suppose that A0(t, x) is
such a configuration for the action (1.4). Since we claim that the action achieves its minimum
in this configuration, it must be invariant with respect to an infinitesimal variation of the field:

A = A0 + δA

Substituting this variation into the action (1.4), we get:

δS = 1

4π

∫
dtd3x[c−2∂t A0∂tδA − (∇ × A0)(∇ × δA)] + O(δA2) (1.5)

The next essential step is to rewrite δS in the following canonical form:

δS =
∫

dtd3δx A(t, x)F[A0(t, x)] + O(δA2) (1.6)

where F[A0(t, x)] is some functional of A0(t, x). By definition, this expression determines
the function

F ≡ δS

δA

the functional derivative of the functional S with respect to the function A. Let us assume
that δA vanishes at infinity and integrate (1.5) by parts:

δS = − 1

4π

∫
dtd3x

{
c−2∂2

t A0(t, x) − [(∇ × ∇) × A0(t, x)]
}
δA(t, x) (1.7)
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Figure 1.1. Maxwell’s equations as a mechanical system.

Since δS = 0 for any δA, the expression in the curly brackets (that is the functional
derivative of S) vanishes. Thus we get the Maxwell equation:

c−2∂2
t A − (∇ × ∇) × A = 0 (1.8)

Thus Maxwell’s equations are the Lagrange equations for the action (1.4).

From Maxwell’s equations we see that the field at a given point is determined by the
fields at the neighbouring points. In other words the theory of electromagnetic waves is a
mechanical theory with an infinite number of degrees of freedom (i.e. coordinates). These
degrees of freedom are represented by the fields which are present at every point and coupled
to each other. In fact it is quite correct to define classical field theory as the mechanics of
systems with an infinite number of degrees of freedom. By analogy, one can say that QFT
is just the quantum mechanics of systems with infinite numbers of coordinates.

There is a large class of field theories where the above infinity of coordinates is trivial.
In such theories one can redefine the coordinates in such a way that the new coordinates
obey independent equations of motion. Then an apparently complicated system of fields
decouples into an infinite number of simple independent systems. It is certainly possible to do
this for so-called linear theories, a good example of which is the theory of the electromagnetic
field (1.4); the new coordinates in this case are just coefficients in the Fourier expansion of
the field A:

A(x, t) = 1

V

∑
k

a(k, t)eikx (1.9)

Substituting this expansion into (1.8) we obtain equations for the coefficients, which are
just the Newton equations for harmonic oscillators with frequencies ±c|k|:

∂2
t ai (k, t) − (ck)2

(
δi j − ki k j

k2

)
a j (k, t) = 0 (1.10)

where a = (a1, a2, a3).
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The meaning of this transformation becomes especially clear if we confine our system of
fields in a box with linear dimensions Li (i = 1, . . . , D) with periodic boundary conditions.
Then our k-space becomes discrete:

ki = 2π

Li
ni

(ni are integer numbers). Thus the continuous theory of the electromagnetic field in real
space looks like a discrete theory of independent harmonic oscillators in k-space. The
quantization of such a theory is quite obvious: one should quantize the above oscillators
and get a quantum field theory from the classical one. Things are not always so simple,
however. Imagine that the action (1.4) has quartic terms in derivatives of A, which is the
case for electromagnetic waves propagating through a nonlinear medium where the speed
of light depends on the field intensity E:

c2 = (
c2

0/n
) + α(∂t A)2 (1.11)

Then one cannot decouple the Maxwell equations into independent equations for harmonic
oscillators.

We have mentioned above that QFT is just quantum mechanics for an infinite number
of degrees of freedom. Infinities always cause problems, not only conceptual, but technical
as well. In high energy physics these problems are really serious, but in condensed matter
physics we are more lucky: here we rarely deal with systems where the number of degrees
of freedom is really infinite. Numbers of electrons and ions are always finite though usually
very large. If an infinity actually does appear, the first approach to it is to make it countable.
We already know how to do this: we should put the system into a box and carry out a Fourier
transformation of the fields. In condensed matter problems this box is not imaginary, but
real. Another natural way to make the number of degrees of freedom finite is to put the
system on a lattice. Again, in condensed matter physics a lattice is naturally present.

Usually QFT is concerned about universal features of phenomena, i.e. about those features
which are independent of details of the lattice. Therefore QFT describes a continuum limit of
many-body quantum mechanics, in other words the limit on a lattice with a → 0, Li → ∞.
We shall see that this limit does not necessarily exist, i.e. not all condensed matter phenomena
have universal features.

Let us forget for a moment about possible difficulties and accept that QFT is just a
quantum mechanics of systems of an infinite number of degrees of freedom. Does the word
‘infinite’ impose any additional requirements? It does, because this makes QFT a statistical
theory. QFT operates with statistically averaged quantum averages. Therefore in QFT we
average twice. Let us explain this in more detail. The quantum mechanical average of an
operator Â(t) is defined as

〈 Â(t)〉 =
∫

dN xψ∗(t, x) Â(t)ψ(t, x) =
∑

q

C∗
q C p〈q| Â(t)|p〉 (1.12)

where |q〉 are eigenstates and the coefficients Cq are not specified. In QFT we usually
consider systems in thermal equilibrium, i.e. we assume that the coefficients of the wave
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Figure 1.2. Studying responses of a ‘black box’.

functions follow the Gibbs distribution:

C∗
q C p = 1

Z
e−βEq δqp (1.13)

where β = 1/T . In other words, the averaging process in QFT includes quantum mechan-
ical averaging and Gibbs averaging:

〈 Â(t)〉QFT =
∑

q e−βEq 〈q| Â(t)|q〉∑
q e−βEq

= Tr(e−β Ĥ Â)

Tr(e−β Ĥ )
(1.14)

There is also another important language difference between quantum mechanics and
QFT. Quantum mechanics expresses everything in terms of wave functions, but in QFT we
usually express results in terms of correlation functions or generating functionals of these
functions. It is useful to define these important notions from the very beginning. Let us
consider a classical statistical system first. What is a correlation function? Imagine we have
a complicated system where everything is interconnected appearing like a ‘black box’ to
us. One can study this black box by its responses to external perturbations (see Fig. 1.2).

A usual measure of this response is a change in the free energy: δF = F[H (x)] − F[0].
In principle, the functional δF[H (x)] carries all accessible information about the system.
Experimentally we usually measure derivatives of the free energy with respect to fields
taken at different points. The only formal difficulty is that the number of points is infinite.
However, we can overcome this by discretizing our space as has been explained above.
Therefore we represent our space as an arrangement of small boxes of volume 
 centred
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Figure 1.3. Response functions are usually measurable experimentally.

around points xn (recall the previous discussion!) assuming that the field H (x) is constant
inside each box: H (x) = H (xn). Thus our functional may be treated as a limiting case of a
function of a large but finite number of arguments F[H ] = lim
→0 F(H1, . . . , HN ).

Performing the above differentiations we define the following quantities which are called
correlation functions:

〈M(x)〉 ≡ δF[H ]

δH (x)

〈〈M(x2)M(x1)〉〉 ≡ δ2 F[H ]

δH (x2)δH (x1)
· · ·

〈〈M(xN )M(xN−1) · · · M(x1)〉〉 ≡ δN F[H ]

δH (xN ) · · · δH (x1)
· · ·

(1.15)

Recall that the operation δF/δH thus defined is called a functional derivative. As we see, it
is a straightforward generalization of a partial derivative for the case of an infinite number of
variables. In general, whenever we encounter infinities in physics we can approximate them
by very large numbers, so do not worry much about such things as functional derivatives
and path integrals (see below); they are just trivial generalizations of partial derivatives and
multiple integrals!

Response functions are usually measurable experimentally, at least in principle (see
Fig. 1.3). By obtaining them one can recover the whole functional using the Taylor
expansion:

δF[H (x)] =
∑

n

1

n!

∫
dD x1 · · · dD xN H (x1) · · · H (xn)〈〈M(x1) · · · M(xn)〉〉 (1.16)

In which way does the situation in QFT differ from the classical one? First of all, as we
have seen, in QFT we average in both the quantum mechanical and thermodynamical sense,
but what is more important is that the quantities M(x) are now operators and the result of
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averaging depends on their ordering. As we know from an elementary course in quantum
mechanics, operators satisfy the Heisenberg equation of motion:

i h̄
∂ Â

∂t
= [Ĥ , Â] (1.17)

where Ĥ is the Hamiltonian of the system. This equation has the following solution:

Â(t) = e−it h̄−1 Ĥ Â(t = 0)eit h̄−1 Ĥ (1.18)

To describe systems in thermal equilibrium we usually use imaginary or the so-called
Matsubara time

iτ = t h̄−1

Its meaning will become clear later.
Suppose now that Â is a perturbation to our Hamiltonian Ĥ . Then this perturbation

changes the energy levels:

En = E (0)
n + 〈n| Â|n〉 +

∑
m �=n

|〈n| Â|m〉|2
En − Em

+ · · · (1.19)

and therefore changes the free energy:

F = −β−1 ln

(∑
n

e−βEn

)

Now I am going to show that in the second order of the perturbation theory these changes in
the free energy can be expressed in terms of some correlation function. Let me make some
preparatory definitions. Consider an operator Â(x) and its Hermitian conjugate Â+(x). Let
us define their τ -dependent generalizations:

Â(τ, x) = eτ Ĥ Â(x)e−τ Ĥ

ˆ̄A(τ, x) = eτ Ĥ Â+(x)e−τ Ĥ
(1.20)

where the Matsubara ‘time’ belongs to the interval 0 < τ < β.
Then we have the following definition of the correlation function of two operators:

D(1, 2) ≡ 〈〈 Â(τ1, x1) ˆ̄A(τ2, x2)〉〉

=
{

±{Z−1Tr[e−β Ĥ Â(τ1, x1) ˆ̄A(τ2, x2)] − 〈 Â(τ1, x1)〉〈 ˆ̄A(τ2, x2)〉} τ1 > τ2

{Z−1Tr[e−β Ĥ ˆ̄A(τ2, x2) Â(τ1, x1)] − 〈 ˆ̄A(τ2, x2)〉〈 Â(τ1, x1)〉} τ2 > τ1

(1.21)

The minus sign in the upper row appears if Â is a Fermi operator. Here I have to make the
following important remark. The terms Bose and Fermi are used in the following sense.
Operators are termed Bose if they create a closed algebra under the operation of commu-
tation, and they are termed Fermi if they create a closed algebra under anticommutation.
The phrase ‘closed algebra’ means that commutation (or anticommutation) of operators
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of a certain set produces only operators of this set and nothing else. Thus spin opera-
tors on a lattice Ŝa(r ) (a = x, y, z) create a closed algebra under commutation, because
their commutator is either zero (r �= r ′) or a spin operator. One might think that S = 1/2
is a special case because the Pauli matrices on one site also satisfy the anticommutation
relations:

{σ a, σ b} = 2δab

and it seems that one can choose alternative definitions of their statistics. It is not true,
however, because the spin-1/2 operators from different lattice sites always commute and,
on the contrary, their anticommutator is never equal to zero.

Imagine that we know all the eigenfunctions and eigenenergies of our system. Then we
can rewrite the above traces explicitly using this basis. The result is given by

D(1, 2) =
∑
n,m

e−βEn

Z
|〈n| Â(0)|m〉|2eiPmn x12 [±θ (τ1 − τ2)eEnmτ12 + θ (τ2 − τ1)eEnmτ21 ]

(1.22)

where τ12 = τ1 − τ2, x12 = x1 − x2. Here we have used the following properties of
eigenstates:

eτ Ĥ |n〉 = eτ En |n〉
〈m| Â(x)|n〉 = ei(Pn−Pm )x〈m| Â(0)|n〉

The latter property holds only for translationally invariant systems where the eigenstates of
Ĥ are simultaneously eigenstates of the momentum operator P̂. Now you can check that
the change in the free energy can be written in terms of the correlation functions:

βδF =
∫ β

0
dτ 〈A(τ )〉 + 1

2

∫ β

0
dτ1

∫ β

0
dτ2 D(τ1, τ2) (1.23)

Therefore correlation functions are equally important in classical and quantum systems.
Let us continue our analysis of the pair correlation function defined by (1.21) and (1.22).

This pair correlation function is often called the Green’s function after the man who intro-
duced similar objects in classical field theory. There are two important properties following
from this definition. The first is that the Green’s function depends on

τ ≡ (τ1 − τ2)

which belongs to the interval

−β < τ < β

The second is that for Bose operators the Green’s function is a periodic function:

D(τ ) = D(τ + β) τ < 0 (1.24)

and for Fermi operators it is an antiperiodic function:

D(τ ) = −D(τ + β) τ < 0 (1.25)
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These two properties allow one to write down the following Fourier decomposition of the
Green’s function:

D(τ, x12) = β−1
∞∑

s=−∞

∫
dDk

(2π )D
D(ωs, k)e−iωsτ−ikx12 (1.26)

where

D(ωs, k) = (2π )D Z−1
∑
n,m

e−βEn (1 ∓ eβ−Emn )|〈n| Â(0)|m〉|2 δ(k − Pmn)

iωs − Emn

≡
∑
n,m

ρ(n, m)(k)

iωs − Emn
(1.27)

and

ωs = 2πβ−1s

for Bose systems and

ωs = πβ−1(2s + 1)

for Fermi systems. Thus we get a function defined in the complex plane of ω at a sequence
of points ω = iωs . We can continue it analytically to the upper half-plane (for example).
Thus we get the function

D(R)(ω) =
∑
n,m

ρ(n,m)(k)

ω − Emn + i0

ρ(n,m)(k) = (2π )D

Z
e−βEn (1 ∓ eβ−Emn )|〈n| Â(0)|m〉|2δ(k − Pmn)

(1.28)

analytical in the upper half-plane of ω. This function has two wonderful properties. (a)
Its poles in the lower half-plane give energies of transitions Emn which tell us about the
spectrum of our Hamiltonian. (b) We can write down our original Green’s function in terms
of the retarded one:

D(ωs, k) = − 1

π

∫
dy

�m D(R)(y)

iωs − y
(1.29)

This relation is very convenient for practical calculations as will become clear in subsequent
chapters.

We see that the quantum case is special due to the presence of the ‘time’ variable τ . What
is specially curious is that the quantum correlation functions have different periodicity
properties in the τ -plane depending on the statistics. We shall have a chance to appreciate
the really deep meaning of all these innovations in the next chapters.

One should not take away from this chapter a false impression that in QFT we are doomed
to deal with this strange imaginary time and are not able to make judgements about real
time dynamics. The point is that the τ -formulation is just more convenient; for systems
in thermal equilibrium the dynamic (i.e. real time) correlation functions are related to the
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thermodynamic ones through the following relationship:

Ddynamic(ω) = �eD(R)(ω) + i coth
( ω

2T

)
�m D(R)(ω) (bosons) (1.30)

Ddynamic(ω) = �eD(R)(ω) + i tanh
( ω

2T

)
�m D(R)(ω) (fermions) (1.31)

The proof of the above relations can be found in any book on QFT and I shall spend no
time on it.

These relations are convenient if our calculational procedure naturally provides us with
Green’s functions in frequency momentum representation. This is not always the case,
however. Sometimes we can work only in real space (see the chapters on one-dimensional
systems). Then it is better not to calculate D(iωn) first and continue it analytically, but to
skip this intermediate step and to express the retarded functions directly in terms of D(τ ).
In order to do this, we can use the relationship between the thermodynamic and the retarded
Green’s functions, which follows from (1.22) and (1.28):

D(τ ) = θ (τ )D+(τ ) ± θ (−τ )D−(τ )

D+(τ ) = − 1

π

∫
dx�m D(R)(x)

e−xτ

1 ∓ e−βx
(1.32)

D−(τ ) = − 1

π

∫
dx�m D(R)(x)

e−xτ

eβx ∓ 1

(the upper sign is for bosons, the lower one for fermions). Then from (1.32) it follows that

D+(τ ) − D−(τ ) = − 1

π

∫ ∞

−∞
dx�m D(R)(x)e−τ x (1.33)

from which we can recover �m D(R)(ω):

�m D(R)(ω) = 1

2

∫ ∞

−∞
dt[D−(it + ε) − D+(it + ε)]eiωt (1.34)

If you feel that the discussion of the correlation functions is too abstract, go ahead to
the next chapter, where a simple example is provided. This is always the case with new
concepts; at the beginning they look like unnecessary complications and it takes time to
understand that, in fact, they make life much easier for those who have taken trouble to
learn them. In order to make contact with reality easier, I outline below some experimental
techniques which measure certain correlation functions more or less directly.

1. Neutron scattering. Being neutral particles with spin 1/2, neutrons in condensed matter
interact only with magnetic moments. The latter can belong either to nuclei (ions) or
to electrons. Thus neutron scattering is a very convenient probe of lattice dynamics and
electron magnetism. In experiments on neutron scattering one measures the differential
cross-section of neutrons which is directly proportional to the sum of electronic and ionic
dynamical structure factors Si(ω, q) and Sel(ω, q). The ionic structure factor is the two-
point dynamical correlation function of the exponents of ionic displacements u (see, for
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example, Appendix N in the book by Ashcroft and Mermin in the select bibliography):

Si(ω, q) = 1

N

∑
r ,r ′

e−iq(r −r ′)
∫

dt

2π
〈exp[iqu(t, r )] exp[−iqu(0, r ′)]〉eiωt (1.35)

(N is the total number of ions in the crystal). In the case when the displacements are
harmonic the expression for Si can be simplified:

Si(ω, q) =
∑

r

∫ ∞

−∞

dt

2π
exp

{
1

2
qaqb[〈ua(t, r )ub(0, 0)〉 − 〈ua(0, 0)ub(0, 0)〉]

}
eiωt−iqr

(1.36)

The electronic structure factor is the imaginary part of the dynamical magnetic sus-
ceptibility:

Sab
el (ω, q) = 1

e h̄ω/kT − 1
�mχ (R),ab(ω, q)

χab(ωn, q) =
∫

dDrdτe−iqr −iωnτ 〈〈Sa(τ, r )Sb(0, 0)〉〉
(1.37)

where Sa(r ) is the spin density.
2. X-ray scattering. X-ray scattering measures the same ionic structure factor plus several

other important correlation functions. In metals, absorption of X-rays with definite fre-
quency ω is proportional to the single-electron density of states ρ(ω). The latter is equal
to

ρ(ω) = 1

π

∑
σ

∑
q

�mG(R)
σσ (ω, q) (1.38)

where G(ω, q) is the single-electron Green’s function. One can do even better than this,
measuring X-ray absorption at certain angles. The corresponding method is called ‘angle
resolved X-ray photoemission’ (ARPES); it measures �mG(R)

σσ (ω, q) directly.
3. Nuclear magnetic resonance and the Knight shift. A sample is placed in a combination

of constant and alternating magnetic fields. Resonance is observed when the frequency
of the alternating fields coincides with the Zeeman splitting of nuclei. The magnetic
polarization of the electrons changes the effective magnetic field acting on the nuclei
and thus changes the Zeeman splitting. The shift of the resonance line (the Knight shift)
is proportional to the local magnetic susceptibility:

�H/H ∼
∑

q

F(q) lim
ω→0

�eχ (R)(ω, q) (1.39)

where F(q) = ∑
a cos(qa) is the structure factor of the given nuclei. A more detailed

discussion can be found in Abrikosov’s book Fundamentals of the Theory of Metals.
4. Muon resonance. This method measures internal local magnetic fields. Therefore it

allows one to decide whether the material is in a magnetically ordered state or not. The
problem of magnetic order may be very difficult if the order is complex, as in helimagnets
or in spin glasses where every spin is frozen along its individual direction.
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5. Infrared reflectivity. When a plane wave is normally incident from vacuum on a medium
with dielectric constant ε, the fraction r of power reflected (the reflectivity) is given
by

r =
∣∣∣∣1 − √

ε

1 + √
ε

∣∣∣∣
2

(1.40)

In order to extract ε from the reflectivity one can use the Kramers–Kronig relations.
This requires a knowledge of r (ω) for a considerable range of frequencies, which is a
disadvantage of the method. The dielectric function ε(ω, q) is directly related to the pair
correlation function of charge density:

�(ω, q) = 〈〈ρ(−ω, −q)ρ(ω, q)〉〉 (1.41)

Its imaginary part is proportional to the electrical conductivity:

�mε = 4π

ω
�eσ (1.42)

Since photons have very small wave vectors q = ω/c, the described method effectively
measures values of physical quantities at zero q.

6. Brillouin and Raman scattering. In the corresponding experiments a sample is irradiated
by a laser beam of a given frequency; due to the nonlinearity of the medium a part of
the energy is re-emitted with different frequencies. Therefore a spectral dispersion of
the reflected light contains ‘satellites’ whose intensity is proportional to the fourth-order
correlation function of dipole moments or spins (light can interact with both). Scattering
with a small frequency shift originates from gapless excitations (such as acoustic phonons
and magnons) and is referred to as Brillouin scattering. For frequency shifts of the order
of several hundred degrees the main contribution comes from higher energy excitations
such as optical phonons; in this case the process is called Raman scattering. The practical
validity of this kind of experimental technique is limited by the fact that measurements
occur at zero wave vectors.

7. Ultrasound absorption. This measures the same density–density correlation function as
light absorption, but with the advantage that q is not necessarily small, since phonons
can have practically any wave vectors.




