Spatial Ecological–Economic Analysis for Wetland Management
Modelling and Scenario Evaluation of Land Use

Wetlands are very sensitive and valuable ecosystems that are subject to much stress from human activities. The study presented here develops an innovative triple-layer framework for analysis of wetland management. This approach provides support for spatial matching of physical planning, hydrological and ecological processes, and economic activities. The authors describe how integrated modelling at the regional scale can be achieved in practice. Following an introduction to wetlands, theoretical aspects of the contributing disciplines are discussed, as well as various aspects of integrated and spatial modelling. An applied, integrated assessment of spatial wetland management in the Netherlands, namely for the Vecht area between the cities of Amsterdam and Utrecht, is then presented. This assessment has resulted in a set of linked hydrological, ecological and economic models, formulated at the level of grids and polders, and various types of evaluation and rankings of scenarios. The results indicate the value of maintaining spatial detail for as long as possible.

Written to encompass aspects of both the natural and the social sciences pertinent to environment management, the book will satisfy readers from both areas seeking sustainable solutions at a regional scale.

Jeroen van den Bergh holds the Chair of Environmental Economics at the Free University, Amsterdam, the Netherlands and is also a full professor in the University's Institute for Environmental Studies. He was awarded the 2002 Royal/Shell Prize for his research on integrated modelling for sustainable development.

Aat Barendregt is Lecturer in Environmental Sciences in the Faculty of Geography at Utrecht University, the Netherlands. His research focuses on wetland science, including modelling of wetland ecosystems, and analysis of policy and management to realise sustainable conditions in aquatic systems.

Alison Gilbert is a research ecologist in the Institute for Environmental Studies, the Free University, Amsterdam, the Netherlands. Her interest in multidisciplinary research, in particular ecological–economic integration, has led to the development and application of analytical tools such as indicators, models, resource accounts and evaluation frameworks.
Spatial Ecological–Economic Analysis for Wetland Management
Modelling and Scenario Evaluation of Land Use

JEROEN C. J. M. VAN DEN BERGH
Department of Spatial Economics and
Institute for Environmental Studies,
Free University, Amsterdam,
the Netherlands

AAT BARENDREGT
Department of Environmental Sciences,
University of Utrecht, the Netherlands

ALISON J. GILBERT
Institute for Environmental Studies,
Free University, Amsterdam,
the Netherlands
Contents

List of figures page viii
List of tables x
Preface xiii

1 Introduction 1
 1.1 Problems, policy and management of wetlands 1
 1.2 What are wetlands? 3
 1.3 Wetlands in the Netherlands 5
 1.4 Wetland research 8
 1.5 Scope and objectives 10
 1.6 Outline of the book 13

2 Wetlands and science 15
 2.1 Introduction 15
 2.2 Hydrology and ecology 15
 2.3 Environmental and ecological economics 36
 2.4 Natural-social science integration 49
 2.5 Conclusions 53

3 Integrated modelling and assessment 55
 3.1 Introduction 55
 3.2 Integrated modelling 57
 3.3 Spatial modelling 62
 3.4 Integrated modelling and monetary valuation 69
 3.5 Performance indicators 75
3.6 Evaluation 80
3.7 Conclusions 81

4 Theoretical framework and method of integrated study 83
4.1 Objective and approach 83
4.2 Three integration levels 85
4.3 Spatial dimension 87
4.4 Relevance for policy and management 88

5 The Vecht area: history, problems and policy 89
5.1 Description of the area 89
5.2 Historical development of the area 90
5.3 Threats to the wetlands 96
5.4 Economic activities 98
5.5 Policy and management in the Vecht area 99
5.6 Conclusions 104

6 Development scenarios for the Vecht area 106
6.1 Introduction 106
6.2 Scenario I: reference 109
6.3 Scenario II: stimulation of agriculture (Agriculture scenario) 109
6.4 Scenario III: stimulation of nature (Nature scenario) 110
6.5 Scenario IV: stimulation of recreation (Recreation scenario) 112
6.6 Conclusions 114
Appendix 6.1 List of polders 114

7 The spatial–ecological model: hydrology and ecology 116
7.1 Introduction 116
7.2 The hydrological quantity model 117
7.3 The hydrological quality model 121
7.4 The ecological model 123
7.5 Modelling results 126

8 The spatial–economic model: agriculture, nature conservation and outdoor recreation 129
8.1 Introduction 129
8.2 Environmental and economic data 131
8.3 Modelling results under the three scenarios 137
8.4 Economic benefits of nature and recreation 143
8.5 Summary of modelling results 146
Appendix 8.1 Calculation of economic and nutrient variables under the Agriculture scenario 148
Contents vii

Appendix 8.2 Outdoor recreation data 150
Appendix 8.3 Economic scenario results on a polder level 152

9 Performance indicators for the evaluation 162
 9.1 Introduction 162
 9.2 Performance indicators for environmental quality 163
 9.3 Performance indicators for spatial equity 177
 9.4 Conclusions 181
Appendix 9.1 Full list of species identified 182
Appendix 9.2 Environmental quality and economic welfare indices on a polder level 187

10 Evaluation of the scenarios 194
 10.1 Introduction 194
 10.2 Point evaluation 194
 10.3 Spatial evaluation 199
 10.4 Conclusions 204

11 Conclusions: policy and research implications 207
 11.1 Purpose 207
 11.2 Method of integrated research 207
 11.3 Natural science modelling and results 208
 11.4 Economic analysis and results 209
 11.5 Indicators, spatial evaluation and scenario ranking 211
 11.6 Further research 212

References 214
Index 234
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Specific features of the case study.</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>A wetland plain with a large recharge of groundwater from a nearby hill ridge.</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>A wetland plain with abstraction of drinking water from a nearby hill ridge.</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Soil geomorphology of a wetland plain.</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>The food web in a fen wetland.</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Guideline for the development of indicators.</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>The integrated approach followed in the Vecht area case study.</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>The river Vecht with nature at the shoreline and recreation on the water.</td>
<td>90</td>
</tr>
<tr>
<td>5.2</td>
<td>The research area and its surroundings.</td>
<td>91</td>
</tr>
<tr>
<td>5.3</td>
<td>Land use in the study area and its immediate surroundings.</td>
<td>93</td>
</tr>
<tr>
<td>5.4</td>
<td>Succession in a fen area from open water via aquatic vegetation and reedbeds to alder forests.</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Mesotrophic quacking fens with a species-rich vegetation of sedges and herbs.</td>
<td>95</td>
</tr>
<tr>
<td>5.6</td>
<td>The characteristic landscape of the Vecht area with turf ponds covered with water lillies.</td>
<td>95</td>
</tr>
<tr>
<td>5.7</td>
<td>Agriculture in the Vecht area: pasturelands surrounded by nature.</td>
<td>96</td>
</tr>
<tr>
<td>5.8</td>
<td>The cormorant, one of the characteristic species in the region, present in a colony of around 10,000 pairs.</td>
<td>98</td>
</tr>
<tr>
<td>6.1</td>
<td>The study area and its polders.</td>
<td>107</td>
</tr>
<tr>
<td>6.2</td>
<td>Stimulation in the Agriculture scenario.</td>
<td>110</td>
</tr>
<tr>
<td>6.3</td>
<td>Stimulation in the Nature scenario.</td>
<td>111</td>
</tr>
</tbody>
</table>
List of figures

6.4 Stimulation in the Recreation scenario. 113
7.1 Hydrology of the case study area. 118
7.2 Groundwater flow per grid cell per year. 122
7.3 Calculated chloride concentration in surface water per grid cell under the Agriculture (left) and the Nature (right) scenarios. 123
7.4 Calculated orthophosphate concentration in surface water per grid cell under the Agriculture (left) and the Nature (right) scenarios. 124
7.5 The predicted probability of presence of the aquatic plant species Utricularia vulgaris per grid cell under the Agriculture (left) and the Nature (right) scenarios. 125
8.1 Schematic view of the various costs related to the Nature scenario. 133
8.2 Schematic view of the various costs related to the Recreation scenario. 136
8.3 Calculation of economic variables for agriculture. 149
8.4 Calculation of nutrient variables. 149
9.1 The evaluation framework. 163
9.2 Vegetation series typical of the succession in the Vecht wetlands. 166
9.3 Interpretation of 'resilience' for succession-driven ecosystems, as defined by (a) Pimm (1984) and (b) Holling (1973). 168
9.4 Aggregation of model output to performance indicators and an index for environmental quality. 170
9.5 The corridor targeted for wetlands restoration within the Vecht study area. 174
9.6 Generation of a performance indicator for spatial equity. 178
9.7 Distribution of welfare per scenario. 180
10.1 Graphical presentation of the effects table and ranking of scenarios. 195
10.2 Trade-off between net present value and environmental quality. 197
10.3 Trade-off between net present value and spatial equity. 198
10.4 Trade-off between environmental quality and spatial equity. 199
10.5 Spatial effects and point effects tables. 200
10.6 Alternative paths for evaluation of scenarios according to objectives with a spatial character. 201
10.7 Welfare per polder. 202
10.8 Difference map for welfare, comparing the Nature and the Recreation scenarios. 203
Tables

1.1 Glossary of selected terms relating to wetlands page 4
1.2 Ramsar classification system for wetland type 6
2.1 Definitions and characteristics of concepts used for the assessment of (disturbed) ecosystems ... 35
2.2 Perspectives of different concepts of disturbed ecosystems with regard to the three ecosystem characteristics of ecological functioning .. 36
2.3 Differences in emphasis between environmental and ecological economics .. 48
3.1 Characterising integrated models ... 63
3.2 Categorisation of possible activities, benefits and costs for a hypothetical wetland change .. 74
5.1 Inhabitants and surface area of municipalities in or near the Vecht area (January 1996) .. 92
6.1 Development scenarios for the Vecht area 108
6.2 The 72 polders forming the study area 115
7.1 Input and output of the three applied models 117
8.1 Input and output of the spatial-economic model 130
8.2 Data on types of agriculture .. 132
8.3 The capacity and capital costs of phosphate-removal plants .. 134
8.4 Total benefits in the Vecht area ... 136
8.5 Economic output per region under the Agricultural scenario (changes relative to the present situation) .. 138
8.6 Environmental output per region under the Agricultural scenario (changes relative to the present situation) .. 138
8.7 The economic indicators per region under the Nature scenario .. 140
List of tables

8.8 Environmental indicators per region under the Nature scenario 141
8.9 The costs and benefits of converting land from use by agriculture into use by nature-recreation 142
8.10 The environmental quality indicators under the Reference and Recreation scenarios 143
8.11 Financial benefits and the net present value under the Recreation scenario including the environmental quality indicator per region 143
8.12 Net economic value of various recreation activities 145
8.13 The economic benefits of converting agricultural land into nature-recreation areas 146
8.14 The net present value per region under the three scenarios 147
8.15 The surplus of nitrogen and phosphorate per region under the three scenarios 148
8.16 Estimated numbers of short holidays 151
8.17 Estimated numbers of long holidays 151
8.18 The economic and environmental output under the Agricultural scenario 153
8.19 The economic and environmental output under the Nature scenario 156
8.20 The economic and environmental output under the Recreation scenario 158
9.1 Performance indicators and index of environmental quality for the four scenarios 173
9.2 Index of environmental quality for polders inundated in the Recreation scenario, and their adjacent polders 176
9.3 Classification of polders on the basis of welfare per polder in the Reference scenario and the average welfare per polder for each class 180
9.4 Application of weights and subsequent calculation of the performance indicator for spatial equity 181
9.5 Plant species identified and used in the construction of the eutrophic species indicator \((E) \) 183
9.6 Plant species identified and used in the construction of the peat accumulation indicator \((P) \) 184
9.7 Plant species identified and used in the construction of the biodiversity indicator \((B) \) 185
9.8 Plant species identified and used in the construction of the non-resilience indicator \((R) \) 187
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9</td>
<td>Environmental quality (index, [0,100]) and economic welfare (million €) per polder for the four scenarios</td>
<td>188</td>
</tr>
<tr>
<td>9.10</td>
<td>Standardised economic welfare and environmental quality [0,100] per polder for the four scenarios</td>
<td>190</td>
</tr>
<tr>
<td>9.11</td>
<td>Welfare per polder for the four scenarios</td>
<td>192</td>
</tr>
<tr>
<td>10.1</td>
<td>Performance indicators for the three evaluation objectives per scenario: the effects table for the evaluation</td>
<td>195</td>
</tr>
<tr>
<td>10.2</td>
<td>Derivation of a single score per scenario according to path 1 in Fig. 10.6</td>
<td>201</td>
</tr>
<tr>
<td>10.3</td>
<td>Welfare per corridor polder for the Nature and Recreation scenarios</td>
<td>205</td>
</tr>
</tbody>
</table>
Preface

In all parts of the world, wetlands are endangered by human activities and development. Areas with wetlands often provide locations for housing and recreation. Consequently, threats to wetlands rapidly lead to the loss of the valuable services they provide to humans. Wetlands have been studied in many disciplines, both in the natural and the social sciences. Integration between disciplines has been tried, though often without much success. This study approaches the analysis of wetlands’ development and policy by using integrated ecosystem modelling that builds upon a combination of insights from hydrology, ecology and economics. It devotes particular attention to the spatial dimension, the development of a set of complementary indicators and the aggregation and evaluation of information.

The first part of the book provides a short introduction to the relevant building blocks of the approach, which include discussions of wetlands, the natural sciences, economics, integrated modelling and evaluation. The second part of the book presents a case study in which the integrated modelling approach is applied to a wetlands area in the centre of the Netherlands: the Vecht area.

The case study was part of an EU project entitled Ecological–Economic Analysis of Wetlands: Functions, Values and Dynamics, sponsored by the EU’s Environment and Climate R&D programme (ECOWET, contract no. ENV4-CT96-0273). This project ran from June 1996 to June 1999 and was coordinated by R. K. Turner (CSERGE, C. J. M. University of East Anglia in the UK) and J. C. J. M. van den Bergh. A short article summarising the case study has been published previously (van den Bergh et al., 2001).

We would like to acknowledge the support of various (ex)colleagues. Marjan van Herwijnen, Peter van Horssen, Patricia Kandelaars and Carolin Lorenz
... have participated in the research and co-authored chapters in the report that forms the basis of the current book. Ernst Bos and Bas Rabeling provided assistance in data collection. Economist Florian Eppink and ecologist Jan Vermaat read critically through parts of the manuscript. Dita Smit edited the final manuscript, and Patricia Ellman checked the (British) English.