How destructive or beneficial are forest fires to wildlife? Should we be trying to reduce or increase the amount of fire in forests? How are forest fires controlled, and why does this sometimes fail? What effect will climate change have? These and many other questions are answered in this richly illustrated book, written in non-technical language. The journey starts in the long geological history of fire, leading up to our present love–hate relationship with it. Exploring the physics of how a single flame burns, the journey continues through how whole forests burn and the anatomy of firestorms. The positive and negative ecological effects of fires are explored, from plants and wildlife to whole landscapes. The journey ends with how fires are controlled, and a look to the future. This book will be of interest to ecologists, biogeographers and anyone with an interest in forest fires and the role they play.

Peter A. Thomas is Senior Lecturer in Environmental Science at Keele University, UK and has been a Visiting Professor at the University of Alberta, Canada and a Bullard Fellow at Harvard University, USA. His teaching encompasses a wide range of tree- and woodland-related topics including fire behaviour and fire ecology, and he recently received an Excellence in Teaching Award from Keele University. He is the author of *Trees: Their Natural History* and *Ecology of Woodlands and Forests*, both published by Cambridge University Press.

Robert S. (Rob) McAlpine works with the Ontario Ministry of Natural Resources, Aviation and Forest Fire Management Branch, where he leads the Science and Technology group. His current research interests and activities span fire behaviour, fire economics, equipment development and organisational effectiveness. He has worked in fire management and research for over 30 years, from a frontline firefighter to a fire scientist.
Fire in the Forest

Peter A. Thomas and Rob McAlpine

with contributions from
Kelvin Hirsch and Peter Hobson
To our families who have stood with us during this project:

Caroline, Benjamin and Graeme (RSM); Judy, Matthew and Daniel (PAT).
Contents

Preface ix
List of contributors xi

1 In the beginning 1
 The nature of fire 2
 Just how widespread are forest fires? 4

2 Historical review 8
 The earliest beginnings of fire in geological time 8
 Tertiary and Quaternary – the last 65 million years 11
 Holocene – the last 10,000 years 11
 The intervention of humans 13
 Uses of fire 13
 Control of fire – careful or careless? 15
 Effect of aboriginal people on the landscape 16
 Arrival of the Europeans 18
 Bambi and Smokey Bear 20
 Reduced fire frequencies 21
 Fire control to fire management 22
 Are fire frequencies increasing again? 24

3 How a fire burns 26
 Mechanics of fire 26
 Pre-ignition 26
 Ignition 28
 Combustion 28
 Heat transfer 31
 Variation in fuel quality 32
 Temperature and energy 35
 Anatomy of a fire 37

4 Fire in the wild landscape 54
 Causes of wildfire – how do they start? 54
 What starts most fires? 62
 Which burns most area? 65
 The fire behaviour triangle 65
 Fuel considerations: fires are what they consume 66
 The effect of climate and weather 72
 Fire season 78
 Variability in how a fire spreads 78
 The complexity of fire spread 81
 Patterns/mosaics on the landscape 82
 Patterns of fire over time 82
 Reconstructing fire history 85
 Fire size – how big is big? 88

5 Fire ecology 90
 How plants survive a surface fire 90
 Fire stimulation of flowering 97
 Ground fires and plant survival 98
 How plants cope with a crown fire 98
 Sneaking past – invasion after a fire 110
 Combining these strategies 112
 Bacteria and fungi 112
 Animals and fire 112
 Post-fire recovery of plants and animals 118
CONTENTS

6 The benefits of fire and its use as a landscape tool 119

with Peter Hobson
Fire and biodiversity – an overview 119
Unpicking the factors that affect biodiversity 124
Environmental legacies: dead wood and biodiversity 131
Fire, forests and conservation 132
Can clear-cutting replace fire? 135
The future for fire-prone forests: environmental uncertainty, macroecology and ecosystem resilience 137
Fire as a management tool in the landscape 141
Fire and soils 142
The wildland–urban interface (WUI) 143
The role of prescribed burning in wildland–urban interface areas 145

7 Fire suppression 149
Preliminary steps – fire intelligence 149
Step 1: fire detection 154
Step 2: dispatch 160
Resources for fire suppression 163
Step 3: suppression 167
Step 4: suppression failure – large fire management 176
Fatality fires 178
The fire-management organisation 180

8 Wildland fire and its management – a look towards the future 183

by Kelvin Hirsch
The age of uncertainty 183
Trends and supertrends 185
Adaptation 199
Innovation 201
The future – ours for the making 208

Further reading 211
References used in the text 212
Index 223
Preface

Year after year pictures in the media show towering flames threatening people's homes, livelihoods, and their very lives in places as diverse as North America, Europe and Australia -- why does this happen? Conflicting stories continually appear over whether fire is rapidly destroying the animals, habitats and plants we treasure in our forests, or whether fire is their salvation, the key to diversity and ecosystem rebirth -- where does the truth lie? With global warming predictions, do we face more and larger fires or will technology be able to tame this potentially savage enemy? This book delves into these and other questions, providing a factual account and perspective of how fire burns in the forest, what it does and how it might be controlled.

Where the published work of others is used, or where good sources of extra information are recommended, the authors and the date of the publication are given so that the source can be found in the references at the end of the book. This inevitably has resulted in a compromise; we've tried to keep this to a minimum to help the text flow but give sufficient references to help the reader who wishes to find out more. Our apologies if we fail you at any point.

We are indebted to the many people who provided information and insights and who read part or all of this book. In particular we are grateful to Dave Bowman, Yeonsook Choung, Helene Cleveland, Malcolm Gill, Jim Gould, Richard Hobbs, Scott Keelan, John Packham, Marc-André Parisien, Steve Pyne, Tim Sheldan, Brian Stocks, Jan Volney, Mike Weber, Tim Williamson and Mike Wotton. People were also remarkably kind in sharing pictures and photographs with us; these are gratefully acknowledged in the figure legends. All other photographs were taken by PAT. We are very grateful to Andy Lawrence who did his usual superb job in drawing many of the colour figures. Despite the help of others, if errors remain they are our fault. Please do let us know where you do find errors or you disagree with the stance taken.

PAT is happy to record that some of the background for this book was researched while a Bullard Fellow at Harvard University, Massachusetts.
Contributors

MAIN AUTHORS

Peter A. Thomas
School of Life Sciences
Keele University
Keele
Staffordshire ST5 5BG, UK

Rob McAlpine
Fire Science and Technology
Aviation and Forest Fire Management
Ontario Ministry of Natural Resources
70 Foster Drive, Suite 400
Sault Ste. Marie, Ontario,
Canada P6A 6V5

CONTRIBUTING AUTHORS

Peter Hobson
School of Sustainable Environments
Writtle College
Chelmsford
Essex CM1 3RR, UK

Kelvin Hirsch
Canadian Forest Service
Northern Forestry Centre
5320–122nd Street
Edmonton, Alberta,
Canada T6H 3S5