SPACE TELESCOPE SCIENCE INSTITUTE

SYMPOSIUM SERIES: 15

Series Editor S. Michael Fall, Space Telescope Science Institute

THE DARK UNIVERSE:
MATTER, ENERGY AND GRAVITY

This book reviews the recent findings on the composition of the universe, its dynamics, and the implications of both for the evolution of large-scale structure and for fundamental theories of the universe. With each chapter written by a leading expert in the field, topics include Massive Compact Halo Objects, the oldest white dwarfs, hot gas in clusters of galaxies, primordial nucleosynthesis, Modified Newtonian Dynamics, the cosmic mass density, the growth of large-scale structure, and a discussion of dark energy. The book is an invaluable resource for professional astronomers and graduate students in this cutting-edge area of research.
Other titles in the Space Telescope Science Institute Series.

1. Stellar Populations
 Edited by C. A. Norman, A. Renzini and M. Tosi 1987 0 521 33380 6
2. Quasar Absorption Lines
 Edited by C. Blades, C. A. Norman and D. Turnshek 1988 0 521 34561 8
3. The Formation and Evolution of Planetary Systems
 Edited by H. A. Weaver and L. Danly 1989 0 521 36633 X
4. Clusters of Galaxies
 Edited by W. R. Oegerle, M. J. Fitchet and L. Danly 1990 0 521 38462 1
5. Massive Stars in Starbursts
 Edited by C. Leitherer, N. R. Walborn, T. M. Heckman and C. A. Norman 1991 0 521 40465 7
6. Astrophysical Jets
 Edited by D. Burgarella, M. Livio and C. P. O'Dea 1993 0 521 44221 4
7. Extragalactic Background Radiation
 Edited by D. Calzetti, M. Livio and P. Madau 1995 0 521 49558 X
8. The Analysis of Emission Lines
 Edited by R. E. Williams and M. Livio 1995 0 521 48081 7
9. The Collision of Comet Shoemaker-Levy 9 and Jupiter
 Edited by K. S. Noll, H. A. Weaver and P. D. Feldman 1996 0 521 56192 2
10. The Extragalactic Distance Scale
 Edited by M. Livio, M. Donahue and N. Panagia 1997 0 521 59164 2
11. The Hubble Deep Field
 Edited by M. Livio, S. M. Fall and P. Madau 1998 0 521 63097 5
12. Unsolved Problems in Stellar Evolution
 Edited by M. Livio 2000 0 521 78091 8
13. Supernovae and Gamma-Ray Bursts
 Edited by M. Livio, N. Panagia and K. Sahu 2001 0 521 79141 3
 Edited by M. Livio, K. Noll and M. Stiavelli 2003 0 521 82459 1
The Dark Universe: Matter, Energy and Gravity

Proceedings of the
Space Telescope Science Institute Symposium,
held in Baltimore, Maryland
April 2–5, 2001

Edited by
MARIO LIVIO
Space Telescope Science Institute, Baltimore, MD 21218, USA

Published for the Space Telescope Science Institute
Contents

Participants vi
Preface ix

A brief history of dark matter

V. C. Rubin .. 1

Microlensing towards the Magellanic Clouds: Nature of the lenses and implications on dark matter

K. Sabu .. 14

Searching for the Galactic dark matter

H. B. Richer .. 24

Hot gas in clusters of galaxies and Ω_M

M. E. Donahue ... 34

Tracking the baryon density from the Big Bang to the present

G. Steigman .. 46

Modified Newtonian Dynamics and its implications

R. H. Sanders .. 62

Cosmological parameters and quintessence from radio galaxies

R. A. Daly & E. J. Guerra 77

The mass density of the Universe

N. A. Bahcall ... 96

Growth of structure in the Universe

J. A. Peacock .. 102

Cosmological implications of the most distant supernova (known)

A. G. Riess ... 123

Dynamical probes of the Halo Mass Function

C. S. Kochanek ... 139

Detection of gravitational waves from inflation

M. Kamionkowski & A. H. Jaffe 162

Cosmological constant problems and their solutions

A. Vilenkin .. 173

Dark matter and dark energy: A physicist’s perspective

M. Dine ... 183
Participants

AbdelSalam, Hanadi
Alam, S. M. Khairul
Allrow, Michael
Alcaniz, Juslton
Alcock, Charles
Allen, Ron
Anchev, Joseph
Andrews, Thomas
Avera, Randy
Bahcall, John
Bahcall, Neta
Barish, Barry
Beckwith, Steven
Benitez, Narcisco
Bennett, David
Bergvall, Nils
Bernabei, Rita
Blakelee, John
Bludman, Sidney
Burg, Richard
Burke, Christopher
Burkert, Andreas
Calderwood, Robert
Canzian, Blaise
Carpenter, Kenneth
Casertano, Stefano
Chamane, Julio
Cheslow, Melvyn
Chou, C. K.
Christian, Carol
Consolice, Christopher
Daly, Ruth
D’Amario, James
de Jong, Jelle
Delahaye, Franck
Dell’Antonio, Ian
dine, Michael
Donahue, Megan
Drake, Andrew
Duerbeck, Hilmar W.
Dvali, Gia
Fang, Taejae
Fazio, Giovanni
Felten, James
Ferguson, Harry
Fields, Dale
Freudling, Wolfram
Gaitskell, Richard

Kapteyn Institute for Astronomy
Ohio State University
Space Telescope Science Institute
Universidade Federal do Rio Grande do Norte
Lawrence Livermore National Laboratory
Space Telescope Science Institute
NASA/FAA
Institute for Advanced Study
Princeton University
California Institute of Technology
Space Telescope Science Institute
The Johns Hopkins University
University of Notre Dame
Astronomical Observatory of Uppsala
Universita di Roma II “Tor Vergata”
The Johns Hopkins University
DESY-T
NASA/Goddard Space Flight Center
Ohio State University
Max Planck Institut für Astronomie
Dartmouth College
U.S. Naval Observatory
NASA/Goddard Space Flight Center
Space Telescope Science Institute
Ohio State University
National Central University
Space Telescope Science Institute
Space Telescope Science Institute
Pennsylvania State University
Harford Community College
Kapteyn Institute
Ohio State University
Brown University
University of California at Santa Cruz
Space Telescope Science Institute
Lawrence Livermore National Laboratory
Brussels Free University (VUB)
New York University
Massachusetts Institute of Technology
Harvard-Smithsonian Center for Astrophysics
NASA/Goddard Space Flight Center
Space Telescope Science Institute
Ohio State University
ST-European Southern Observatory
University of California at Berkeley
Participants

Gerhard, Ortwin
University of Basel

Gerke, Brian
Cambridge University

Giavalisco, Mauro
Space Telescope Science Institute

Gleichenstein, Jean-Francois
CEA-Saclay

Godon, Patrick
Space Telescope Science Institute

Graber, James
Library of Congress

Greyber, Howard
Greyber Associates

Gumaraes, Antonio C.
Brown University

Hämmerle, Hannelore
Universität Bonn

Hansen, Bradley
Princeton University

Hartnet, Kevin
NASA/Goddard Space Flight Center

Hauser, Michael
Space Telescope Science Institute

Henriksen, Mark
University of Maryland, Baltimore County

Hoekstra, Henk
CTTA

Jain, Bhuvnesh
University of Pennsylvania

Jeletic, James
NASA/Goddard Space Flight Center

Kamionkowski, Marc
California Institute of Technology

Kassin, Susan
Ohio State University

Kazanas, Demosthenes
LHEA/NASA/Goddard Space Flight Center

Kimble, Randy
NASA/Goddard Space Flight Center

King, Lindsay
University of Bonn

Kirkham, Barry
TRW/NASA/Goddard Space Flight Center

Kochanek, Chris
Harvard-Smithsonian Center for Astrophysics

Leckrone, David
NASA/Goddard Space Flight Center

Lima, Jose Ademir
Universidade Federal do Rio Grande do Norte

Lin, Yi-Hui
National Central University

Livio, Mario
Space Telescope Science Institute

Macchetto, Duccio
Space Telescope Science Institute

Maoz, Dan
Columbia University

Margon, Bruce
Space Telescope Science Institute

Marochkin, Leonid
Space Telescope Science Institute

Marshall, Jennifer
Ohio State University

Mashchenko, Sergiy
University of Montreal

Mathews, Grant
University of Notre Dame

McKernan, Barry
University College of Dublin

Medvedev, Mikhail
CTTA, University of Toronto

Meylan, Georges
Space Telescope Science Institute

Miralles, Joan-Marc
Space Telescope European Coordinating Facility

Natarajan, Priya
Yale University

Nelson, Callin
IGPP/Lawrence Livermore National Laboratory

Netterfield, C. Barth
University of Toronto

Niedner, Mal
NASA/Goddard Space Flight Center

Nomoto, Ken'ichi
University of Tokyo

Onken, Christopher
Ohio State University

Osmer, Patrick
Ohio State University

Paulin-Henriksson, Stephane
PCC, College of France

Peacock, John
European Southern Observatory

Perlmutter, Saul
Lawrence Berkeley Laboratory

Pringle, James
Institute of Astronomy, Cambridge

Rauscher, Bernard J.
Space Telescope Science Institute
<table>
<thead>
<tr>
<th>Participants</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reid, Iain Neill</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>Rhodes, Jason</td>
<td>NASA/Goddard Space Flight Center</td>
</tr>
<tr>
<td>Richer, Harvey</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>Riffeser, Arno</td>
<td>Sternwarte München</td>
</tr>
<tr>
<td>Riess, Adam</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>Rosati, Piero</td>
<td>European Southern Observatory</td>
</tr>
<tr>
<td>Rubin, Vera</td>
<td>Carnegie Institute of Washington</td>
</tr>
<tr>
<td>Runyan, Marcus</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td>Ryden, Barbara</td>
<td>Ohio State University</td>
</tr>
<tr>
<td>Sahu, Kailash</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>Sancisi, Renzo</td>
<td>Kapteyn Sterrekundig Institute</td>
</tr>
<tr>
<td>Sanders, Bob</td>
<td>Kapteyn Sterrekundig Institute</td>
</tr>
<tr>
<td>Schild, Rudolph</td>
<td>Smithsonian Astrophysical Observatory</td>
</tr>
<tr>
<td>Schneider, Peter</td>
<td>Universität Bon</td>
</tr>
<tr>
<td>Schreier, Ethan</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>Seitter, Waltraut C.</td>
<td>Münster University</td>
</tr>
<tr>
<td>Shanks, Tom</td>
<td>University of Durham</td>
</tr>
<tr>
<td>Silverberg, Robert</td>
<td>NASA/Goddard Space Flight Center</td>
</tr>
<tr>
<td>Sparno, Joe</td>
<td>NASA/Goddard Space Flight Center</td>
</tr>
<tr>
<td>Stecher, Theodore</td>
<td>NASA/Goddard Space Flight Center</td>
</tr>
<tr>
<td>Steigman, Gary</td>
<td>Ohio State University</td>
</tr>
<tr>
<td>Steinhardt, Paul</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Stiavelli, Massimo</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>Struble, Mitchell</td>
<td>University of Pennsylvania, Lockheed Martin</td>
</tr>
<tr>
<td>Swaters, Robert</td>
<td>Carnegie Institute of Washington</td>
</tr>
<tr>
<td>Tavarez, Maritza</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>Tinker, Jeremy</td>
<td>Ohio State University</td>
</tr>
<tr>
<td>Tripp, Todd</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Turner, Michael</td>
<td>University of Chicago</td>
</tr>
<tr>
<td>Tyson, Anthony</td>
<td>Bell Laboratories, Lucent Technology</td>
</tr>
<tr>
<td>Urry, C. Megan</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>Vilenkin, Alex</td>
<td>Tufts University</td>
</tr>
<tr>
<td>Williams, Bob</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>Wilson, Gillian</td>
<td>Brown University</td>
</tr>
<tr>
<td>Woodgate, Bruce</td>
<td>NASA/Goddard Space Flight Center</td>
</tr>
<tr>
<td>Xie, Gaofeng</td>
<td>Purple Mountain Observatory</td>
</tr>
<tr>
<td>Yamamoto, Kazuhiro</td>
<td>Hiroshima University</td>
</tr>
<tr>
<td>Yaqoob, Tahir</td>
<td>The Johns Hopkins University</td>
</tr>
<tr>
<td>Zheng, Zheng</td>
<td>Ohio State University</td>
</tr>
</tbody>
</table>
Preface. Through a glass, darkly

The planet Uranus was discovered in 1781 by the British astronomer William Herschel. Not long after its discovery, astronomers charting the orbit of Uranus found small discrepancies between the predicted and observed positions of the planet. In September 1845, British astronomer John Adams proved mathematically that the deviations in Uranus’ orbit could not result merely from the gravitational pull of the other known planets and he predicted the existence of another, previously undetected planet in the solar system. The eventual discovery of the planet Neptune in September 1846 by the German astronomer Johann Galle thus marked the first detection of astronomical “dark matter” whose presence was first deduced by its gravitational effects. However, in the history of physics, we also find a case in which the assumption about the existence of an unseen medium was later proven to be totally wrong. Until 1887, physicists assumed that aether—a substance that pervades all space—was a necessary medium for the propagation of light. A famous experiment by American researchers Albert Michelson and Howard Morley not only showed unambiguously that this medium does not exist, but the experimental results also set Einstein on the road to a new theory of space and time—special relativity.

Astrophysicists today are faced with a similar “Neptune vs. aether” dilemma. On the face of it, there are many indications that about 90% of the matter in our universe is in the form of “dark matter”—matter whose constituents do not emit electromagnetic radiation and that interact very weakly with ordinary matter. The luminous galaxies we see are just like the tiny minilights on a huge, dark, Christmas tree. The existence and amount of the “dark matter” is deduced, for example, from the speeds of galaxies in clusters of galaxies. In equilibrium, the gravitational force of all the matter in the cluster exactly balances the proneness of the galaxies to scatter in all directions. Careful determinations of the speeds thus “weigh” the cluster. Other observations, like gravitational lensing—the bending of light from distant sources by the cluster’s gravity—also confirm that about 90% of the mass in clusters is dark.

The most likely candidates for the constituents of the dark matter are some exotic elementary particles that are relics of the very early, high-energy universe. Elementary particle theories that link fermions (that have a fractional quantum mechanical spin) and bosons (with integer spin) are known as supersymmetry (or, affectionately, SUSY) theories. Supersymmetry requires the existence of (yet undiscovered) fractional spin, neutral, massive partners to integer spin particles like the photon. The lightest members of this menagerie of SUSY particles are known as neutralinos and they are the leading candidates for dark matter.

However, there is another possibility, in principle, to explain the extra gravity usually attributed to dark matter. The idea behind this alternative is similar in spirit to the lesson learned from the aether. Instead of requiring the existence of an unseen medium, maybe the theory of gravity itself needs to be changed. One proposed modification suggests that our three-dimensional (plus time) universe with all of its elementary particles is stuck to a (three-dimensional) membrane that exists in a higher-dimensional space. Particles like protons and electrons cannot move in the extra dimensions and neither can the electromagnetic fields (a bit like electrons being confined to move along a copper wire). Gravity and its carrier—the graviton—can, on the other hand, extend and travel into the higher-dimensional space. In this model, the gravitational effects we attribute to dark matter could simply represent the gravity of matter that resides in a membrane/universe parallel to ours. Photons cannot travel throughout the extra dimension separating the
Preface. Through a glass, darkly

parallel universes and consequently the matter in the parallel universe is necessarily “dark” to our detectors.

Luckily, experiments planned for the coming decade will be able to distinguish between the “Neptune” and “Aether” options. The Large Hadron Collider (LHC), the world’s most powerful particle accelerator which is being built in Geneva, is less than a decade away from achieving the energy range (proton beams with 7-on-7 TeV) needed to discover neutralinos. The LHC could also discover particles predicted to exist by the new theories of gravity. Furthermore, the new theory predicts deviations from Newton’s inverse square law at submillimeter distances. No fewer than four experiments are expected to test gravity at these small distances during the coming few months to years.

As if the existence of dark matter was not puzzling enough, since 1998 there exists strong evidence that most of the universe’s total energy density is in the form of an even more mysterious “dark energy.” Observing a few dozen stellar explosions known as Type Ia supernovae at redshifts of order $z \sim 0.5$–1, two teams discovered that the expansion of the universe is accelerating!

Type Ia supernovae are extremely bright (occasionally outshining an entire galaxy) events representing the complete thermonuclear disruptions of white dwarf stars. Since Type Ia supernovae are nearly perfect “standard candles” (their small deviations from a constant luminosity are well calibrated), they can be used as superb distance indicators to distances spanning half the universe’s age. The expectation prior to 1998 was that distant supernovae would reveal that the universe had been expanding in the past faster than predicted by a simple Hubble expansion, because of the deceleration caused by gravity. Instead, the two teams found (independently) that the distant supernovae were receding slower than the Hubble law, implying an accelerating cosmic expansion propelled by some “dark energy.” The pressure associated with this dark energy is negative, resulting in gravity becoming a repulsive force. The observations, together with measurements of the anisotropy of the cosmic microwave background radiation, suggest that the energy density in the dark energy is about 73% that required for a geometrically flat universe.

The precise nature of the dark energy is probably the greatest mystery of today’s physics. It is generally assumed that this dark energy represents the energy associated with the physical vacuum. However, the value of the observed energy density is some 55 orders of magnitude smaller than that expected from supersymmetry considerations. Currently, it is not even clear if the dark energy density is constant in time, as would be expected for Einstein’s “Cosmological Constant” (introduced to produce a static universe), or evolving as some uniform scalar field (dubbed “quintessence”). It is also possible, in principle, that the accelerating universe and the deduced dark energy are also manifestations of the need for a new theory of gravity.

These proceedings represent a part of the invited talks that were presented at the symposium, in order of presentation. We thank the contributing authors for preparing their papers.

We thank Sharon Toolan of ST ScI for her help in preparing this volume for publication.

Mario Livio

Space Telescope Science Institute

Baltimore, Maryland