THE JAHN–TELLER EFFECT

The Jahn–Teller effect is one of the most fascinating phenomena in modern physics and chemistry, providing a general approach to understanding the properties of molecules and crystals and their origins. The effect inspired one of the most important recent scientific discoveries, the concept of high-temperature superconductivity. This comprehensive volume presents the background of the theory and its main applications in physics and chemistry, along with more recent achievements. Full descriptions are presented alongside thorough references to original material. The book contains over 200 figures to aid visual explanation and avoids bulky mathematical deductions and overly technical language. It is intended for graduate students and academic researchers working in solid-state physics, theoretical, physical, and quantum chemistry, crystallography, spectroscopy, and materials science.

ISAAC B. BERSUKER is a Senior Research Scientist and Adjunct Professor of Theoretical Chemistry at the University of Texas at Austin. His main scientific interest is in the theory of vibronic interactions and Jahn–Teller Effect with applications to solid-state physics, chemistry, and biology. He is the author and co-author of 12 books, 25 major reviews, and more than 300 original publications.
THE JAHN–TELLER EFFECT

ISAAC B. BERSUKER

The University of Texas at Austin
In memory of my wife Liliya Bersuker
Contents

Preface xi
Abbreviations xv
1 Introduction 1
 1.1 The history and evolution of understanding of the Jahn–Teller effect (JTE) 1
 1.2 The role and place of the JT vibronic coupling effects in modern molecular structure and condensed matter theory 6
 1.3 The main goals of this book and means of their realization 9
References 10
2 Vibronic interactions 12
 2.1 The adiabatic approximation 12
 2.2 Vibronic interactions. Vibronic coupling constants 17
 2.3 Orbital vibronic constants 27
 2.4 Force constants, anharmonicity, and instability 31
 2.5 The Jahn–Teller theorem 35
References 43
3 Formulation of Jahn–Teller problems. Adiabatic potentials 45
 3.1 Basic formulations. The simplest $E \otimes b_1$ and $E \otimes (b_1 + b_2)$ problems 45
 3.2 The $E \otimes e$ problem 52
 3.3 $T \otimes e$, $T \otimes t_2$, $T \otimes (e + t_2)$, and $\Gamma_8 \otimes (e + t_2)$ problems 62
 3.4 $T \otimes h$, $p^n \otimes h$, $G \otimes (g + h)$, and $H \otimes (g + h)$ problems for icosahedral systems 73
 3.5 Adiabatic potentials in the multimode problem 91
 3.6 Multicenter systems 95
References 106
Contents

 4.1 Two-level and multilevel pseudo JT (PJT) problems. Uniqueness of the PJT origin of configuration instability and its bonding nature 110
 4.2 Pseudo JT \((A + E) \otimes e, (A + T) \otimes t, (T_1 + T_2) \otimes e,\) and combined JT and PJT problems 122
 4.3 Product JTE problems 135
 4.4 The Renner–Teller effect 151
 4.5 Reformulation of the JT theorem 155
 References 160

5 Solutions of vibronic equations. Energy spectra and JT dynamics 162
 5.1 Weak vibronic coupling, perturbation theory 162
 5.2 Strong vibronic coupling 169
 5.3 Tunneling in JT systems 179
 5.4 Numerical methods and general solutions 198
 5.5 Solutions of multimode problems 212
 5.6 Vibronic reduction factors 227
 5.7 The topological phase problem 248
 References 254

6 The JTE in spectroscopy: general theory 263
 6.1 Electronic spectra 263
 6.1.1 Optical band shapes 263
 6.1.2 Vibronic fine structure, zero-phonon lines, and tunneling splitting 278
 6.1.3 The JTE in excited-state decay 289
 6.2 Vibronic infrared and Raman spectra 291
 6.2.1 Vibronic infrared absorption 291
 6.2.2 Raman spectra and birefringence 305
 6.3 Magnetic resonance and related spectra 318
 6.3.1 The JTE in electron paramagnetic resonance spectra 318
 6.3.2 Random strain and relaxation in EPR 325
 6.3.3 Nuclear \(\gamma\)-resonance, microwave absorption, and ultrasonic attenuation 340
 References 345

7 Geometry, spectra, and reactivity of molecular systems 353
 7.1 General: JT vibronic coupling effects in geometry and reactivity 353
 7.1.1 Dynamic molecular shapes of JT systems. Pseudorotation 354
7.1.2 Types of JT and PJT distortions. The lone-pair effect 361
7.1.3 JT-induced reactivity and chemical activation 367
7.1.4 Mutual influence of ligands 373
7.2 Linear configurations of simple molecules 377
7.2.1 Linear triatomic and tetraatomic systems 377
7.2.2 “Quasilinear” molecules 388
7.3 Trigonal molecular systems 393
7.3.1 Triangular triatomics X₃ 393
7.3.2 Trigonal tetraatomic AB₃ systems 402
7.3.3 Other systems with a threefold symmetry axis 406
7.4 Distorted tetrahedral and square-planar systems 410
7.4.1 Tetraatomic X₄ and pentaatomic MX₄ systems 410
7.4.2 Cyclobutadiene, cyclobutane, and tetrahedrane radical cations 416
7.5 The benzene and cyclopentane families and some larger systems 422
7.5.1 The benzene-family molecular and radical cation and anion systems 422
7.5.2 The cyclopentadienyl radical and cyclopentane: puckering 427
7.5.3 Larger organic systems 431
7.6 Clusters, coordination and mixed-valence compounds 437
7.6.1 JT clusters and coordination systems 438
7.6.2 Vibronic coupling in mixed-valence systems 452
References 461
8 Solid-state problems: local properties and cooperative phenomena 479
8.1 The JTE in local properties of solids 479
8.1.1 Impurity centers in crystals 479
8.1.2 The local JTE in formation of special crystal structures 495
8.2 Cooperative phenomena 504
8.2.1 Ordering of JT distortions and structural phase transitions 504
8.2.2 The simplest cooperative JT $E \otimes b_1$ problem: rare-earth zircons 511
8.2.3 Ordering of JT tri-minima distortions 519
8.2.4 Helicoidal structures, incommensurate phases, and structural–magnetic ordering 525
8.2.5 The band JTE, Peierls distortions, and first-order phase transitions. A general view on symmetry breaking 539
Contents

8.3 The cooperative PJTE. Ferroelectric phase transitions 551
8.4 The JTE in high-temperature superconductivity and colossal magnetoresistance 566
References 581
Appendix 598
Subject index 605
Formula index 609
The Jahn–Teller effect (JTE) is one of the most fascinating phenomena in modern physics and chemistry. It emerged in 1934 in a discussion between two famous physicists, L. Landau and E. Teller, and grew into a general tool for understanding and an approach to solving molecular and crystal problems, which is applicable to any polyatomic system. The first formulation of this effect as instability of molecular configurations in electronically degenerate states proved to be the beginning of a whole trend which rationalizes the origin of all possible instabilities of high-symmetry configurations, and the peculiar nuclear dynamics resulting from these instabilities as well as the origins of all structural symmetry breakings in molecular systems and condensed matter.

Intensive development of the JTE theory began in the late 1950s together with a wave of main applications to spectroscopy, stereochemistry, and structural phase transitions, which lasted a couple of decades. The next significant resurgence of interest in the Jahn–Teller effect is related to the late 1980s and is still continuing. It was triggered by one of the most important Nobel Prize discoveries in physics of our times inspired by the Jahn–Teller effect: the high-temperature superconductivity. As explained by the authors of this discovery, “the guiding idea in developing this concept was influenced by the Jahn–Teller polaron model” (J. G. Bednorz and K. A. Müller, in Nobel Lectures: Physics, Ed. G. Ekspong, World Scientific, Singapore, 1993, p. 424).

Another recent discovery in solid-state physics, the colossal magnetoresistance, is also explained with essential implication of the Jahn–Teller effect. With regard to recent achievements in application to molecular systems, in addition to vast numbers of solutions of structural, spectroscopic, and magnetic problems, the Jahn–Teller effect has been most instrumental in explaining the properties of a novel class of compounds, the fullerenes, and it is now invoked in growing applications to the origin of reactivity and mechanisms of chemical reactions.
This book is devoted to presenting the JTE phenomenon in its integral unity, including the background of the theory and its main applications in physics and chemistry with emphasis on more recent achievements (as explained in more detail in the introduction). The goal is also to make the JTE more accessible to a wider circle of readers, meaning more visual explanation of the origin of the effects, omitting bulk mathematical deductions, where possible, and, in view of the multidisciplinary nature of the subject, trying to avoid heavy professional language specific for narrow groups of researchers. To compensate for any possible inconvenience for some of the readers created by this style, detailed references and cross-references have been included, allowing one to reach the desired level of description. We tried to address all aspects of the JTE theory and applications to all kinds of molecular systems and crystals, making the book almost encyclopedic in this respect.

The presentation in this book is based on our experience in this field. I started thinking on the Jahn–Teller effect in 1959 when reading a paper on the crystal field theory and have continued to work in this field ever since, so I witnessed and participated in its main achievements. My first book on this topic in English was published in 1984 (the first book on the JTE was published by R. Englman in 1972). Another book prepared together with V. Z. Polinger for a narrower circle of theoreticians was published in English in 1989 (the Russian version of this book was published in 1983). Together with my coworkers we published in 1984 a bibliographic review of the JTE publications. The new book follows the style of presentation of my first book and it uses some materials from, and references to, the book of 1989. In essence the new book is quite novel with regard to both the content and the level of presentation: in view of the achievements of the last two decades, the previous books, mentioned above, look rather incomplete (and in some respects obsolete). However, the book of 1989 authored with V.Z. Polinger remains valid with respect to many theoretical derivations referred to in the new book.

cooperation. I am thankful also to E. Teller for an encouraging chat on some aspects of the JTE; unfortunately, he did not survive to write the (promised) foreword to this book.

I acknowledge the cooperation of many publishers of academic journals and books for their kind permission to reprint figures, including the American Chemical Society, the American Institute of Physics, the American Physical Society, Elsevier Science Publishers, Helvetica Chimica Acta Verlag, the Institute of Physics, John Wiley & Sons, Kluwer Academic Publishers, NRC Research Press, Princeton University Press, the Royal Society London, Springer Verlag, and Taylor & Francis. I am grateful to the team of Cambridge University Press for help and cooperation in the copy-editing and production of this book.

Isaac B. Bersuker
Austin, Texas, January 2005
Abbreviations

AA – adiabatic approximation
AO – atomic orbitals
APES – adiabatic potential energy surface
BCS – Bardeen–Cooper–Schrieffer
BLYP – Becke–Lee–Yang–Parr (DFT functional)
BOD – bicyclooctadienediy1
CASSCF – complete active space SCF
CI – configuration interaction
CJTE – cooperative JTE
CNDO – complete neglect of differential overlap
COT – cyclooctatetraene
CPJTE – cooperative PJTE
DFT – density functional theory
DPH – diphenylhexatriene
EPR (ESR) – electron paramagnetic resonance (electron spin resonance)
EXAFS – extended X-ray absorption fine structure
HF – Hartree–Fock
HOMO – highest occupied MO
HTSC – high-temperature superconductivity
INDO – intermediate neglect of differential overlap
IR – infrared
JT – Jahn–Teller
JTE – Jahn–Teller effect
LSD – local spin density
LUMO – lowest unoccupied MO
MCSCF – multicenter SCF
MCZDO – multicenter zero differential overlap
MFA – mean-field approximation
Abbreviations

MINDO – modified INDO
MO – molecular orbitals
MO LCAO – MO linear combination of AOs
MP – metal porphyrin
MPc – metal phthalocyanine
MP2 – Möller–Plesset 2 (second-order perturbation theory)
MRCI – multireference CI
MRSDCI – MRCI with single and double excitations
MV – mixed valence
NMR – nuclear magnetic resonance
NGR – nuclear gamma resonance
phen – phenanthroline
PJT – pseudo JT
PJTE – pseudo JTE
QCISD – quadratic CI with single and double excitations
QM/MM – quantum mechanics/molecular mechanics
RF – reductions factor
RMP2 – restricted MP2
ROHF – restricted open-shell HF
RT – Renner–Teller
RTE – Renner–Teller effect
SB – symmetry breaking
SCF – self-consistent field
SP – square-pyramidal
STO – Slater-type orbitals
TBP – trigonal-bipyramidal
TCNE – tetracyanoethylene
TCNQ – 7,7,8,8-tetracyano-p-quinodimethane
TTF – tetrathiofulvalene
UQCISD – unrestricted QCISD
ZEKE – zero electron kinetic energy