EQUILIBRIUM AND NON-EQUILIBRIUM STATISTICAL THERMODYNAMICS

This book gives a self-contained exposition at graduate level of topics that are generally considered fundamental in modern equilibrium and non-equilibrium statistical thermodynamics.

The text follows a balanced approach between the macroscopic (thermodynamic) and microscopic (statistical) points of view. The first half of the book deals with equilibrium thermodynamics and statistical mechanics. In addition to standard subjects, such as the canonical and grand canonical ensembles and quantum statistics, the reader will find a detailed account of broken symmetries, critical phenomena and the renormalization group, as well as an introduction to numerical methods, with a discussion of the main Monte Carlo algorithms illustrated by numerous problems. The second half of the book is devoted to non-equilibrium phenomena, first following a macroscopic approach, with hydrodynamics as an important example. Kinetic theory receives a thorough treatment through the analysis of the Boltzmann–Lorentz model and of the Boltzmann equation. The book concludes with general non-equilibrium methods such as linear response, projection method and the Langevin and Fokker–Planck equations, including numerical simulations. One notable feature of the book is the large number of problems. Simple applications are given in 71 exercises, while the student will find more elaborate challenges in 47 problems, some of which may be used as mini-projects.

This advanced textbook will be of interest to graduate students and researchers in physics.

MICHEL LE BELLAC graduated from the Ecole Normale Supérieure and obtained a Ph.D. in Physics at the Université Paris-Orsay in 1965. He was appointed Professor of Physics in Nice in 1967. He also spent three years at the Theory Division at CERN. He has contributed to various aspects of the theory of elementary particles and recently has been working on the theory of the quark–gluon plasma. He has written several textbooks in English and in French.

FABRICE MORTESSAGNE obtained a Ph.D. in high-energy physics at the Université Denis Diderot of Paris in 1995, and then was appointed Maître de Conférences at the Université de Nice–Sophia Antipolis. He has developed semi-classical approximations of wave propagation in chaotic systems and was one of the initiators of the ‘Wave Propagation in Complex Media’ research group. In
1998 he extended his theoretical research activities with wave chaos experiments in chaotic optical fibres and microwave billiards.

G. GEORGE BATROUNI obtained a Ph.D. in theoretical particle physics at the University of California at Berkeley in 1983 and then took a postdoctoral fellowship at Cornell University. In 1986 he joined Boston University and later the Lawrence Livermore National Laboratory. He became professor at the Université de Nice–Sophia Antipolis in 1996. He was awarded the Onsager Medal in 2004 by the Norwegian University of Science and Technology. He has made important contributions in the development of numerical simulation methods for quantum field theories and many body problems, and in the study of quantum phase transitions and mesoscopic models of fracture.
EQUILIBRIUM AND
NON-EQUILIBRIUM STATISTICAL
THERMODYNAMICS

MICHEL LE BELLAC, FABRICE MORTESSAGNE
AND G. GEORGE BATROUNI
Contents

Preface page xv

1 Thermostatics 1

1.1 Thermodynamic equilibrium 1

1.1.1 Microscopic and macroscopic descriptions 1

1.1.2 Walls 3

1.1.3 Work, heat, internal energy 5

1.1.4 Definition of thermal equilibrium 8

1.2 Postulate of maximum entropy 9

1.2.1 Internal constraints 9

1.2.2 Principle of maximum entropy 10

1.2.3 Intensive variables: temperature, pressure, chemical potential 12

1.2.4 Quasi-static and reversible processes 17

1.2.5 Maximum work and heat engines 20

1.3 Thermodynamic potentials 22

1.3.1 Thermodynamic potentials and Massieu functions 22

1.3.2 Specific heats 24

1.3.3 Gibbs–Duhem relation 26

1.4 Stability conditions 27

1.4.1 Concavity of entropy and convexity of energy 27

1.4.2 Stability conditions and their consequences 28

1.5 Third law of thermodynamics 31

1.5.1 Statement of the third law 31

1.5.2 Application to metastable states 32

1.5.3 Low temperature behaviour of specific heats 33

1.6 Exercises 35

1.6.1 Massieu functions 35

1.6.2 Internal variable in equilibrium 35

1.6.3 Relations between thermodynamic coefficients 36
Contents

1.6.4 Contact between two systems 37
1.6.5 Stability conditions 37
1.6.6 Equation of state for a fluid 37
1.7 Problems 38
 1.7.1 Reversible and irreversible free expansions of an ideal gas 38
 1.7.2 van der Waals equation of state 39
 1.7.3 Equation of state for a solid 40
 1.7.4 Specific heats of a rod 41
 1.7.5 Surface tension of a soap film 42
 1.7.6 Joule–Thomson process 43
 1.7.7 Adiabatic demagnetization of a paramagnetic salt 43
1.8 Further reading 45

2 Statistical entropy and Boltzmann distribution 47
 2.1 Quantum description 47
 2.1.1 Time evolution in quantum mechanics 47
 2.1.2 The density operators and their time evolution 49
 2.1.3 Quantum phase space 51
 2.1.4 \((P, V, E)\) relation for a mono-atomic ideal gas 53
 2.2 Classical description 55
 2.2.1 Liouville’s theorem 55
 2.2.2 Density in phase space 56
 2.3 Statistical entropy 59
 2.3.1 Entropy of a probability distribution 59
 2.3.2 Statistical entropy of a mixed quantum state 60
 2.3.3 Time evolution of the statistical entropy 63
 2.4 Boltzmann distribution 64
 2.4.1 Postulate of maximum of statistical entropy 64
 2.4.2 Equilibrium distribution 65
 2.4.3 Legendre transformation 67
 2.4.4 Canonical and grand canonical ensembles 68
 2.5 Thermodynamics revisited 70
 2.5.1 Heat and work: first law 70
 2.5.2 Entropy and temperature: second law 72
 2.5.3 Entropy of mixing 74
 2.5.4 Pressure and chemical potential 77
 2.6 Irreversibility and the growth of entropy 79
 2.6.1 Microscopic reversibility and macroscopic irreversibility 79
 2.6.2 Physical basis of irreversibility 81
 2.6.3 Loss of information and the growth of entropy 83
Contents

2.7 Exercises 86
 2.7.1 Density operator for spin-1/2 86
 2.7.2 Density of states and the dimension of space 88
 2.7.3 Liouville theorem and continuity equation 88
 2.7.4 Loaded dice and statistical entropy 89
 2.7.5 Entropy of a composite system 89
 2.7.6 Heat exchanges between system and reservoir 89
 2.7.7 Galilean transformation 90
 2.7.8 Fluctuation-response theorem 90
 2.7.9 Phase space volume for N free particles 92
 2.7.10 Entropy of mixing and osmotic pressure 92

2.8 Further reading 93

3 Canonical and grand canonical ensembles: applications 95
 3.1 Simple examples in the canonical ensemble 95
 3.1.1 Mean values and fluctuations 95
 3.1.2 Partition function and thermodynamics of an ideal gas 98
 3.1.3 Paramagnetism 101
 3.1.4 Ferromagnetism and the Ising model 105
 3.1.5 Thermodynamic limit 112
 3.2 Classical statistical mechanics 115
 3.2.1 Classical limit 115
 3.2.2 Maxwell distribution 116
 3.2.3 Equipartition theorem 119
 3.2.4 Specific heat of a diatomic ideal gas 121
 3.3 Quantum oscillators and rotators 122
 3.3.1 Qualitative discussion 122
 3.3.2 Partition function of a diatomic molecule 125
 3.4 From ideal gases to liquids 127
 3.4.1 Pair correlation function 127
 3.4.2 Measurement of the pair correlation function 132
 3.4.3 Pressure and energy 134
 3.5 Chemical potential 136
 3.5.1 Basic formulae 136
 3.5.2 Coexistence of phases 137
 3.5.3 Equilibrium condition at constant pressure 138
 3.5.4 Equilibrium and stability conditions at constant µ 140
 3.5.5 Chemical reactions 142
 3.6 Grand canonical ensemble 146
 3.6.1 Grand partition function 146
 3.6.2 Mono-atomic ideal gas 149
Contents

3.6.3 Thermodynamics and fluctuations 150

3.7 Exercises 152

3.7.1 Density of states 152
3.7.2 Equation of state for the Einstein model of a solid 152
3.7.3 Specific heat of a ferromagnetic crystal 153
3.7.4 Nuclear specific heat of a metal 153
3.7.5 Solid and liquid vapour pressures 154
3.7.6 Electron trapping in a solid 155

3.8 Problems 156

3.8.1 One-dimensional Ising model 156
3.8.2 Negative temperatures 158
3.8.3 Diatomic molecules 160
3.8.4 Models of a boundary surface 161
3.8.5 Debye–Hückel approximation 165
3.8.6 Thin metallic film 166
3.8.7 Beyond the ideal gas: first term of virial expansion 168
3.8.8 Theory of nucleation 171

3.9 Further reading 173

4 Critical phenomena 175

4.1 Ising model revisited 177

4.1.1 Some exact results for the Ising model 177
4.1.2 Correlation functions 184
4.1.3 Broken symmetry 188
4.1.4 Critical exponents 192

4.2 Mean field theory 194

4.2.1 A convexity inequality 194
4.2.2 Fundamental equation of mean field theory 195
4.2.3 Broken symmetry and critical exponents 198

4.3 Landau’s theory 203

4.3.1 Landau functional 203
4.3.2 Broken continuous symmetry 207
4.3.3 Ginzburg–Landau Hamiltonian 210
4.3.4 Beyond Landau’s theory 212
4.3.5 Ginzburg criterion 214

4.4 Renormalization group: general theory 217

4.4.1 Spin blocks 217
4.4.2 Critical exponents and scaling transformations 223
4.4.3 Critical manifold and fixed points 227
4.4.4 Limit distributions and correlation functions 233
Contents

4.4.5 Magnetization and free energy
4.5 Renormalization group: examples
 4.5.1 Gaussian fixed point
 4.5.2 Non-Gaussian fixed point
 4.5.3 Critical exponents to order ϵ
 4.5.4 Scaling operators and anomalous dimensions
4.6 Exercises
 4.6.1 High temperature expansion and Kramers–Wannier duality
 4.6.2 Energy–energy correlations in the Ising model
 4.6.3 Mean field critical exponents for $T < T_c$
 4.6.4 Accuracy of the variational method
 4.6.5 Shape and energy of an Ising wall
 4.6.6 The Ginzburg–Landau theory of superconductivity
 4.6.7 Mean field correlation function in \vec{r}-space
 4.6.8 Critical exponents for $n \gg 1$
 4.6.9 Renormalization of the Gaussian model
 4.6.10 Scaling fields at the Gaussian fixed point
 4.6.11 Critical exponents to order ϵ for $n \neq 1$
 4.6.12 Irrelevant exponents
 4.6.13 Energy–energy correlations
 4.6.14 ‘Derivation’ of the Ginzburg–Landau Hamiltonian from the Ising model
4.7 Further reading
5 Quantum statistics
 5.1 Bose–Einstein and Fermi–Dirac distributions
 5.1.1 Grand partition function
 5.1.2 Classical limit: Maxwell–Boltzmann statistics
 5.1.3 Chemical potential and relativity
 5.2 Ideal Fermi gas
 5.2.1 Ideal Fermi gas at zero temperature
 5.2.2 Ideal Fermi gas at low temperature
 5.2.3 Corrections to the ideal Fermi gas
 5.3 Black body radiation
 5.3.1 Electromagnetic radiation in thermal equilibrium
 5.3.2 Black body radiation
 5.4 Debye model
 5.4.1 Simple model of vibrations in solids
 5.4.2 Debye approximation
 5.4.3 Calculation of thermodynamic functions
5.5 Ideal Bose gas with a fixed number of particles 299
 5.5.1 Bose–Einstein condensation 299
 5.5.2 Thermodynamics of the condensed phase 304
 5.5.3 Applications: atomic condensates and helium-4 308

5.6 Exercises 312
 5.6.1 The Maxwell–Boltzmann partition function 312
 5.6.2 Equilibrium radius of a neutron star 312
 5.6.3 Two-dimensional Fermi gas 312
 5.6.4 Non-degenerate Fermi gas 313
 5.6.5 Two-dimensional Bose gas 314
 5.6.6 Phonons and magnons 314
 5.6.7 Photon–electron–positron equilibrium in a star 315

5.7 Problems 316
 5.7.1 Pauli paramagnetism 316
 5.7.2 Landau diamagnetism 318
 5.7.3 White dwarf stars 319
 5.7.4 Quark–gluon plasma 321
 5.7.5 Bose–Einstein condensates of atomic gases 323
 5.7.6 Solid–liquid equilibrium for helium-3 325
 5.7.7 Superfluidity for hardcore bosons 329

5.8 Further reading 334

6 Irreversible processes: macroscopic theory 335
 6.1 Flux, affinities, transport coefficients 336
 6.1.1 Conservation laws 336
 6.1.2 Local equation of state 339
 6.1.3 Affinities and transport coefficients 341
 6.1.4 Examples 342
 6.1.5 Dissipation and entropy production 345

 6.2 Examples 349
 6.2.1 Coupling between thermal and particle diffusion 349
 6.2.2 Electrodynamics 350

 6.3 Hydrodynamics of simple fluids 353
 6.3.1 Conservation laws in a simple fluid 353
 6.3.2 Derivation of current densities 358
 6.3.3 Transport coefficients and the Navier–Stokes equation 360

 6.4 Exercises 364
 6.4.1 Continuity equation for the density of particles 364
 6.4.2 Diffusion equation and random walk 364
 6.4.3 Relation between viscosity and diffusion 364
 6.4.4 Derivation of the energy current 365
 6.4.5 Lord Kelvin’s model of Earth cooling 365
Contents

6.5 Problems
6.5.1 Entropy current in hydrodynamics
6.5.2 Hydrodynamics of the perfect fluid
6.5.3 Thermoelectric effects
6.5.4 Isomerization reactions
6.6 Further reading

7 Numerical simulations
7.1 Markov chains, convergence and detailed balance
7.2 Classical Monte Carlo
7.2.1 Implementation
7.2.2 Measurements
7.2.3 Autocorrelation, thermalization and error bars
7.3 Critical slowing down and cluster algorithms
7.4 Quantum Monte Carlo: bosons
7.4.1 Formulation and implementation
7.4.2 Measurements
7.4.3 Quantum spin-1/2 models
7.5 Quantum Monte Carlo: fermions
7.6 Finite size scaling
7.7 Random number generators
7.8 Exercises
7.8.1 Determination of the critical exponent ν
7.8.2 Finite size scaling in infinite geometries
7.8.3 Bosons on a single site
7.9 Problems
7.9.1 Two-dimensional Ising model: Metropolis
7.9.2 Two-dimensional Ising model: Glauber
7.9.3 Two-dimensional clock model
7.9.4 Two-dimensional XY model: Kosterlitz–Thouless transition
7.9.5 Two-dimensional XY model: superfluidity and critical velocity
7.9.6 Simple quantum model: single spin in transverse field
7.9.7 One-dimensional Ising model in transverse field: quantum phase transition
7.9.8 Quantum anharmonic oscillator: path integrals
7.10 Further reading

8 Irreversible processes: kinetic theory
8.1 Generalities, elementary theory of transport coefficients
8.1.1 Distribution function
8.1.2 Cross section, collision time, mean free path
Contents

8.1.3 Transport coefficients in the mean free path approximation 449

8.2 Boltzmann–Lorentz model 453
 8.2.1 Spatio-temporal evolution of the distribution function 453
 8.2.2 Basic equations of the Boltzmann–Lorentz model 455
 8.2.3 Conservation laws and continuity equations 457
 8.2.4 Linearization: Chapman–Enskog approximation 458
 8.2.5 Currents and transport coefficients 462

8.3 Boltzmann equation 464
 8.3.1 Collision term 464
 8.3.2 Conservation laws 469
 8.3.3 H-theorem 472

8.4 Transport coefficients from the Boltzmann equation 476
 8.4.1 Linearization of the Boltzmann equation 476
 8.4.2 Variational method 478
 8.4.3 Calculation of the viscosity 481

8.5 Exercises 484
 8.5.1 Time distribution of collisions 484
 8.5.2 Symmetries of an integral 485
 8.5.3 Positivity conditions 485
 8.5.4 Calculation of the collision time 485
 8.5.5 Derivation of the energy current 486
 8.5.6 Equilibrium distribution from the Boltzmann equation 486

8.6 Problems 487
 8.6.1 Thermal diffusion in the Boltzmann–Lorentz model 487
 8.6.2 Electron gas in the Boltzmann–Lorentz model 488
 8.6.3 Photon diffusion and energy transport in the Sun 492
 8.6.4 Momentum transfer in a shear flow 495
 8.6.5 Electrical conductivity in a magnetic field and quantum Hall effect 497
 8.6.6 Specific heat and two-fluid model for helium II 502
 8.6.7 Landau theory of Fermi liquids 505
 8.6.8 Calculation of the coefficient of thermal conductivity 510

8.7 Further reading 512

9 Topics in non-equilibrium statistical mechanics 513
 9.1 Linear response: classical theory 514
 9.1.1 Dynamical susceptibility 514
 9.1.2 Nyquist theorem 518
 9.1.3 Analyticity properties 520
 9.1.4 Spin diffusion 522
 9.2 Linear response: quantum theory 526
Contents

9.2.1 Quantum fluctuation response theorem 526
9.2.2 Quantum Kubo function 528
9.2.3 Fluctuation-dissipation theorem 530
9.2.4 Symmetry properties and dissipation 531
9.2.5 Sum rules 533
9.3 Projection method and memory effects 535
9.3.1 Phenomenological introduction to memory effects 536
9.3.2 Projectors 538
9.3.3 Langevin–Mori equation 540
9.3.4 Brownian motion: qualitative description 543
9.3.5 Brownian motion: the $m/M \to 0$ limit 545
9.4 Langevin equation 547
9.4.1 Definitions and first properties 547
9.4.2 Ornstein–Uhlenbeck process 549
9.5 Fokker–Planck equation 552
9.5.1 Derivation of Fokker–Planck from Langevin equation 552
9.5.2 Equilibrium and convergence to equilibrium 554
9.5.3 Space-dependent diffusion coefficient 556
9.6 Numerical integration 558
9.7 Exercises 562
9.7.1 Linear response: forced harmonic oscillator 562
9.7.2 Force on a Brownian particle 563
9.7.3 Green–Kubo formula 564
9.7.4 Mori’s scalar product 564
9.7.5 Symmetry properties of χ''_{ij} 565
9.7.6 Dissipation 566
9.7.7 Proof of the f-sum rule in quantum mechanics 566
9.7.8 Diffusion of a Brownian particle 567
9.7.9 Strong friction limit: harmonic oscillator 568
9.7.10 Green’s function method 569
9.7.11 Moments of the Fokker–Planck equation 569
9.7.12 Backward velocity 570
9.7.13 Numerical integration of the Langevin equation 570
9.7.14 Metastable states and escape times 571
9.8 Problems 572
9.8.1 Inelastic light scattering from a suspension of particles 572
9.8.2 Light scattering by a simple fluid 576
9.8.3 Exactly solvable model of a Brownian particle 580
9.8.4 Itô versus Stratonovitch dilemma 582
9.8.5 Kramers equation 584
Contents

9.9 Further reading
Appendix
A.1 Legendre transform
 A.1.1 Legendre transform with one variable
 A.1.2 Multivariate Legendre transform
A.2 Lagrange multipliers
A.3 Traces, tensor products
 A.3.1 Traces
 A.3.2 Tensor products
A.4 Symmetries
 A.4.1 Rotations
 A.4.2 Tensors
A.5 Useful integrals
 A.5.1 Gaussian integrals
 A.5.2 Integrals of quantum statistics
A.6 Functional derivatives
A.7 Units and physical constants
References
Index
Preface

This book attempts to give at a graduate level a self-contained, thorough and pedagogic exposition of the topics that, we believe, are most fundamental in modern statistical thermodynamics. It follows a balanced approach between the macroscopic (thermodynamic) and microscopic (statistical) points of view.

The first half of the book covers equilibrium phenomena. We start with a thermodynamic approach in the first chapter, in the spirit of Callen, and we introduce the concepts of equilibrium statistical mechanics in the second chapter, deriving the Boltzmann–Gibbs distribution in the canonical and grand canonical ensembles. Numerous applications are given in the third chapter, in cases where the effects of quantum statistics can be neglected: ideal and non-ideal classical gases, magnetism, equipartition theorem, diatomic molecules and first order phase transitions. The fourth chapter deals with continuous phase transitions. We give detailed accounts of symmetry breaking, discrete and continuous, of mean field theory and of the renormalization group and we illustrate the theoretical concepts with many concrete examples. Chapter 5 is devoted to quantum statistics and to the discussion of many physical examples: Fermi gas, black body radiation, phonons and Bose–Einstein condensation including gaseous atomic condensates.

Chapter 6 offers an introduction to macroscopic non-equilibrium phenomena. We carefully define the notion of local equilibrium and the transport coefficients together with their symmetry properties (Onsager). Hydrodynamics of simple fluids is used as an illustration. Chapter 7 is an introduction to numerical methods, in which we describe in some detail the main Monte Carlo algorithms. The student will find interesting challenges in a large number of problems in which numerical simulations are applied to important classical and quantum models such as the Ising, XY and clock (vector Potts) models, as well as lattice models of superfluidity.

Kinetic theory receives a thorough treatment in Chapter 8 through the analysis of the Boltzmann–Lorentz model and of the Boltzmann equation. The book
Preface

ends with general non-equilibrium methods such as linear response, the projection method, the fluctuation-dissipation theorem and the Langevin and Fokker–Planck equations, including numerical simulations.

We believe that one of this book’s assets is its large number of exercises and problems. Exercises pose more or less straightforward applications and are meant to test the student’s understanding of the main text. Problems are more challenging and some of them, especially those of Chapter 7, may be used by the instructor as mini-research projects. Solutions of a selection of problems are available on the website.

Statistical mechanics is nowadays such a broad field that it is impossible to review in its entirety in a single volume, and we had to omit some subjects to maintain the book within reasonable limits or because of lack of competence in specialized topics. The most serious omissions are probably those of the new methods using chaos in non-equilibrium phenomena and the statistical mechanics of spin glasses and related subjects. Fortunately, we can refer the reader to excellent books: those by Dorfman [33] and Gaspard [47] in the first case and that of Fisher and Hertz [42] in the second.

The book grew from a translation of a French version by two of us (MLB and FM), Thermodynamique Statistique, but it differs markedly from the original. The text has been thoroughly revised and we have added three long chapters: 4 (Critical phenomena), 7 (Numerical simulations) and 9 (Topics in non-equilibrium statistical mechanics), as well as a section on the calculation of transport coefficients in the Boltzmann equation.