Flooding caused by a rise in global mean sea level has the potential to affect the lives of more than 1 billion people in coastal areas worldwide. There have been significant changes in sea level over the past 2 million years, both at the local and global scales, and a complete understanding of natural cycles of change as well as anthropogenic effects is imperative for future global development.

This book reviews the history of research into these sea-level changes and summarises the methods and analytical approaches used to interpret evidence for sea-level changes. It provides an overview of the changing climates of the Quaternary, examines the processes responsible for global variability of sea-level records, and presents detailed reviews of sea-level changes for the Pleistocene and Holocene. The book concludes by discussing current trends in sea level and likely future sea-level changes.

This is an important and authoritative summary of evidence for sea-level changes in our most recent geological period, and provides a key resource for academic researchers, and graduate and advanced undergraduate students, working in tectonics, stratigraphy, geomorphology and physical geography, environmental science, and other aspects of Quaternary studies.

Colin V. Murray-Wallace is a Quaternary geologist and currently a Professor and Head of the School of Earth & Environmental Sciences in the University of Wollongong. His long-standing research interests have centred on Quaternary sea-level changes, neotectonics, carbonate depositional systems and amino acid racemisation dating, and he has undertaken coastal field investigations in southern Australia, Vietnam, Hawaii, and in South Africa. Professor Murray-Wallace was project leader of IGCP (International Geological Correlation Programme) project 437 (1999–2003) ‘Coastal environmental change during sea-level highstands’, and leader of the INQUA (International Union for Quaternary Research) Coastal and Marine Commission (2004–2007). He has served as Editor-in-Chief of the journal Quaternary Science Reviews since 2008.

Colin D. Woodroffe is a coastal geomorphologist in the School of Earth & Environmental Sciences at the University of Wollongong. He has studied the stratigraphy and development of coasts in Australia and New Zealand, as well as on islands in the West Indies, and Indian and Pacific Oceans. He has written and co-authored three coastal studies books. Professor Woodroffe was national representative on the INQUA Quaternary Shorelines subcommission, and served on the committees...
of both the IGCP project 274 ‘Coastal Evolution in the Quaternary’, and its follow-up project, and on the Scientific Steering Committee of the LOICZ (Land–Ocean Interactions in the Coastal Zone) project within IGBP. He was a lead author on the coastal chapter in the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment report. In 2012 he was awarded the R.J. Russell Award from the Coast and Marine Specialty Group of the Association of American Geographers.
QUATERNARY SEA-LEVEL CHANGES
A Global Perspective

COLIN V. MURRAY-WALLACE
AND
COLIN D. WOODROFFE
University of Wollongong, Australia

Cambridge University Press
978-0-521-82083-7 - Quaternary Sea-Level Changes: A Global Perspective
Colin V. Murray-Wallace and Colin D. Woodroffe
Frontmatter
More information
To John Chappell
in appreciation of his truly outstanding contributions
to the study of Quaternary sea-level changes
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>xvi</td>
</tr>
<tr>
<td>1. Sea-level changes: the emergence of a Quaternary perspective</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The Quaternary Period</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Sea-level changes: historical development of ideas</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Observations from classical antiquity until the nineteenth century</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1 Early Mediterranean studies</td>
<td>8</td>
</tr>
<tr>
<td>1.4.2 Eighteenth-century writings on universal changes to the Earth</td>
<td>8</td>
</tr>
<tr>
<td>1.4.3 Diluvial Theory – the universal flood</td>
<td>9</td>
</tr>
<tr>
<td>1.4.4 The Temple of Serapis: a compelling case for relative sea-level change</td>
<td>10</td>
</tr>
<tr>
<td>1.4.5 Lavoisier and the concepts of transgression and regression</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Glacial action and recognition of the Ice Ages</td>
<td>13</td>
</tr>
<tr>
<td>1.5.1 Louis Agassiz and the Glacial Theory</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2 The Croll–Milankovitch Hypothesis</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Vertical changes in land and sea level related to Quaternary climate</td>
<td>19</td>
</tr>
<tr>
<td>1.6.1 Charles Darwin and James Dana</td>
<td>19</td>
</tr>
<tr>
<td>1.6.2 Insights from around the world</td>
<td>22</td>
</tr>
<tr>
<td>1.7 Evolution of ideas in the twentieth century</td>
<td>24</td>
</tr>
<tr>
<td>1.7.1 Developments in Europe</td>
<td>24</td>
</tr>
<tr>
<td>1.7.2 Advances in geochemistry and geochronology</td>
<td>26</td>
</tr>
<tr>
<td>1.7.3 Oxygen-isotope records from marine sediments and ice cores</td>
<td>27</td>
</tr>
<tr>
<td>1.7.4 Geophysical models of sea-level changes</td>
<td>30</td>
</tr>
<tr>
<td>1.7.5 Sequence stratigraphy</td>
<td>31</td>
</tr>
<tr>
<td>1.7.6 International concern and a focus on current and future sea-level trends</td>
<td>31</td>
</tr>
</tbody>
</table>
Table of contents

1.8 Theoretical concepts relevant to the study of Quaternary sea-level changes 33
1.9 Synthesis and way forward 37
1.9.1 Revisiting old ideas 38
1.9.2 Quaternary sea-level changes: the status quo 38

2. The causes of Quaternary sea-level changes 41
2.1 Introduction 41
2.2 Sea level and sea-level changes: some definitions 42
2.2.1 Sea level and base level 43
2.2.2 Relative sea-level changes 45
2.3 Processes responsible for relative sea-level changes in the Quaternary 49
2.3.1 Glacio-eustasy 49
2.3.2 Isostasy 52
2.3.3 Glacial isostasy and relative sea-level changes 55
2.3.4 Hydro-isostasy and relative sea-level changes 57
2.3.5 The geoid and changes to its configuration 60
2.3.6 Global variation in geophysical response and equatorial ocean siphoning 65
2.4 Tectonism, volcanism, and other processes resulting in relative sea-level changes 69
2.4.1 Tectonic movements 69
2.4.2 Volcanism and its link to sea-level changes 70
2.4.3 Lithospheric flexure 71
2.4.4 Changes in tidal range 71
2.4.5 Steric changes, meteorological changes, and the role of ENSO events 72
2.5 Geophysical models and the sea-level equation 73
2.6 Synthesis and conclusions 78

3. Palaeo-sea-level indicators 79
3.1 Introduction 79
3.1.1 Fixed and relational sea-level indicators 80
3.1.2 Relative sea-level changes, sea-level index points, and indicative meaning 81
3.1.3 Sources of uncertainty in palaeo-sea-level estimation 83
3.1.4 Palaeo-sea-level curve or envelope? 83
3.1.5 Facies architecture, allostratigraphy, and sea-level changes 85
3.2 Pleistocene and Holocene palaeo-sea-level indicators compared 86
3.3 Corals and coral reefs 88
3.3.1 Reefs and Pleistocene sea levels 89
3.3.2 Reefs and Holocene sea levels 90
3.3.3 Conglomerates and recognition of in-situ corals 93
3.3.4 Microatolls 95

3.4 Other biological sea-level indicators 98
3.4.1 Fixed biological indicators 98
3.4.2 Mangroves 100
3.4.3 Salt-marsh sediments and microfossil analysis 106
3.4.4 Seagrass 110
3.4.5 Marine molluscs 111
3.4.6 Submerged forests 113

3.5 Geomorphological and geological sea-level indicators 114
3.5.1 Marine terraces and shore platforms 114
3.5.2 Shoreline notches and visors 116
3.5.3 Isolation basins 119
3.5.4 Beach ridges 120
3.5.5 Cheniers 121
3.5.6 Aeolianites 123
3.5.7 Calcretes 124
3.5.8 Beachrock 125

3.6 Geoarchaeology and sea-level changes 127
3.7 Synthesis and conclusions 129

4. Methods of dating Quaternary sea-level changes 131
4.1 Introduction 131
4.1.1 Terminology 132
4.1.2 Historical approaches used for evaluating geological age of coastal deposits 134

4.2 Radiocarbon dating 135
4.2.1 Underlying principles of the radiocarbon method 136
4.2.2 Age range 138
4.2.3 Measurement techniques 139
4.2.4 Isotopic fractionation 139
4.2.5 Marine reservoir and hard-water effects 141
4.2.6 Secular 14C/12C variation and the calibration of radiocarbon ages to sidereal years 146
4.2.7 Contamination and sample pre-treatment strategies 149
4.2.8 Statistical considerations: comparisons of radiocarbon age and pooling of results 152

4.3 Uranium-series disequilibrium dating 153
4.3.1 Underlying principles of U-series disequilibrium dating 154
4.3.2 U-series dating of marine carbonates 156
4.3.3 U-series dating of other materials 158

4.4 Oxygen-isotope stratigraphy 159
Table of contents

4.5 Luminescence dating methods 162
 4.5.1 Quantifying the cumulative effects of environmental radiation dose 163
 4.5.2 Age range of luminescence methods 168
 4.5.3 Anomalous fading and partial bleaching 168

4.6 Electron spin resonance dating 169

4.7 Amino acid racemisation dating 171
 4.7.1 The amino acid racemisation reaction 172
 4.7.2 Environmental factors that influence racemisation 174
 4.7.3 Sources of uncertainty in AAR dating 175
 4.7.4 Application of AAR to dating coastal successions 177

4.8 Cosmogenic dating 179

4.9 Other dating techniques 182
 4.9.1 Event markers 182
 4.9.2 Palaeomagnetism 183

4.10 Synthesis and conclusions 185

5. Vertical displacement of shorelines 187
 5.1 Introduction 187

5.2 Plate tectonics and implications for coastlines globally 188
 5.2.1 Lithospheric plate domains 189
 5.2.2 Plate margins 192
 5.2.3 Plate tectonics and coastal classification 197
 5.2.4 Ocean plate dynamics and island types 197

5.3 Styles of tectonic deformation and rates of uplift or subsidence 199
 5.3.1 Coseismic uplift 199
 5.3.2 Epeirogenic uplift 201
 5.3.3 Folding and warping 202
 5.3.4 Isostasy 204
 5.3.5 Lithospheric flexure 204
 5.3.6 Mantle plumes 205
 5.3.7 Subsidence and submerged shorelines 206

5.4 The last interglacial shoreline: a reference for quantifying vertical displacement 206
 5.4.1 Terrace age and elevation 207
 5.4.2 Constraints on using the last interglacial shoreline as a benchmark 210

5.5 Coastlines in tectonically ‘stable’ cratonic regions 212
 5.5.1 Australia 213
 5.5.2 Southern Africa 219

5.6 Coastlines of emergence 219
 5.6.1 Huon Peninsula 220
Table of contents

5.6.2 Barbados 227
5.6.3 Convergent continental margins: Chile 230
5.7 Vertical crustal movements associated with glacio-isostasy: Scandinavia 232
5.8 The Mediterranean Basin 236
5.8.1 Italy 237
5.8.2 Greece 240
5.9 The Caribbean region 242
5.9.1 Southern Florida and the Bahamas 242
5.9.2 Other Caribbean sites and more tectonically active islands 243
5.10 Divergent spreading-related coastlines: Red Sea 244
5.11 Pacific Plate 246
5.11.1 Pacific islands 246
5.11.2 Hawaii 248
5.11.3 Japan 249
5.11.4 New Zealand 251
5.12 Synthesis and conclusions 254

6. Pleistocene sea-level changes 256
6.1 Introduction 256
6.2 Prelude to the Pleistocene 257
6.3 Pleistocene icesheets 262
6.4 Early Pleistocene sea levels 264
6.4.1 Roe Calcarenite, Roe Plains, southern Australia 266
6.4.2 The Crag Group, southeastern England 268
6.5 The middle Pleistocene Transition 270
6.6 Middle Pleistocene sea-level changes 272
6.7 Sea-level highstands of the middle Pleistocene 276
6.7.1 Marine Isotope Stage 11 276
6.7.2 Marine Isotope Stage 9 – the pre-penultimate interglacial 278
6.7.3 Marine Isotope Stage 7 – the penultimate interglacial 278
6.8 Middle Pleistocene sea-level lowstands 279
6.9 Late Pleistocene sea-level changes 280
6.9.1 The last interglacial maximum (MIS 5e) 283
6.9.2 Timing and duration of the last interglacial maximum 284
6.9.3 Global estimates of last interglacial sea levels – the sanctity of the 6 m APSL datum? 285
6.10 Interstadial sea levels of the last glacial cycle (MIS 5c and 5a) 288
6.11 Interstadial sea levels during MIS 3 292
6.12 Late Pleistocene interstadial sea levels: Dansgaard-Oeschger and Heinrich Events 297
6.13 Eustatic sea levels during the Last Glacial Maximum (MIS 2) 299
Table of contents

6.14 Long records of Pleistocene sea-level highstands 305
 6.14.1 Coorong Coastal Plain and Murray Basin, southern Australia 305
 6.14.2 Wanganui Basin, New Zealand 311
 6.14.3 Sumba Island, Indonesia 314
6.15 Synthesis and conclusions 316

7. Sea-level changes since the Last Glacial Maximum 320
 7.1 Introduction 320
 7.2 Deglacial sea-level records of marine transgression 322
 7.3 Holocene relative sea-level changes in the far-field: Australia 327
 7.3.1 Queensland 330
 7.3.2 Southeastern Australia 334
 7.3.3 Other parts of the Australian coast 336
 7.4 Holocene sea level across the Pacific Ocean 340
 7.4.1 High islands 340
 7.4.2 Atolls 343
 7.5 Other far-field locations 345
 7.5.1 Holocene sea level in the Indian Ocean 346
 7.5.2 Southeast Asia 348
 7.6 Holocene relative sea-level changes: the intermediate-field 349
 7.7 Holocene relative sea-level changes and glacio-isostasy: the British Isles 352
 7.7.1 Northern Britain 354
 7.7.2 Southern Britain 356
 7.8 Europe 357
 7.9 The Americas 359
 7.10 The past two millennia 361
 7.11 Unresolved issues in the postglacial record of sea level 364
 7.11.1 The elusive eustatic sea-level record 364
 7.11.2 The question of sea-level oscillations 365
 7.12 Synthesis and conclusions 367

8. Current and future sea-level changes 369
 8.1 Introduction 369
 8.2 Historical sea-level change 371
 8.3 Linking geological proxies with historical observations 377
 8.4 Satellite altimetry and sea level over recent decades 379
 8.5 Sea-level enigma: volume, mass, and sea-level fingerprinting 381
 8.5.1 Thermal expansion – changing volume 383
 8.5.2 Ice melt and mass exchanges 384
 8.5.3 Glacial isostatic adjustment and response of the solid Earth 388
Table of contents

8.6 Sea level and climate models
8.6.1 Post-AR4 sea-level projections
8.6.2 The threat of catastrophic sea-level rise
8.7 Impacts and coastal vulnerability
8.8 Relevance of Quaternary sea-level changes

References
Index
Preface

When the work of the geologist is finished and the final comprehensive report is written, the longest and most important chapter will be upon the latest and shortest of the geological periods.

(Grove Karl Gilbert, 1890, p. 1)

The investigation of relative sea-level changes has a rich intellectual lineage and has played a central role in development of the Earth Sciences. With the emergence of empirically based explanations for field observations of natural phenomena, an increasing appreciation that the ocean surface has not remained constant, relative to land, prompted several lines of geological inquiry. Myths and legends, as well as religious explanations for Earth surface events, such as flood legends, provided an early framework, examined by the emerging discipline of Earth Science. Extensive fieldwork in the nineteenth century, culminating in the Glacial Theory, and technological developments in geochemistry and geochronology in the latter twentieth century led to a geologically coherent explanation for fluctuations in relative sea level during the Quaternary, the past 2.59 Ma.

Responses of the Earth’s surface environments to Quaternary sea-level changes are complex and far-reaching. The effects of Quaternary sea-level changes extend from upper reaches of near-coastal drainage basins to the edge of continental shelves. Sea-level changes have amplified the effects of local climate changes, such as enhanced aridity due to increased continentality at times of lower sea level, and promoted marine abrasion along many bedrock-dominated coastlines. During the Quaternary, relative sea-level changes have exposed continental shelves and in places created land bridges which have acted as dispersal routes for a diverse range of biota, including early humans. Relative sea-level changes since the Last Glacial Maximum (LGM) 21,000 years ago, have resulted in the modern configuration of coastlines, and the coastal landforms we see today have developed in the past few millennia. The significance of sea-level changes in coastal landscape evolution is likely to have increased following the middle Pleistocene transition, approximately 1.2 Ma ago, when the amplitude of sea-level changes between glacial and interglacial, as well as the duration of glacial cycles, increased.
A paper by Rhodes Fairbridge, entitled 'Eustatic changes in sea level', published in *Physics and Chemistry of the Earth* in 1961, provided a stimulus for both of us. The earliest glimpses of this book began when one of us (CVM-W) was fossicking in the basement stacks of the Barr Smith Library in the University of Adelaide. There, he unearthed this paper which helped establish a nascent appreciation of the significance of relative sea-level changes in the geological record and represented a wonderful source for reflection, generating many questions. What were the causes of Quaternary sea-level changes? Why do different geographical regions appear to have contrasting relative sea-level histories? Were these seemingly contrasting records real or an illusory artefact of sampling? Could the contrasting records be explained within a coherent geohistorical framework? Would future technological improvements in aspects of geochemistry and geochronology begin to address many of the issues raised in the paper? Is the record of Quaternary sea-level changes relevant to an understanding of future sea-level changes?

The paper also focused the research and thinking behind the sea-level research that CDW undertook across the tropics, following his discovery of an original reprint of the paper hidden away in a cupboard in the Department of Geography at the University of Cambridge. In many respects the questions raised by Fairbridge's paper continue to be the focus of ongoing research, and are addressed in this book.

The paper by Fairbridge led to the realisation that Australian coastal landforms contributed significantly to a global perspective on Quaternary sea-level changes. Showing a high degree of tectonic stability due to several cratons, and located in the far-field of continental icesheets with minimal direct glaciation, Australia represents an ideal location to undertake palaeo-sea-level investigations. One person who seized on that opportunity, and has made an unparalleled contribution to the science of sea-level changes, is John Chappell, to whom we dedicate this book. Through meticulous research, John unravelled the complex series of changes in relative sea level from palaeo-sea-level evidence on the Huon Peninsula in Papua New Guinea, on the northern geological margin of the Australian continent, from the later middle Pleistocene through to the late Holocene. He complemented these studies with investigations more widely across the Australian continent. John has profoundly influenced our research, and the research of many other investigators around the world; it has been a pleasure and privilege to work alongside him, to learn from him, and to share our ideas with him.

Many people have influenced us over the years and we are particularly grateful for the lengthy and valuable discussions on aspects of Quaternary sea-level changes, as well as field excursions, with Tony Belperio, David Bowen, Robert Bourman, John Cann, Bill Carter, Peter Cowell, Patrick De Deckker, Robert Devoy, Charles Fletcher III, Don Forbes, Roland Gehrels, Victor Gostin, Nick Harvey, David Hopley, Kurt Lambeck, Antony Long, Roger McLean, Dan Muhs, Robert Nicholls, Richard Peltier, Paolo Pirazzoli, Peter Roy, Yoshi Saito, Ian Shennan, Andy Short, David Smith, Tom Spencer, David Stoddart, Bruce Thom, Sandy Tudhope,
Masatomo Umitsu, and the late Orson van de Plassche, amongst others. We have each pursued these interests through the activities, in particular, of successive projects of IGCP (the International Geological Correlation Programme, now called the International Geoscience Programme), through which we have met a wider sphere of sea-level researchers. In addition, numerous ‘Time Lords’ (geochronologists) have provided inspiration and support over the years, including Mike Barbetti, Steve Eggins, Stewart Fallon, David Fink, Rainer Grün, Quan Hua, David Price, Ulrich Radtke, John Wehmiller, Jian-xin Zhao, and the late John Prescott. Several colleagues read drafts of chapters, or responded to questions to assist our understanding, or clarify and supply data or illustrative material, including Robert Bourman, Allan Chivas, Tim Cohen, Zenobia Jacobs, Richard Roberts, and David Smith. We are grateful for their comments, but accept responsibility for any errors or omissions. Colleagues in the School of Earth & Environmental Sciences and the GeoQuest Research Centre at the University of Wollongong who have provided inspiration over the years include Ted Bryant, Allan Chivas, Lesley Head, Brian Jones, Gerald Nanson, David Price, and Bob Young. We have also had the privilege of supervising several gifted postgraduate students who are continuing the Australian academic tradition in sea-level research, including Brendan Brooke, Mack Dixon, David Kennedy, Craig Sloss, Scott Smithers, and Adam Switzer.

We would particularly like to thank Peter Johnson, cartographer par excellence, for preparing all the figures. We have a long working relationship with Peter and sincerely thank him for his dedication to this project. We also express our gratitude to the editors at Cambridge University Press; in particular, we thank Laura Clark, Susan Francis, Abigail Jones, Caroline Mowatt, and Sara Brunton for their help and encouragement. Finally, we thank our partners Gemma and Salwa for their forbearance during this project.
Abbreviations

AAR amino acid racemisation
ABOX acid–base–wet oxidation
AHD Australian Height Datum
AMS accelerator mass spectrometry
AOGCM Atmosphere–Ocean General Circulation Model
APSL above present sea level
AR4 Fourth Assessment Report
BAU business as usual
BP Before Present (radiocarbon terminology – before 1950 AD)
BPSL below present sea level
cal. yr BP calendar years before present (where present is 1950 AD)
CCD carbonate compensation depth
CLIMAP Climate: Long-Range Investigation, Mapping and Prediction
CMAT current mean annual air temperature
De equivalent dose
DORIS Doppler Orbitography and Radiopositioning Integrated Satellite
DSDP Deep Sea Drilling Project
EDT effective diagenetic temperature
EMIC Earth Models of Intermediate Complexity
ENSO El Niño–Southern Oscillation
EPA Environmental Protection Agency
EPICA European Project for Ice Coring in Antarctica
EPILOG Environmental Processes of the Ice-Age: Land, Oceans, Glaciers
ESA European Space Agency
ESR electron spin resonance
FAD First Appearance Datum
FAR First Assessment Report
FBI fixed biological indicator
Ga giga anna (billions of years; American billion)
GI Greenland Interstadial
List of abbreviations

GIA glacial isostatic adjustment
GNSS Global Navigation Satellite System
GOCE Gravity field and Ocean Circulation Explorer
GPR ground-penetrating radar
GPS Global Positioning System
GRACE Gravity Recovery And Climate Experiment
GS Greenland Stadial
Gt gigatonnes
Gy Gray (absorbed dose of ionising radiation equal to 1 J/kg)
HAT highest astronomical tide
ICP-MS inductively coupled plasma mass spectrometry
IGCP International Geosciences Programme (was International Geological Correlation Programme)
INQUA International Union for Quaternary Research
IODP Integrated Ocean Drilling Program
IPCC Intergovernmental Panel on Climate Change
IRD Ice Rafted Debris
IRSL infrared-stimulated luminescence
ITRF International Terrestrial Reference Frame
ka kilo anna (thousands of years)
kg kilogram (1000 grams)
LA-ICP-MS laser-ablation inductively coupled plasma mass spectrometry
LAT lowest astronomical tide
LGM Last Glacial Maximum
LOICZ Land–Ocean Interactions in the Coastal Zone
m metre
Ma mega anna (millions of years)
MC-ICP-MS multi-collector, inductively coupled plasma mass spectrometry
MHW mean high water
MHWN mean high water neaps
MIS Marine Isotope Stage
MLWN mean low water neap
MLWS mean low water springs
mm millimetre (one-thousandth of a metre)
MPT middle Pleistocene Transition
MSL mean sea level
MTL mean tide level
NADW North Atlantic Deep Water
NGA National Geospatial-Intelligence Agency
NGMS noble gas mass spectrometry
NGRIP North Greenland Ice Core Project
List of abbreviations

NSW New South Wales
ODP ocean drilling project
OSL optically stimulated luminescence
Pa Pascal (unit of pressure equal to 1 N/m²; 1 newton per square metre)
PDB Peedee Belemnite
PMS palaeo-marsh surface
ppmv parts per million by volume
PSMSL Permanent Service for Mean Sea Level
RCP representative concentration pathways
RMS root-mean square
SAR Second Assessment Report
SLE sea-level equation
SLIP sea-level index point
SMOW Standard Mean Ocean Water
SRES Special Report on Emissions Scenarios
SSH sea-surface height
SST sea-surface temperature
T/P TOPEX/Poseidon
TAR Third Assessment Report
TIMS thermal ionisation mass-spectrometry
TL thermoluminescence
TT-OSL thermally transferred optically stimulated luminescence
VLM vertical land movement
WAIS West Antarctic Icesheet
WOCE World Ocean Circulation Experiment
XBT expendable bathythermograph