Observing Variable Stars, Novae, and Supernovae

Variable stars can be fascinating objects to study. This complete practical guide and resource package instructs amateur astronomers in observing and monitoring variable stars and other objects of variable brightness. Descriptions of the objects are accompanied by explanations of the background astrophysics, providing readers with a real insight into what they are observing at the telescope. The main instrumental requirements for observing and estimating the brightness of objects by visual means and by CCD photometry are detailed, and there is advice on the selection of equipment. The book contains a CD-ROM packed with resources, including hundreds of light-curves and over 600 printable finder charts. Containing extensive practical advice, this comprehensive guide is an invaluable resource for amateur astronomers of all levels, from complete beginners to more advanced observers.

Gerald North graduated in physics and astronomy. A former teacher, college lecturer, and Guest Observer at the Royal Greenwich Observatory he is now a freelance astronomer and author based in Norfolk, UK. He has been a member of the British Astronomical Association since 1977, and has served in many posts in the Lunar Section, in addition to contributing observations to various other sections. He has written numerous books, including the acclaimed Advanced Amateur Astronomy, and Observing the Moon, both published by Cambridge University Press.
Observing Variable Stars, Novae, and Supernovae

GERALD NORTH

(with accompanying CD-ROM by Nick James)
Contents

Preface ix
Acknowledgements xi

1 Foundations, federations, and finder charts 1
1.1 Star brightnesses 2
1.2 Absolute magnitude and distance modulus 3
1.3 Variable star nomenclature 4
1.4 Variable star classification 8
1.5 The General Catalogue of Variable Stars (GCVS) 10
1.6 Who wants your observations? 11
1.7 Finder charts and sequence charts 13
1.8 Light-curves and Julian Day Numbers 16

2 Variables in vision 20
2.1 What type of telescope is best? 20
2.2 What size of telescope is best? 23
2.3 Eyepieces and fields of view 29
2.4 Vignetting 31
2.5 Binoculars 36

3 Astrovariables reckoned 39
3.1 Preparations 39
3.2 Collimation 42
3.3 Finding your chosen variable 52
3.4 Making the magnitude estimate 54
3.5 Some difficulties and some remedies 56
Contents

4 Photometry 59
   4.1 Some basic principles of CCD astrocameras 59
   4.2 The imaging area and resolution of a CCD camera when used on your telescope 63
   4.3 CCD astrocameras in practice 65
   4.4 Getting the focused image onto the CCD and keeping it there 67
   4.5 Taking the picture 70
   4.6 Calibration frames 71
   4.7 Obtaining magnitude measures from a CCD image 74
   4.8 Filters for photometry 78
   4.9 Just the beginning 80

5 Stars great and small 81
   5.1 Our daytime star 81
   5.2 Our stable Sun 84
   5.3 Spectral lines 88
   5.4 Stellar spectra 92
   5.5 Information from spectra 94
   5.6 Luminosity classes 96
   5.7 The Hertzsprung–Russell diagram 98

6 Variable beginnings 100
   6.1 Single-star variables on the H-R diagram 100
   6.2 Stellar nurseries within the interstellar medium 100
   6.3 An unstable start in life 105
   6.4 Stellar adolescence and the ZAMS 108
   6.5 Stellar adulthood and stability 111
   6.6 The fate of a low-mass star 113
   6.7 The evolution of a star like the Sun 117
   6.8 The evolution of a massive star 119

7 Clockwork pulsators 121
   7.1 A pulsating menagerie 121
   7.2 The physics of stellar pulsation 123
   7.3 CEP (Cepheid) and CEP(B) stars; DCEP (Classical Cepheid) and DCEPS stars; CW (W Virginis), CWA and CWB stars 128
   7.4 RR (RR Lyrae), RR(B), RRAB, and RRC stars 131

8 Less regular single-star variables 133
   8.1 M (Mira) stars 133
   8.2 SR (semi-regular variable); SRA; SRB; SRC; SRD; and SRS stars 137
   8.3 A naked-eye hypergiant variable star 141
   8.4 L (slow irregular variable); LB and LC stars 143
   8.5 Other pulsating variable stars 144
8.6 RCB (R Coronae Borealis) stars 146
8.7 GCAS (Gamma Cassiopeia) and B[e] stars 149
8.8 Other single-star eruptive variables 150
8.9 Rotating variable stars 151

9 Eclipsing binary stars and novae 153
9.1 A matter of gravity 153
9.2 Eclipsing binary stars 155
9.3 Introduction to interacting stars 159
9.4 N, NA and NB (classical novae), and NC stars 163
9.5 NR stars (recurrent novae) 167
9.6 Novae on the accompanying CD-ROM 168
9.7 NL stars (nova-like variables) 169
9.8 Nova hunting 170

10 Cataclysmic and symbiotic systems 172
10.1 How to make a cataclysmic variable 172
10.2 UG (U Geminorum) stars, aka dwarf novae 175
10.3 Eclipsing dwarf novae 180
10.4 Dwarf novae on the accompanying CD-ROM 183
10.5 Polars, intermediate polars, and other cataclysmic subtypes 185
10.6 ZAND (Z Andromedae) stars 186
10.7 Intense X-ray sources 188

11 The extra-galactic realm 190
11.1 Neutron stars 190
11.2 Supernovae 191
11.3 Supernovae on the accompanying CD-ROM 197
11.4 Supernova hunting 197
11.5 Black holes 199
11.6 Hypernovae 200
11.7 Quasars and active galaxies 203
11.8 Cosmic chameleons 207
11.9 Quasars and active galaxies on the accompanying CD-ROM 209

Glossary 211
Resources 217
Index 221
The accompanying CD-ROM 229
Preface

Stand outside to enjoy the glittering spectacle of a particularly clear night sky and you will probably get a false sense that the heavens are unchanging and serene. True, most of the stars visible do shine steadily but many do not. Some of them vary their brightnesses very slowly, taking years or centuries for any change to become apparent. Others that change do so faster, taking months or even just days. Still others can significantly vary their outputs in a matter of minutes. Some even flicker (in the real sense – not just the scintillation of their images as seen through our Earth’s unsteady atmosphere) in timescales as short as seconds. Fortunately for us our Sun is one of the more constant of the 200 billion stars that inhabit our great Galaxy.

Actually, all stars must vary their outputs at some time – certainly during their births and deaths if not during other phases of their lives. Many stars are wrecked by colossal explosions and others are significantly changed by violent outbursts.

Variability is not the sole province of the stars. Galaxies, and particularly the objects lurking within their centres, can be subject to significant changes which involve energies of incredible proportions.

Astronomers both amateur and professional have long been following the behaviour of the variable-brightness objects in our Universe but it has fallen on amateurs to do most of the long-term monitoring. In recent years technical advances in the equipment available to amateur astronomers have pushed back the faintness limit and increased precision in the measurements. Consequently amateurs can now undertake work that was at one time the sole province of the professionals. You have a great opportunity to take part in this ongoing research yourself.

This book is intended to be a ‘primer’ – a guide for the interested amateur astronomer who is yet to become a specialist in the field of observing and monitoring variable stars and other objects of variable brightness.
Preface

In the first four chapters I cover the practicalities of observing and determining the brightnesses of the astrovariable – the term I have coined for all types of variable-brightness object in the heavens – at intervals which will allow their brightness changes to be studied.

Chapter 5 lays the basis for a study of a wide selection of astrovariables, this occupying the remaining chapters of this book. In these chapters I explain the reasons behind the brightness variations (as far as we presently understand them) set into the context of the wider field of astronomy and astrophysics. I think you will find it a fascinating story. Along the way we will make use of the considerable resources my friend and colleague, Nick James, has placed on the CD-ROM which accompanies this book.

I hope that you will enjoy reading this book. Most of all, though, I hope that you will go out and use whatever equipment you can assemble to begin observing the variable heavens for yourself. If you do, I hope that the information and resources in this book and the accompanying CD-ROM will help you along the way. Good luck – and good observing!
Acknowledgements

I have the following friends, colleagues, organisations, and companies to thank for allowing me to use illustrative materials in this book and on the accompanying CD-ROM:

Martin Mobberley; Tom Boles; Terry Platt; Starlight Xpress Ltd; W. J. Worraker; Denis Buczynski; Mark Armstrong; the Royal Greenwich Observatory (RGO); the National Aeronautics and Space Administration (NASA); The Hubble Heritage Team and The Space Telescope Science Institute (STScI).

I also offer my special thanks to Dr Nick Hewitt, Roger Pickard, and the Council of the British Astronomical Association (BAA) for their kindness in allowing me to reproduce materials from the archives of the Variable Star Section of the BAA in the pages of this book and, most especially, in the accompanying CD-ROM. Guy Hurst of The Astronomer Magazine (TA) group has also kindly given his permission for the group’s archives to be reproduced in this book and, particularly, on the accompanying CD-ROM. My special thanks also extend to N. N. Samus and O. V. Durlevich, of the Sternberg Astronomical Institute of Moscow, for allowing me to reproduce materials from the General Catalogue of Variable Stars (GCVS) Research Group.

I must also thank Nick James, who has allowed me to use some of his images in the main text and in the accompanying CD-ROM, but particularly for his production of the CD-ROM which accompanies this book.

Finally I must thank Jacqueline A. Garget and all the staff at Cambridge University Press for their stirling work in producing this book. To all the above I offer my very grateful thanks.
Figure 1.1 The constellation of Orion, photographed by the author. Of the main stars that form the familiar outline of this constellation, the upper-left one is the red giant star Betelgeuse. This semi-regular variable star is one of about thirty whose brightness variations can be followed with the naked eye.