Introductory Quantum Optics

This book provides an elementary introduction to the subject of quantum optics, the study of the quantum-mechanical nature of light and its interaction with matter.

The presentation is almost entirely concerned with the quantized electromagnetic field. Topics covered include single-mode field quantization in a cavity, quantization of multimode fields, quantum phase, coherent states, quasi-probability distribution in phase space, atom-field interactions, the Jaynes–Cummings model, quantum coherence theory, beam splitters and interferometers, nonclassical field states with squeezing etc., tests of local realism with entangled photons from down-conversion, experimental realizations of cavity quantum electrodynamics, trapped ions, decoherence, and some applications to quantum information processing, particularly quantum cryptography. The book contains many homework problems and a comprehensive bibliography.

This text is designed for upper-level undergraduates taking courses in quantum optics who have already taken a course in quantum mechanics, and for first- and second-year graduate students.

A solutions manual is available to instructors via solutions@cambridge.org.

Christopher Gerry is Professor of Physics at Lehman College, City University of New York. He was one of the first to exploit the use of group theoretical methods in quantum optics and is also a frequent contributor to Physical Review A. In 1992 he co-authored, with A. Inomata and H. Kuratsuji, Path Integrals and Coherent States for SU(2) and SU(1, 1).

Peter Knight is a leading figure in quantum optics, and in addition to being President of the Optical Society of America in 2004, he is a Fellow of the Royal Society. In 1983 he co-authored Concepts of Quantum Optics with L. Allen. He is currently Head of the Physics Department of Imperial College and Chief Scientific Advisor at the UK National Physical Laboratory.
Introductory Quantum Optics

Christopher Gerry
Lehman College, City University of New York

Peter Knight
Imperial College London and UK National Physical Laboratory
C. C. G. dedicates this book to his son, Eric.
P. L. K. dedicates this book to his wife Chris.
Contents

Acknowledgements xii

1 Introduction 1
 1.1 Scope and aims of this book 1
 1.2 History 2
 1.3 The contents of this book 7
 References 8
 Suggestions for further reading 8

2 Field quantization 10
 2.1 Quantization of a single-mode field 10
 2.2 Quantum fluctuations of a single-mode field 15
 2.3 Quadrature operators for a single-mode field 17
 2.4 Multimode fields 18
 2.5 Thermal fields 25
 2.6 Vacuum fluctuations and the zero-point energy 29
 2.7 The quantum phase 33
 Problems 40
 References 41
 Bibliography 42

3 Coherent states 43
 3.1 Eigenstates of the annihilation operator and minimum
 uncertainty states 43
 3.2 Displaced vacuum states 48
 3.3 Wave packets and time evolution 50
 3.4 Generation of coherent states 52
 3.5 More on the properties of coherent states 53
 3.6 Phase-space pictures of coherent states 56
 3.7 Density operators and phase-space probability distributions 59
 3.8 Characteristic functions 65
 Problems 71
 References 72
 Bibliography 73

© Cambridge University Press www.cambridge.org
4 Emission and absorption of radiation by atoms 74
 4.1 Atom-field interactions 74
 4.2 Interaction of an atom with a classical field 76
 4.3 Interaction of an atom with a quantized field 82
 4.4 The Rabi model 87
 4.5 Fully quantum-mechanical model; the Jaynes–Cummings model 90
 4.6 The dressed states 99
 4.7 Density-operator approach: application to thermal states 102
 4.8 The Jaynes–Cummings model with large detuning: a dispersive interaction 105
 4.9 Extensions of the Jaynes–Cummings model 107
 4.10 Schmidt decomposition and von Neumann entropy for the Jaynes–Cummings model 108
 Problems 110
 References 113
 Bibliography 114

5 Quantum coherence functions 115
 5.1 Classical coherence functions 115
 5.2 Quantum coherence functions 120
 5.3 Young’s interference 124
 5.4 Higher-order coherence functions 127
 Problems 133
 References 133
 Bibliography 134

6 Beam splitters and interferometers 135
 6.1 Experiments with single photons 135
 6.2 Quantum mechanics of beam splitters 137
 6.3 Interferometry with a single photon 143
 6.4 Interaction-free measurement 144
 6.5 Interferometry with coherent states of light 146
 Problems 147
 References 149
 Bibliography 149

7 Nonclassical light 150
 7.1 Quadrature squeezing 150
 7.2 Generation of quadrature squeezed light 165
 7.3 Detection of quadrature squeezed light 167
 7.4 Amplitude (or number) squeezed states 169
 7.5 Photon antibunching 171
Contents

7.6 Schrödinger cat states 174
7.7 Two-mode squeezed vacuum states 182
7.8 Higher-order squeezing 188
7.9 Broadband squeezed light 189

Problems 190
References 192
Bibliography 194

8 Dissipative interactions and decoherence 195
8.1 Introduction 195
8.2 Single realizations or ensembles? 196
8.3 Individual realizations 200
8.4 Shelving and telegraph dynamics in three-level atoms 204
8.5 Decoherence 207
8.6 Generation of coherent states from decoherence: nonlinear
optical balance 208
8.7 Conclusions 210
Problems 211
References 211
Bibliography 212

9 Optical test of quantum mechanics 213
9.1 Photon sources: spontaneous parametric down-conversion 214
9.2 The Hong–Ou–Mandel interferometer 217
9.3 The quantum eraser 219
9.4 Induced coherence 222
9.5 Superluminal tunneling of photons 224
9.6 Optical test of local realistic theories and Bell's theorem 226
9.7 Franson's experiment 232
9.8 Applications of down-converted light to metrology without
absolute standards 233
Problems 235
References 236
Bibliography 237

10 Experiments in cavity QED and with trapped ions 238
10.1 Rydberg atoms 238
10.2 Rydberg atom interacting with a cavity field 241
10.3 Experimental realization of the Jaynes–Cummings model 246
10.4 Creating entangled atoms in CQED 249
10.5 Formation of Schrödinger cat states with dispersive atom–field
interactions and decoherence from the quantum to the classical
250
10.6 Quantum nondemolition measurement of photon number 254

© Cambridge University Press

www.cambridge.org
Contents

10.7 Realization of the Jaynes–Cummings interaction in the motion of a trapped ion 255
10.8 Concluding remarks 258
Problems 259
References 260
Bibliography 261

11 Applications of entanglement: Heisenberg-limited interferometry and quantum information processing 263
11.1 The entanglement advantage 264
11.2 Entanglement and interferometric measurements 265
11.3 Quantum teleportation 268
11.4 Cryptography 270
11.5 Private key crypto-systems 271
11.6 Public key crypto-systems 273
11.7 The quantum random number generator 274
11.8 Quantum cryptography 275
11.9 Future prospects for quantum communication 281
11.10 Gates for quantum computation 281
11.11 An optical realization of some quantum gates 286
11.12 Decoherence and quantum error correction 289
Problems 290
References 291
Bibliography 293

Appendix A The density operator, entangled states, the Schmidt decomposition, and the von Neumann entropy 294
A.1 The density operator 294
A.2 Two-state system and the Bloch sphere 297
A.3 Entangled states 298
A.4 Schmidt decomposition 299
A.5 von Neumann entropy 301
A.6 Dynamics of the density operator 302
References 303
Bibliography 303

Appendix B Quantum measurement theory in a (very small) nutshell 304
Bibliography 307

Appendix C Derivation of the effective Hamiltonian for dispersive (far off-resonant) interactions 308
References 311
Appendix D Nonlinear optics and spontaneous parametric
down-conversion 312
References 313
Index 314
Acknowledgements

This book developed out of courses that we have given over the years at Imperial College London, and the Graduate Center of the City University of New York, and we are grateful to the many students who have sat through our lectures and acted as guinea pigs for the material we have presented here.

We would like to thank our many colleagues who, over many years have given us advice, ideas and encouragement. We particularly thank Dr. Simon Capelin at Cambridge University Press who has had much more confidence than us that this would ever be completed. Over the years we have benefited from many discussions with our colleagues, especially Les Allen, Gabriel Barton, Janos Bergou, Keith Burnett, Vladimir Buzek, Richard Campos, Bryan Dalton, Joseph Eberly, Rainer Grobe, Edwin Hach III, Robert Hilborn, Mark Hillery, Ed Hinds, Rodney Loudon, Peter Milonni, Bill Munro, Geoffrey New, Edwin Power, George Series, Wolfgang Schleich, Bruce Shore, Carlos Stroud Jr, Stuart Swain, Dan Walls and Krzysztof Wodkiewicz. We especially thank Adil Benmoussa for creating all the figures for this book using his expertise with Mathematica, Corel Draw, and Origin Graphics, for working through the homework problems, and for catching many errors in various drafts of the manuscript. We also thank Mrs. Ellen Calkins for typing the initial draft of several of the chapters.

Our former students and postdocs, who have taught us much, and have gone on to become leaders themselves in this exciting subject: especially Stephen Barnett, Almut Beige, Artur Ekert, Barry Garraway, Christoph Keitel, Myungshik Kim, Gerard Milburn, Martin Plenio, Barry Sanders, Stefan Scheel, and Vlatko Vedral: they will recognize much that is here!

As this book is intended as an introduction to quantum optics, we have not attempted to be comprehensive in our citations. We apologize to authors whose work is not cited.

C. C. G. wishes to thank the members of the Lehman College Department of Physics and Astronomy, and many other members of the Lehman College community, for their encouragement during the writing of this book.

P. L. K. would like especially to acknowledge the support throughout of Chris Knight, who has patiently provided encouragement, chauffeuring and vast amounts of tea during the writing of this book.
Our work in quantum optics over the past four decades has been funded by many sources: for P. L. K. in particular the UK SRC, SERC, EPSRC, the Royal Society, The European Union, the Nuffield Foundation, and the U. S. Army are thanked for their support; for C. C. G. the National Science Foundation, The Research Corporation, Professional Staff Congress of the City University of New York (PSC-CUNY).