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Prelude to Modern Analysis

1.1 Introduction

The primary purpose of this chapter is to review a number of topics
from analysis, and some from algebra, that will be called upon in the
following chapters. These are topics of a classical nature, such as appear
in books on advanced calculus and linear algebra. For our treatment of
modern analysis, we can distinguish four fundamental notions which will
be particularly stressed in this chapter. These are

(a) set theory, of an elementary nature;
(b) the concept of a function;
(c) convergence of sequences; and
(d) some theory of vector spaces.

On a number of occasions in this chapter, we will also take the time
to discuss the relationship of modern analysis to classical analysis. We
begin this now, assuming some knowledge of the points (a) to (d) just
mentioned.
Modern analysis is not a new brand of mathematics that replaces the

old brand. It is totally dependent on the time-honoured concepts of
classical analysis, although in parts it can be given without reference to
the specifics of classical analysis. For example, whereas classical analysis
is largely concerned with functions of a real or complex variable, modern
analysis is concerned with functions whose domains and ranges are far
more general than just sets of real or complex numbers. In fact, these
functions can have domains and ranges which are themselves sets of
functions. A function of this more general type will be called an operator
or mapping. Importantly, very often any set will do as the domain of a
mapping, with no specific reference to the nature of its elements.
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2 1 Prelude to Modern Analysis

This illustrates how modern analysis generalises the ideas of classical
analysis. At the same time, in many ways modern analysis simplifies
classical analysis because it uses a basic notation which is not cluttered
with the symbolism that characterises many topics of a classical nature.
Through this, the unifying aspect of modern analysis appears because
when the symbolism of those classical topics is removed a surprising
similarity becomes apparent in the treatments formerly thought to be
peculiar to those topics.
Here is an example:

∫ b

a

k(s, t)x(t) dt = f(s), a � s � b,

is an integral equation; f and k are continuous functions and we want
to solve this to find the continuous function x. The left-hand side shows
that we have operated on the function x to give the function f , on the
right. We can write the whole thing as

Kx = f,

where K is an operator of the type we just mentioned. Now the essence of
the problem is clear. It has the same form as a matrix equation Ax = b,
for which the solution (sometimes) is x = A−1b. In the same way, we
would like the solution of the integral equation to be given simply as
x = K−1f . The two problems, stripped of their classical symbolism,
appear to be two aspects of a more general study.
The process can be reversed, showing the strong applicability of mod-

ern analysis: when the symbolism of a particular branch of classical
analysis is restored to results often obtained only because of the manip-
ulative ease of the simplified notation, there arise results not formerly
obtained in the earlier theory. In other cases, this procedure gives rise
to results in one field which had not been recognised as essentially the
same as well-known results in another field. The notations of the two
branches had fully disguised the similarity of the results.
When this occurs, it can only be because there is some underlying

structure which makes the two (or more) branches of classical analysis
appear just as examples of some work in modern analysis. The ba-
sic entities in these branches, when extracted, are apparently combined
together in a precisely corresponding manner in the several branches.
This takes us back to our first point of the generalising nature of mod-
ern analysis and of the benefit of working with quite arbitrary sets. To
combine the elements of these sets together requires some basic ground
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1.2 Sets and numbers 3

rules and this is why, very often and predominantly in this book, the
sets are assumed to be vector spaces: simply because vector spaces are
sets with certain rules attached allowing their elements to be combined
together in a particular fashion.
We have indicated the relevance of set theory, functions and vector

spaces in our work. The other point, of the four given above, is the
springboard that takes us from algebra into analysis. In this book,
we use in a very direct fashion the notion of a convergent sequence to
generate virtually every result.
We might mention now, since we have been comparing classical and

modern analysis, that another area of study, called functional analysis,
may today be taken as identical with modern analysis. A functional is a
mapping whose range is a set of real or complex numbers and functional
analysis had a fairly specific meaning (the analysis of functionals) when
the term was first introduced early in the 20th century. Other writers
may make technical distinctions between the two terms but we will not.
In the review which follows, it is the aim at least to mention all topics

required for an understanding of the subsequent chapters. Some topics,
notably those connected with the points (a) to (d) above, are discussed
in considerable detail, while others might receive little more than a def-
inition and a few relevant properties.

1.2 Sets and numbers

A set is a concept so basic to modern mathematics that it is not possible
to give it a precise definition without going deeply into the study of
mathematical logic. Commonly, a set is described as any collection of
objects but no attempt is made to say what a ‘collection’ is or what
an ‘object’ is. We are forced in books of this type to accept sets as
fundamental entities and to rely on an intuitive feeling for what a set is.
The objects that together make up a particular set are called elements

or members of that set. The list of possible sets is as long as the imagi-
nation is vivid, or even longer (we are hardly being precise here) since,
importantly, the elements of a set may themselves be sets.
Later in this chapter we will be looking with some detail into the prop-

erties of certain sets of numbers. We are going to rely on the reader’s
experience with numbers and not spend a great deal of time on the devel-
opment of the real number system. In particular, we assume familiarity
with
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4 1 Prelude to Modern Analysis

(a) the integers, or whole numbers, such as −79, −3, 0, 12, 4,063,180;
(b) the rational numbers, such as − 5

3 ,
11
17 , which are numbers ex-

pressible as a ratio of integers (the integers themselves also being
examples);

(c) those numbers which are not rational, known as irrational num-
bers, such as

√
2, 3

√
15, π;

(d) the real numbers, which are numbers that are either rational or
irrational;

(e) the ordering of the real numbers, using the inequality signs <

and > (and the use of the signs � and �);
(f) the representation of the real numbers as points along a line; and
(g) the fact, in (f), that the real numbers fill the line, leaving no

holes: to every point on the line there corresponds a real number.

The final point is a crucial one and may not appear to be so familiar.
On reflection however, it will be seen to accord with experience, even
when expressed in such a vague way. This is a crude formulation of
what is known as the completeness of the real number system, and will
be referred to again in some detail subsequently.
By way of review, we remark that we assume the ability to per-

form simple manipulations with inequalities. In particular, the following
should be known. If a and b are real numbers and a < b, then

−a > −b;
1
a

>
1
b
, if also a > 0 or b < 0;

√
a <

√
b, if also a � 0.

With regard to the third property, we stress that the use of the radi-
cal sign (

√
) always implies that the nonnegative root is to be taken.

Bearing this comment in mind, we may define the absolute value |a| of
any real number a by

|a| =
√

a2.

More commonly, and equivalently of course, we say that |a| is a whenever
a > 0 and |a| is −a whenever a < 0, while |0| = 0. For any real numbers
a and b, we have

|a + b| � |a|+ |b|, |ab| = |a| |b|.
These may be proved by considering the various combinations of positive
and negative values for a and b.
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1.2 Sets and numbers 5

We also assume a knowledge of complex numbers : numbers of the
form a + ib where a and b are real numbers and i is an imaginary unit,
satisfying i2 = −1.
This is a good place to review a number of definitions and properties

connected with complex numbers. If z = a+ib is a complex number, then
we call the numbers a, b, a − ib and

√
a2 + b2 the real part, imaginary

part, conjugate and modulus, respectively, of z, and denote these by
Re z, Im z, z and |z|, respectively. The following are some of the simple
properties of complex numbers that we use. If z, z1 and z2 are complex
numbers, then

z = z,

z1 + z2 = z1 + z2,

z1z2 = z1 z2,

|Re z| � |z|, | Im z| � |z|,
zz = |z|2,

|z1 + z2| � |z1|+ |z2|,
|z1z2| = |z1| |z2|.

It is essential to remember that, although z is a complex number, the
numbers Re z, Im z and |z| are real. The final two properties in the
above list are important generalisations of the corresponding properties
just given for real numbers. They can be generalised further, in the
natural way, to the sum or product of three or four or more complex
numbers.
Real numbers, complex numbers, and other sets of numbers, all occur

so frequently in our work that it is worth using special symbols to denote
them.

Definition 1.2.1 The following symbols denote the stated sets:

N, the set of all positive integers;
Z, the set of all integers (positive, negative and zero);
Q, the set of all rational numbers;
R, the set of all real numbers;
R+, the set of all nonnegative real numbers;
C, the set of all complex numbers.

Other sets will generally be denoted by ordinary capital letters and their
elements by lower case letters; the same letter will not always refer to
the same set or element. To indicate that an object x is an element
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6 1 Prelude to Modern Analysis

of a set X , we will write x ∈ X ; if x is not an element of X , we will
write x /∈ X . For example,

√
2 ∈ R but

√
2 /∈ Z. A statement such

as x, y ∈ X will be used as an abbreviation for the two statements
x ∈ X and y ∈ X . To show the elements of a set we always enclose
them in braces and give either a complete listing (for example, {1, 2, 3}
is the set consisting of the integers 1, 2 and 3), or an indication of a
pattern (for example, {1, 2, 3, . . .} is the set N), or a description of a
rule of formation following a colon (for example, {x : x ∈ R, x � 0} is
the set R+). Sometimes we use an abbreviated notation (for example,
{n : n = 2m, m ∈ N} and {2n : n ∈ N} both denote the set of all even
positive integers).
An important aspect in the understanding of sets is that the order

in which their elements are listed is irrelevant. For example, {1, 2, 3},
{3, 1, 2}, {2, 1, 3} are different ways of writing the same set. However,
on many occasions we need to be able to specify the first position, the
second position, and so on, and for this we need a new notion. We speak
of ordered pairs of two elements, ordered triples of three elements, and,
generally, ordered n-tuples of n elements with this property that each
requires for its full determination a list of its elements and the order
in which they are to be listed. The elements, in their right order, are
enclosed in parentheses (rather than braces, as for sets). For example,
(1, 2, 3), (3, 1, 2), (2, 1, 3) are different ordered triples. This is not an
unfamiliar notion. In ordinary three-dimensional coordinate geometry,
the coordinates of a point provide an example of an ordered triple: the
three ordered triples just given would refer to three different points in
space.
We give now a number of definitions which help us describe various

manipulations to be performed with sets.

Definition 1.2.2

(a) A set S is called a subset of a set X , and this is denoted by S ⊆ X

or X ⊇ S, if every element of S is also an element of X .
(b) Two sets X and Y are called equal, and this is denoted by X = Y ,

if each is a subset of the other; that is, if both X ⊆ Y and Y ⊆ X .
Otherwise, we write X 	= Y .

(c) A set which is a subset of any other set is called a null set or
empty set, and is denoted by ∅.

(d) A set S is called a proper subset of a set X if S ⊆ X , but S 	= X .
(e) The union of two sets X and Y , denoted by X ∪ Y , is the set of
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1.2 Sets and numbers 7

elements belonging to at least one of X and Y ; that is,

X ∪ Y = {x : x ∈ X or x ∈ Y (or both)}.
(f) The intersection of two sets X and Y , denoted by X ∩ Y , is the

set of elements belonging to both X and Y ; that is,

X ∩ Y = {x : x ∈ X and x ∈ Y }.
(g) The cartesian product of two sets X and Y , denoted by X × Y ,

is the set of all ordered pairs, the first elements of which belong
to X and the second elements to Y ; that is,

X × Y = {(x, y) : x ∈ X, y ∈ Y }.
(h) The complement of a set X , denoted by ∼X , is the set of elements

that do not belong to X ; that is, ∼X = {x : x /∈ X}. The
complement of X relative to a set Y is the set Y ∩ ∼X ; this is
denoted by Y \X .

For some simple examples illustrating parts of this definition, we let
X = {1, 3, 5} and Y = {1, 4}. Then

X ∪ Y = {1, 3, 4, 5}, X ∩ Y = {1},
X × Y = {(1, 1), (1, 4), (3, 1), (3, 4), (5, 1), (5, 4)},
Y × X = {(1, 1), (1, 3), (1, 5), (4, 1), (4, 3), (4, 5)}.

We see that in general X × Y 	= Y × X . The set Y \X is the set of
elements of Y that do not belong to X , so here Y \X = {4}.
The definitions of union, intersection and cartesian product of sets

can be extended to more than two sets. Suppose we have n sets X1, X2,
. . . , Xn. Their union, intersection and cartesian product are defined as

X1 ∪ X2 ∪ · · · ∪ Xn =
n⋃

k=1

Xk

= {x : x ∈ Xk for at least one k = 1, 2, . . . , n},

X1 ∩ X2 ∩ · · · ∩ Xn =
n⋂

k=1

Xk

= {x : x ∈ Xk for all k = 1, 2, . . . , n},

X1 × X2 × · · · × Xn =
n∏

k=1

Xk

= {(x1, x2, . . . , xn) : xk ∈ Xk for k = 1, 2, . . . , n},
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8 1 Prelude to Modern Analysis

respectively (the cartesian product being a set of ordered n-tuples). The
notations in the middle are similar to the familiar sigma notation for
addition, where we write

x1 + x2 + · · ·+ xn =
n∑

k=1

xk,

when x1, x2, . . . , xn are numbers.
For cartesian products only, there is a further simplification of nota-

tion when all the sets are equal. If X1 = X2 = · · · = Xn = X , then
in place of

∏n
k=1 Xk or

∏n
k=1 X we write simply Xn, as suggested by

the × notation, but note that there is no suggestion of multiplication:
Xn is a set of n-tuples. In particular, it is common to write Rn for the
set of all n-tuples of real numbers and Cn for the set of all n-tuples of
complex numbers.
It is necessary to make some comments regarding the definition of

an empty set in Definition 1.2.2(c). These are gathered together as a
theorem.

Theorem 1.2.3

(a) All empty sets are equal.
(b) The empty set has no elements.
(c) The only set with no elements is the empty set.

To prove (a), we suppose that ∅1 and ∅2 are any two empty sets.
Since an empty set is a subset of any other set, we must have both
∅1 ⊆ ∅2 and ∅2 ⊆ ∅1. By the definition of equality of sets, it follows
that ∅1 = ∅2. This proves (a) and justifies our speaking of ‘the’ empty
set in the remainder of the theorem. We prove (b) by contradiction.
Suppose x ∈ ∅. Since for any set X we have ∅ ⊆ X and ∅ ⊆ ∼X ,
we must have both x ∈ X and x ∈ ∼X . This surely contradicts the
existence of x, proving (b). Finally, we prove (c), again by contradiction.
Suppose X is a set with no elements and suppose X 	= ∅. Since ∅ ⊆ X ,
this means that X is not a subset of ∅. Then there must be an element
of X which is not in ∅. But X has no elements so this is the contradiction
we need.

All this must seem a bit peculiar if it has not been met before. In
defence, it may be pointed out that sets were only introduced intuitively
in the first place and that the inclusion in the concept of ‘a set with no
elements’ is a necessary addition (possibly beyond intuition) to provide
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1.2 Sets and numbers 9

consistency elsewhere. For example, if two sets X and Y have no el-
ements in common and we wish to speak of their intersection, we can
now happily say X ∩ Y = ∅. (Two such sets are called disjoint.)
Manipulations with sets often make use of the following basic results.

Theorem 1.2.4 Let X, Y and Z be sets. Then

(a) ∼(∼X) = X,
(b) X ∪ Y = Y ∪ X and X ∩ Y = Y ∩ X (commutative rules),
(c) X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z and X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z

(associative rules),
(d) X∪(Y ∩Z) = (X∪Y )∩(X∪Z) and X∩(Y ∪Z) = (X∩Y )∪(X∩Z)

(distributive rules).

We will prove only the second distributive rule. To show that two
sets are equal we must make use of the definition of equality in Defini-
tion 1.2.2(b).
First, suppose x ∈ X ∩ (Y ∪ Z). Then x ∈ X and x ∈ Y ∪ Z. That

is, x is a member of X and of either Y or Z (or both). If x ∈ Y then
x ∈ X∩Y ; if x ∈ Z then x ∈ X∩Z. At least one of these must be true, so
x ∈ (X∩Y )∪(X∩Z). This proves that X∩(Y ∪Z) ⊆ (X∩Y )∪(X∩Z).
Next, suppose x ∈ (X ∩ Y ) ∪ (X ∩ Z). Then x ∈ X ∩ Y or x ∈ X ∩ Z

(or both). In both cases, x ∈ X ∩ (Y ∪ Z) since in both cases x ∈ X ,
and Y ⊆ Y ∪Z and Z ⊆ Y ∪Z. Thus X ∩ (Y ∪Z) ⊇ (X ∩Y )∪ (X ∩Z).
Then it follows that X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z), completing

this part of the proof.

The following theorem gives two of the more important relationships
between sets.

Theorem 1.2.5 (De Morgan’s Laws) Let X, Y and Z be sets. Then

Z\(X ∩ Y ) = Z\X ∪ Z\Y and Z\(X ∪ Y ) = Z\X ∩ Z\Y.

There is a simpler form of de Morgan’s laws for ordinary complements:

∼(X ∩ Y ) = ∼X ∪ ∼Y and ∼(X ∪ Y ) = ∼X ∩ ∼Y.

To prove the first of these, suppose x ∈ ∼(X ∩ Y ). Then x /∈ X ∩ Y so
either x /∈ X or x /∈ Y . That is, x ∈ ∼X or x ∈ ∼Y , so x ∈ ∼X ∪ ∼Y .
This proves that∼(X∩Y ) ⊆ ∼X∪∼Y . Suppose next that x ∈ ∼X∪∼Y .
If x ∈ ∼X then x /∈ X so x /∈ X ∩ Y , since X ∩ Y ⊆ X . That is,
x ∈ ∼(X∩Y ). The same is true if x ∈ ∼Y . Thus ∼X∪∼Y ⊆ ∼(X∩Y ),
so we have proved that ∼(X ∩ Y ) = ∼X ∪ ∼Y .
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10 1 Prelude to Modern Analysis

We can use this, the definition of relative complement, and a distribu-
tive rule from Theorem 1.2.4 to prove the first result of Theorem 1.2.5:

Z\(X ∩ Y ) = Z ∩ ∼(X ∩ Y ) = Z ∩ (∼X ∪∼Y )

= (Z ∩∼X) ∪ (Z ∩ ∼Y ) = Z\X ∪ Z\Y.

The second of de Morgan’s laws is proved similarly.

Review exercises 1.2

(1) Let a and b be real numbers. Show that

(a) ||a| − |b|| � |a − b|,
(b) |a − b| < ε if and only if b − ε < a < b + ε,
(c) if a < b + ε for every ε > 0 then a � b.

(2) Suppose A∪B = X . Show that X × Y = (A×Y )∪ (B ×Y ), for
any set Y .

(3) For any sets A and B, show that

(a) A\B = A if and only if A ∩ B = ∅,
(b) A\B = ∅ if and only if A ⊆ B.

1.3 Functions or mappings

We indicated in Section 1.1 how fundamental the concept of a function is
in modern analysis. (It is equally important in classical analysis but may
be given a restricted meaning there, as we remark below.) A function
is often described as a rule which associates with an element in one
set a unique element in another set; we will give a definition which
avoids the undefined term ‘rule’. In this definition we will include all
associated terms and notations that will be required. Examples and
general discussion will follow.

Definition 1.3.1 Let X and Y be any two nonempty sets (which
may be equal).

(a) A function f from X into Y is a subset of X×Y with the property
that for each x ∈ X there is precisely one element (x, y) in the
subset f . We write f : X → Y to indicate that f is a function
from X into Y .

(b) The set X is called the domain of the function f : X → Y .
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