Index

Absorption (optical), 446–448
coefficient, 447
effect of dislocations on, 446
Urbach’s rule, 447
Accelerated device failure mechanisms, 547
Acceptors, 13
Antiphase boundaries, 320
Antiphase boundaries in epitaxial films of II-VI and III-V compounds grown on Ge and Si, 324
Antisite defects, 73
Atomic core structure of dislocations, 163
Atomic force microscopy (AFM), 149
Avalanche breakdown, 357, 558
Avalanche photodiodes, 556
Ball-and-wire crystal models of grain boundary core structures, 302
Ball-and-wire modeling of misfit dislocations, 95
Ball-and-wire modeling of the crystallography of APBs in the sphalerite structure, 321
Ball-and-wire models of dislocations in the diamond structure, 167
Ball-and-wire models of dislocations in the wurtzite structure, 202, 206
Band bending at a negatively charged dislocation, 451
Band bending at grain boundaries, 425, 536, 537
Band theory, 14. See also Energy band theory
Bicrystallography, 299
Bi-tetrahedron, 200, 202
Bloch’s theorem, 28
Bonding (chemical), 14, 15
Bonds and bands, 42
Boundary layer capacitors, 567, 569
Bravais lattice, 20
Bridgman crystal growth technique, 4
Bright EBIC defect contrast, 465
Brillouin zones, 34
Brittle - ductile transition, 115
Brittle - ductile transition temperature, 79
Burgers vector, 79
Carrier scattering by dislocations, 434, 523, 525
Carrier transport across grain boundaries, 536
Catastrophic optical damage (COD), 548
Cathodoluminescence (CL), 140, 142
CL microscopy of individual dislocations, 485
CL D-line emission and the role of traces of transition metals in Si and Si1-xGex, 517
dark and bright dislocation CL contrast, 485
dislocation emission in diamond, 494
dot and halo dislocation contrast, 491
scanning electron microscopy, 140, 142
Characterization of extended defects in semiconductors, 122
decoration, 124
deep level transient spectroscopy (DLTS), 143, 471
electrical measurements, 122
electron microscopy, 128
electron spin resonance (ESR), 417, 471
etching, 124
field emission gun scanning transmission electron microscopy (FEGSTEM), 144
light microscopy, 123
microscopy techniques, 123
photoluminescence spectroscopy, 128
quenched infrared beam induced current (Q-IRBIC), 128
Rutherford backscattering spectrometry (RBS), 154
positron annihilation spectroscopy, 154
scanning electron microscopy, 136 see also Scanning electron microscopy (SEM)
scanning laser beam microscopy, 127
scanning probe microscopy, 147 see also Scanning probe microscopy (SPM)
stress birefringence, 124
transmission electron microscopy, 130
see also Transmission electron microscopy (TEM)
X-ray beam induced current (XBIC), 477, 479, 480
X-ray topography, 146
Charge on dislocations in II-VI compounds, 434
Chemomechanical effects in semiconductors, 242–252
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherent interfaces and dislocations, 292</td>
</tr>
<tr>
<td>Coincidence lattice, 293</td>
</tr>
<tr>
<td>Constitutional supercooling, 611</td>
</tr>
<tr>
<td>Convergent-beam electron diffraction technique, 134</td>
</tr>
<tr>
<td>Core form of dislocations in II-VI compounds, 253</td>
</tr>
<tr>
<td>Core structures of extended defects in semiconductors, 163</td>
</tr>
<tr>
<td>Core structures of grain boundaries and the Hornstra models, 302</td>
</tr>
<tr>
<td>Cottrell atmosphere, 101, 349, 351</td>
</tr>
<tr>
<td>Crystal growth techniques, 1, 4</td>
</tr>
<tr>
<td>Bridgman method, 4</td>
</tr>
<tr>
<td>Czochralski method, 4</td>
</tr>
<tr>
<td>molecular beam epitaxy (MBE), 53</td>
</tr>
<tr>
<td>Crystal perfection, 7</td>
</tr>
<tr>
<td>Crystal structure, 20</td>
</tr>
<tr>
<td>diamond, 24</td>
</tr>
<tr>
<td>rocksalt, 27</td>
</tr>
<tr>
<td>sphalerite, 26</td>
</tr>
<tr>
<td>wurtzite, 26</td>
</tr>
<tr>
<td>Crystallographic impurity facets, 615</td>
</tr>
<tr>
<td>Czochralski crystal growth technique, 4, 5</td>
</tr>
<tr>
<td>Dangling bonds, 416</td>
</tr>
<tr>
<td>evidence from ESR and DLTS, 416</td>
</tr>
<tr>
<td>passivation of dangling bonds in dislocations and grain boundaries, 482</td>
</tr>
<tr>
<td>Dark and bright dislocation CL contrast, 485</td>
</tr>
<tr>
<td>Dark-line defects (DLDs), 499, 500, 548, 556</td>
</tr>
<tr>
<td>Dark-spot defects (DSDs), 547, 548</td>
</tr>
<tr>
<td>Debris (left behind moving dislocations), 348, 418, 518, 532</td>
</tr>
<tr>
<td>Decoration, 354</td>
</tr>
<tr>
<td>Deep level transient spectroscopy (DLTS), 143, 471</td>
</tr>
<tr>
<td>Defects in semiconductors, 73</td>
</tr>
<tr>
<td>characterization, 75, 122</td>
</tr>
<tr>
<td>device effects, 413</td>
</tr>
<tr>
<td>dislocations, 76</td>
</tr>
<tr>
<td>domains, 76</td>
</tr>
<tr>
<td>extended defects, 74, 75</td>
</tr>
<tr>
<td>grains, 76</td>
</tr>
<tr>
<td>grain boundaries, 301</td>
</tr>
<tr>
<td>growth-induced, 357</td>
</tr>
<tr>
<td>interfaces, 76</td>
</tr>
<tr>
<td>point defects, 73, 606</td>
</tr>
<tr>
<td>precipitates, 606</td>
</tr>
<tr>
<td>process-induced, 114, 357</td>
</tr>
<tr>
<td>role in devices, 546</td>
</tr>
<tr>
<td>stacking faults, 76</td>
</tr>
<tr>
<td>surface defects, 76</td>
</tr>
<tr>
<td>transient defects, 73</td>
</tr>
<tr>
<td>twins, 76</td>
</tr>
<tr>
<td>volume defects, 75</td>
</tr>
<tr>
<td>Defects (the role in devices), 546</td>
</tr>
<tr>
<td>accelerated device failure mechanisms, 547</td>
</tr>
<tr>
<td>avalanche breakdown, 557, 558</td>
</tr>
<tr>
<td>catastrophic optical damage (COD), 548</td>
</tr>
<tr>
<td>dark-line defects (DLDs), 499, 500, 548, 556</td>
</tr>
<tr>
<td>dark-spot defects (DSDs), 547, 548</td>
</tr>
<tr>
<td>device performance limiting effects, 551</td>
</tr>
<tr>
<td>device yields, 547</td>
</tr>
<tr>
<td>excess leakage currents, 552</td>
</tr>
<tr>
<td>excess noise, 551</td>
</tr>
<tr>
<td>‘fatal’ defects, 547</td>
</tr>
<tr>
<td>mechanisms of defect-induced failure in devices, 547, 554</td>
</tr>
<tr>
<td>Deformation potential and shallow states, 420</td>
</tr>
<tr>
<td>Deformation triboluminescence in II-VI compounds, 512</td>
</tr>
<tr>
<td>Degradation of devices, 442, 499, 547</td>
</tr>
<tr>
<td>Device benefits of dislocations and grain boundaries, 558</td>
</tr>
<tr>
<td>devices based on dislocation luminescence, 560</td>
</tr>
<tr>
<td>devices controlled by grain boundaries, 565</td>
</tr>
<tr>
<td>dislocations and grain boundaries as microelectronic components, 562</td>
</tr>
<tr>
<td>gettering, 559</td>
</tr>
<tr>
<td>Device performance limiting effects, 551</td>
</tr>
<tr>
<td>excess leakage currents, 552</td>
</tr>
<tr>
<td>excess noise, 551</td>
</tr>
<tr>
<td>Device yields, 547</td>
</tr>
<tr>
<td>Diamond structure, 24</td>
</tr>
<tr>
<td>Diffusion,</td>
</tr>
<tr>
<td>rapid diffusion along grain boundaries and ‘dislocation pipes’, 353</td>
</tr>
<tr>
<td>role of dislocations and grain boundaries, 351–354</td>
</tr>
<tr>
<td>Diffusion-induced misfit dislocations, 352</td>
</tr>
<tr>
<td>Dislocations,</td>
</tr>
<tr>
<td>atomic core structure of, 163</td>
</tr>
<tr>
<td>band bending at a negatively charged dislocation, 451</td>
</tr>
<tr>
<td>Burgers vector, 79</td>
</tr>
<tr>
<td>charge on dislocations in II-VI compounds, 434</td>
</tr>
<tr>
<td>core form in II-VI compounds, 253</td>
</tr>
<tr>
<td>core structures (calculated), 182</td>
</tr>
<tr>
<td>cores (HRTEM evidence), 181</td>
</tr>
<tr>
<td>current flow and the determination of dislocation line charges, 255</td>
</tr>
<tr>
<td>densities, 413</td>
</tr>
<tr>
<td>device benefits of, 558</td>
</tr>
<tr>
<td>diffusion-induced misfit dislocations, 352</td>
</tr>
<tr>
<td>dissociation, 84</td>
</tr>
<tr>
<td>dissociation (weak beam TEM evidence of), 177</td>
</tr>
<tr>
<td>dynamics, 109, 222</td>
</tr>
<tr>
<td>edge, 81</td>
</tr>
<tr>
<td>effect on carrier mobility, 523</td>
</tr>
<tr>
<td>effect on devices, 413</td>
</tr>
<tr>
<td>effect on minority carrier lifetime, 414, 442</td>
</tr>
<tr>
<td>effect on optical absorption, 446</td>
</tr>
<tr>
<td>effect on radiative recombination efficiency, 549</td>
</tr>
<tr>
<td>effect on transport properties of epitaxial heterostructures, 522</td>
</tr>
<tr>
<td>elastic energy, 84</td>
</tr>
</tbody>
</table>
Index

- Dislocation dynamics, 109, 222
- Dislocation EBIC contrast, bright EBIC defect contrast, 465
- charge controlled recombination theory of, 451
- charge controlled recombination or independent recombination centres at dislocations?, 463
- fundamental dislocation parameters obtained from, 456
- phenomenological theory of, 450
- role of impurities, 476
- Shockley-Read-Hall recombination model for, 459
- temperature dependence of, 454
- Dislocation emission in diamond, 494
- Dislocation excitons, 420
- and CL emission, 507
- Dislocation exciton luminescence in germanium, 498
- Dislocation-free crystals (growth of), 88
- Dislocation generation suppression, 184, 340
- Dislocation impurity-activated CL in silicon, 498
- Dislocation-induced superconductivity?, 527
- Dislocation interactions with impurities, 349
- Dislocation luminescence in III-V materials, 499
- Dislocation luminescence in II-VI materials, 503
- Dislocations and impurities, 421
- Dislocations and luminescence, 441
- Dislocations and photoconductivity, 438
- Dislocations and point defects, 96, 345–357
- Dislocations and stacking faults: twinning and phase transformations, 286
- Dislocations and volume defects, 354–357
- decoration, 354
- precipitates and dislocation sources, 355
- Dislocations as microelectronic components, 562
- Dislocations in piezoelectric crystals, 420
- Dislocations in the sphalerite structure, 196
- Dislocation mobility, 223
- effects of doping on, 226
- Dislocation motion in semiconductors, 183, 222
- atomic mechanisms of, 105
- effects of doping on, 235
- recombination-enhanced, 442
- Dislocation multiplication in semiconductors, 280
- Dislocation polarity in semiconducting compounds, 192
- Dislocation trap states, statistics of the occupation of, 426
- Dislocation velocity, 110, 223
- theories of the effects of doping on dislocation velocities, 234
- values of, 232
- Dissociation and extended dislocations, 84
- Donolato theory of EBIC contrast, 450
- Donors, 13
- Dot and halo dislocation contrast, 142, 491
- Double-kink mechanism, 105, 222
- Double Schottky barriers, 534, 537, 566
- Dislocation cellular structures, 344, 441, 621
- Dislocation CL contrast, dark and bright dislocation CL contrast, 485
- dislocation emission in diamond, 494
- dislocation exciton luminescence in germanium, 498
- dislocation impurity-activated CL in silicon, 498
- dot and halo dislocation contrast, 142, 491
- other forms of dislocation contrast, 491
- localized radiative recombination and dislocation bright contrast, 494
- polarity dependence of dislocation CL in compounds, 508
- Dislocation CL, polarity dependence in compounds, 508
- Dislocation dynamics, 109, 222
- Dislocation EBIC contrast, bright EBIC defect contrast, 465
- charge controlled recombination theory of, 451
- charge controlled recombination or independent recombination centres at dislocations?, 463
- fundamental dislocation parameters obtained from, 456
- phenomenological theory of, 450
- role of impurities, 476
- Shockley-Read-Hall recombination model for, 459
- temperature dependence of, 454
- Dislocation emission in diamond, 494
- Dislocation excitons, 420
- and CL emission, 507
- Dislocation exciton luminescence in germanium, 498
- Dislocation-free crystals (growth of), 88
- Dislocation generation suppression, 184, 340
- Dislocation impurity-activated CL in silicon, 498
- Dislocation-induced superconductivity?, 527
- Dislocation interactions with impurities, 349
- Dislocation luminescence in III-V materials, 499
- Dislocation luminescence in II-VI materials, 503
- Dislocations and impurities, 421
- Dislocations and luminescence, 441
- Dislocations and photoconductivity, 438
- Dislocations and point defects, 96, 345–357
- Dislocations and stacking faults: twinning and phase transformations, 286
- Dislocations and volume defects, 354–357
- decoration, 354
- precipitates and dislocation sources, 355
- Dislocations as microelectronic components, 562
- Dislocations in piezoelectric crystals, 420
- Dislocations in the sphalerite structure, 196
- Dislocation mobility, 223
- effects of doping on, 226
- Dislocation motion in semiconductors, 183, 222
- atomic mechanisms of, 105
- effects of doping on, 235
- recombination-enhanced, 442
- Dislocation multiplication in semiconductors, 280
- Dislocation polarity in semiconducting compounds, 192
- Dislocation trap states, statistics of the occupation of, 426
- Dislocation velocity, 110, 223
- theories of the effects of doping on dislocation velocities, 234
- values of, 232
- Dissociation and extended dislocations, 84
- Donolato theory of EBIC contrast, 450
- Donors, 13
- Dot and halo dislocation contrast, 142, 491
- Double-kink mechanism, 105, 222
- Double Schottky barriers, 534, 537, 566
Index

Edge dislocation, 81
Elastic energy of the dislocation, 84
Electrical and luminescent effects of grain boundaries, 533
Electrical conductivity of a semiconductor, 13
Electrical effects of deformation of semiconductors, 425
effect of charged dislocations on the Hall coefficient, 429
electrical effects of polar dislocations, 434
experimental tests of the Read theory, 428
experimental verification of the Read theory, 430
later developments, 433
statistics of the occupation of dislocation trap states, 426
Electrical effects of debris left behind moving dislocations, 532
Electrical effects of the deformation of semiconductors, 425
Electrical effects of dislocations in semiconductors, 103, 412
Electrical effects of polar dislocations, 434
Electrical properties of dislocations, 415
electrical effects of debris left behind moving dislocations, 532
summary of, 530
Electrical properties of grain boundaries, 424
Electron backscattering diffraction (EBSD), 144
Electron beam-induced current (EBIC), 140, 141
dislocation EBIC contrast theory, 450
grain boundary contrast, 570
microscopy of individual dislocations, 448
study of grain boundaries in electroceramics, 570
study of slip planes in Si, 418
Electron spin resonance (ESR), 417, 433, 471
Electronic energy levels and bands of dislocations, 470
ESR, DLTS and SDLTS studies, 471
microscopic methods of study, 473
Electroplastic effect, 269
Energy band alignment, 46
Energy band engineering, 45
Energy bands in crystals, 10, 30
Energy band theory, 14, 27
Energy gap, 37
direct, 37
indirect, 37
values (table), 20
Energy of dislocations, 82
Epitaxial heterostructures,
effect of dislocations on transport properties of, 522
magneto-conductance oscillations in heterostructures, 527
Epitaxial interfaces and misfit dislocations, 331–345
defects in III-Nitride systems, 343–345
density of threading dislocations in the epitaxial layer, 338, 343
film thickness and the introduction of misfit dislocations, 334–336
lateral epitaxial overgrowth (LEO), 344–345
materials selection for epitaxy, 332–334
mechanisms of introduction and types of misfit dislocations, 336–339
misfit dislocation anisotropy in [100] sphalerite structure films, 339
misfit dislocations in the GaAs/Ge and GaAs/Si systems, 340–343
misfit dislocations in the GeSi/Si system, 339–340
Epitaxy, 5, 90
materials selection for, 332–334
modes of epitaxial growth, 94
strained layer epitaxial growth, 334
Etching, 124
Excess leakage currents, 552
Excess noise, 551
‘Fatal’ defects, 547
Fermi-Dirac distribution function, 12
Fermi energy (level), 13
Fick’s law, 350
Field emission gun scanning transmission electron microscopy (FEGSTEM), 144
Z contrast in FEGSTEM, 145
Fractional ionicity of the bonding, 44
Frank’s rule for dislocation reactions, 84
Frank-Read source, 112
and the Z-mill, 112
Friedel index, 295
Gettering, 559
Glide and shuffle sets of dislocations, 171
Grain boundaries, 301
antiphase boundaries, 320
antiphase boundaries in epitaxial films of II-VI and III-V compounds grown on Ge and Si, 324
band bending at, 425, 537
carrier transport across grain boundaries, 536
core structures and the Hornstra models, 302
crystallographic polarity and GBs in the sphalerite structure, 317
device benefits of, 558
double Schottky barriers, 534, 537, 566
electrical and luminescent effects of, 533
electrical properties of, 424
Hornstra models, 296, 302
HRTEM observations of GB core structures, 315
impurities and grain boundaries, 306
impurity segregation at, 309
paths for enhanced atomic diffusion, 301, 309, 311
REBIC analysis of, 543
recombination at, 541
rotation matrices, twins and semicoherent grain boundaries, 295
Index

SEM CL analysis of, 543
SEM EBIC contrast of, 543, 544, 570
semicoherent, 295
small- and large-angle grain boundaries, 303
Grain boundary controlled devices, 565
boundary layer capacitors, 567, 569
positive temperature coefficient (PTC) thermistors, 567–571
varistors, 567
Grain boundaries as microelectronic components, 562
Grappes in InP, 364–365
Grown-in defects, 358–367
graphites in InP, 364–365
growth hillocks in InP and GaN, 365
micropipes and nanopipes in SiC and GaN, 365–367
oval defects in epitaxial GaAs, 363–364
tetrahedral stacking faults in epitaxial silicon, 359–361
tripyramids, 361–363
Growth and processing induced defects, 357–375
graphites in InP, 364–365
grown-in defects, 358–367
growth hillocks in InP and GaN, 365
mechanical damage, 370
micropipes and nanopipes in SiC and GaN, 365–367
oval defects in epitaxial GaAs, 363–364
oxidation-induced stacking faults in silicon, 371–375
processing-induced defects, 367–375
tetrahedral stacking faults in epitaxial silicon, 359–361
tripyramids, 361–363
Growth hillocks in InP and GaN, 365
Growth of macroscopic dislocation-free crystals, 88

Hall coefficient,
effect of charged dislocations on, 429
Heterojunctions and energy band alignment, 46
Hexagonal close packed structure, 26
Hornstra dislocation models, 166
Hornstra models of grain boundaries, 296, 302
Hydrogenated amorphous silicon (a- Si:H), 59
Hydrogen passivation, 479, 482–484

Impurities, 476
impurities and grain boundaries, 306
and the Cottrell atmosphere, 101
Impurity growth striations, 615
Impurity precipitation, 606
Impurity segregation at grain boundaries, 309
Indentation rosettes, 192
Integrated circuits, 63
Interfaces, 76
Interface energy calculations, 300

Jogs, 99
Kinks, 99
Lateral epitaxial overgrowth (LEO), 344–345
Lattice, 20
Lattice mismatch, 9, 331, 334
Lattice mismatch strain, 334
Lead chalcogenides,
observations of dislocations in, 221
Light microscopy, 123
Linear combination of atomic orbitals (LCAO), 14
Liquid phase epitaxy (LPE), 7
Low-dimensional structures, 50
Magneto-conductance oscillations in heterostructures, 527
Mechanical damage, 370
Mechanisms of defect-induced failure in devices, 554
Microdynamical equations for the initial stages of
deformation, 281
Microdynamical theory of creep, 282
Microdynamical theory of the polar bending of GaAs, 284
Microdynamical theory of the yield point, 282
Micropipes and nanopipes in SiC and GaN, 365–367
Microplasma formation and breakdown, 557
Microscopy techniques, 123
Minibands, 54, 56, 334
Misfit dislocations, 90
amisotropy in sphalerite structure films, 339
ball-and-wire modelling of, 95
diffusion-induced, 352
Modulation doping, 51, 52
Molecular beam epitaxy (MBE), 53

NaCl (rocksalt) crystal structure, 27
Near-field scanning optical microscopy (NSOM), 152
Non-crystalline semiconductors, 58
chalcogenide glasses, 58
non-crystalline silicon, 59
Non-radiative recombination, 542
n-type semiconductor, 13

O-lattice treatment of crystalline interfaces, 298
Optical absorption, 446–448
effect of dislocations on, 446
Orthogonalized plane waves (OPW), 30
Oval defects in epitaxial GaAs, 363–364
Oxidation-induced stacking faults in silicon, 371–375
Partial dislocations in the wurtzite structure, 206
Passivation of dangling bonds in dislocations and grain
boundaries, 482
Peierls potential troughs, 106
© Cambridge University Press

Cambridge University Press
978-0-521-81934-3 - Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures
D. B. Holt and B. G. Yacobi
Index

More information

Recombination-enhanced dislocation climb (REDC), 556
Recombination-enhanced dislocation motion, 442
Reflection high-energy electron diffraction (RHEED), 7
Role of defects in devices, 546. See also Defects (the role in devices)
Role of dislocations and grain boundaries in diffusion, 351–354
Rotation matrices, 295
Rutherford backscattering spectrometry (RBS), 154
Scanning deep level transient spectroscopy (SDLTS), 143, 476
Scanning electron microscopy (SEM), 136
cathodoluminescence (CL), 140, 142
description of crystal structure, 140
electron acoustic mode, 142
electron backscattering diffraction (EBSD), 144
emissive mode, 140
modes of, 140
REBIC (remote EBIC), 142
scanning deep level transient spectroscopy (SDLTS), 143
signal formation and resolution, 137
x-ray mode, 140
SEM CL analysis of grain boundaries, 543
SEM CL microscopy of individual dislocations, 485
SEM CL studies of dislocation motion, 520
SEM EBIC microscopy of individual dislocations, 448
Scanning gate microscopy (SGM), 527
Scanning microprobe microscopy (SPM), 147
atomic force microscopy (AFM), 149
near-field scanning optical microscopy (NSOM), 152
scanning tunnelling luminescence (STL) microscopy, 150
scanning tunnelling microscopy (STM), 147
Scanning probe microscopy of extended defects, 520
Scanning tunnelling microscopy (STM), 147
Scanning tunnelling luminescence (STL) microscopy, 150
Schrödinger equation, 31
Screw dislocation, 81
Semi-coherent grain boundaries, 295
Semiconductor, alloys, 40
applications, 3
dislocation dynamics, 222
energy gap values (table), 20
germanium, 61
non-crystalline, 58
properties (table), 20
silicon, 62
ternary compounds, 38
III-V compounds, 17, 66
II-VI compounds, 19

Peierls (or Peierls-Nabarro) stress, 105–107, 222
and the double-kink mechanism, 105, 222
Phase separation and ordering in semiconductor compounds and alloys, 610
Photoconductivity, 438
Photoluminescence (PL), 128
Photoplastic effect, 259
Plastic deformation, 77, 278
and slip planes, 77
and the microdynamical theory of plasticity, 278
Plasticity of semiconductors, 104
Point defects, complexes, 610
grown-in spatial maldistributions, 611
interactions, 607
non-stoichiometry, 609
thermodynamics, 607
Point group, 23
Polar dislocations, electrical effects of, 434
Polar bending, 192
Polarity in the sphalerite and wurtzite structures, 184
Polarity of dislocations in semiconducting compounds, 192, 422
Polytypes, 210
polytype transformations, 210–213
Porous Si, 522
Positive temperature coefficient (PTC) thermistors, 567–571
Positron annihilation spectroscopy, 154
Precipitates, 606
Precipitates and dislocation sources, 355
Precipitation hardening, 356
Process-induced defects, 114, 367–375
in devices, 10
mechanical damage, 370
oxidation-induced stacking faults in silicon, 371–375
Pseudomorphism, 91
p-type semiconductor, 13
Quantized magneto-conductance oscillations at dislocations, 424
Quantum cascade lasers, 55
Quantum wells, 46, 50–53
Read theory, 425, 432
experimental tests of, 428
experimental verification of, 430
REBIC analysis of grain boundaries, 543, 570
Reciprocal lattice, 32
Recombination at dislocations, 436
Recombination at grain boundaries, 541
Recombination-enhanced dislocation glide (REDG), 442, 556

Index
Index

Shear produced by the movement of dislocations, 82
Shockley dislocation model, 105
Shockley-Read-Hall (SRH) recombination, 542
Shuffle set of dislocations, 171
Slip, crystallography of, 86
Slip systems in the wurtzite structure, 199
Small- and large-angle grain boundaries, 303
Solar cells, 59, 314, 329, 482, 541, 544, 549, 550
Spatial maldistributions of point defects, 611
cell formation, 613
constitutional supercooling, 611
crystallographic impurity facets, 615
impurity growth striations, 615
swirl defects in silicon, 617
Sphalerite structure, 26
dislocations in, 196
Stacking faults, 76
energies for various semiconductors, 214, 215
energy of stacking faults in wurtzite and sphalerite
structure compounds, 213
extrinsic stacking faults and Frank partial dislocations,
86
Stacking faults in wurtzite-structure materials, crystallography of, 216
TEM studies of, 208
Strained layer epitaxial growth, 334
Superconductivity, 527–529
in lead chalcogenides superlattices, 528, 529
Superlattices, 53
Surface recombination velocity, 542
Suzuki effect, 215
Swirl defects in silicon, 617
Symmetry and bircystallography, 299
Tetrahedral stacking faults in epitaxial silicon, 359–361
Thermists, 567–571
Thompson’s tetrahedron, 78
Transmission electron microscopy (TEM), 130
convergent-beam electron diffraction (CBED), 134
high resolution, 132
diffraction contrast, 133
weak-beam diffraction contrast, 134
selected area diffraction (SAD), 132
Triboluminescence, 274
deformation triboluminescence in II-VI compounds, 512
Tripyramids, 361–363
Twins, 295
Unit cells, 22
Urbach’s rule, 447
Varistors, 567
Vapour phase epitaxy (VPE), 6
Wurtzite structure, 26
ball-and-wire models of dislocations in, 202, 206
partial dislocations in, 206
slip systems in, 199
Wurtzite-sphalerite and polytype transformations, 210
X-ray beam induced current (XBIC), 477, 479, 480
X-ray topography, 146
Yield and reliability, 75
Zone refining, 3