Theory of Financial Risk and Derivative Pricing

From Statistical Physics to Risk Management

Risk control and derivative pricing have become of major concern to financial institutions. The need for adequate statistical tools to measure an anticipate the amplitude of the potential moves of financial markets is clearly expressed, in particular for derivative markets. Classical theories, however, are based on simplified assumptions and lead to a systematic (and sometimes dramatic) underestimation of real risks. *Theory of Financial Risk and Derivative Pricing* summarizes recent theoretical developments, some of which were inspired by statistical physics. Starting from the detailed analysis of market data, one can take into account more faithfully the real behaviour of financial markets (in particular the 'rare events') for asset allocation, derivative pricing and hedging, and risk control. This book will be of interest to physicists curious about finance, quantitative analysts in financial institutions, risk managers and graduate students in mathematical finance.

JEAN-PHILIPPE BOUCHAUD was born in France in 1962. After studying at the French Lycée in London, he graduated from the Ecole Normale Supérieure in Paris, where he also obtained his Ph.D. in physics. He was then appointed by the CNRS until 1992, where he worked on diffusion in random media. After a year spent at the Cavendish Laboratory Cambridge, Dr Bouchaud joined the Service de Physique de l'Etat Condensé (CEA-Saclay), where he works on the dynamics of glassy systems and on granular media. He became interested in theoretical finance in 1991 and co-founded, in 1994, the company Science & Finance (S&F, now Capital Fund Management). His work in finance includes extreme risk control and alternative option pricing and hedging models. He is also Professor at the Ecole de Physique et Chimie de la Ville de Paris. He was awarded the IBM young scientist prize in 1990 and the CNRS silver medal in 1996.

MARC POTTERS is a Canadian physicist working in finance in Paris. Born in 1969 in Belgium, he grew up in Montreal, and then went to the USA to earn his Ph.D. in physics at Princeton University. His first position was as a post-doctoral fellow at the University of Rome La Sapienza. In 1995, he joined Science & Finance, a research company in Paris founded by J.-P. Bouchaud and J.-P. Aguilar. Today Dr Potters is Managing Director of Capital Fund Management (CFM), the systematic hedge fund that merged with S&F in 2000. He directs fundamental and applied research, and also supervises the implementation of automated trading strategies and risk control models for CFM funds. With his team, he has published numerous articles in the new field of statistical finance while continuing to develop concrete applications of financial forecasting, option pricing and risk control. Dr Potters teaches regularly with Dr Bouchaud at the Ecole Centrale de Paris.

Theory of Financial Risk and Derivative Pricing

From Statistical Physics to Risk Management

SECOND EDITION Jean-Philippe Bouchaud and Marc Potters

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > > http://www.cambridge.org

© Jean-Philippe Bouchaud and Marc Potters 2000, 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2000 This edition published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typefaces Times 10/13 pt. and Helvetica System $\[Mathbb{E}X 2_{\mathcal{E}}\]$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data Bouchaud, Jean-Philippe, 1962– Theory of financial risk and derivative pricing : from statistical physics to risk management / Jean-Philippe Bouchaud and Marc Potters.–2nd edn

p. cm.

Rev. edn of: Theory of financial risks. 2000. Includes bibliographical references and index. ISBN 0 521 81916 4 (hardback)

1. Finance. 2. Financial engineering. 3. Risk assessment. 4. Risk management.

I. Potters, Marc, 1969– II. Bouchaud, Jean-Philippe, 1962– Theory of financial risks.

III. Title.

HG101.B68 2003 658.15′5 – dc21 2003044037

ISBN 0 521 81916 4 hardback

Contents

Foreword pag						
Pr	Preface					
1	Prob	ability theory: basic notions	1			
	1.1	Introduction	1			
	1.2	Probability distributions	3			
	1.3	Typical values and deviations	4			
	1.4	Moments and characteristic function	6			
	1.5	Divergence of moments – asymptotic behaviour	7			
	1.6	Gaussian distribution	7			
	1.7	Log-normal distribution	8			
	1.8	Lévy distributions and Paretian tails	10			
	1.9	Other distributions (*)	14			
	1.10	Summary	16			
2	Maxi	imum and addition of random variables	17			
	2.1	Maximum of random variables	17			
	2.2	Sums of random variables	21			
		2.2.1 Convolutions	21			
		2.2.2 Additivity of cumulants and of tail amplitudes	22			
		2.2.3 Stable distributions and self-similarity	23			
	2.3	Central limit theorem	24			
		2.3.1 Convergence to a Gaussian	25			
		2.3.2 Convergence to a Lévy distribution	27			
		2.3.3 Large deviations	28			
		2.3.4 Steepest descent method and Cramèr function (*)	30			
		2.3.5 The CLT at work on simple cases	32			
		2.3.6 Truncated Lévy distributions	35			
		2.3.7 Conclusion: survival and vanishing of tails	36			
	2.4	From sum to max: progressive dominance of extremes (*)	37			
	2.5	Linear correlations and fractional Brownian motion	38			
	2.6	Summary	40			

vi	Contents				
3	Con	tinuous time limit, Ito calculus and path integrals	43		
	3.1	Divisibility and the continuous time limit	43		
		3.1.1 Divisibility	43		
		3.1.2 Infinite divisibility	44		
		3.1.3 Poisson jump processes	45		
	3.2	Functions of the Brownian motion and Ito calculus	47		
		3.2.1 Ito's lemma	47		
		3.2.2 Novikov's formula	49		
		3.2.3 Stratonovich's prescription	50		
	3.3	Other techniques	51		
		3.3.1 Path integrals	51		
	2.4	3.3.2 Girsanov's formula and the Martin–Siggia–Rose trick (*)	53		
	3.4	Summary	54		
4	Ana	lysis of empirical data	55		
	4.1	Estimating probability distributions	55		
		4.1.1 Cumulative distribution and densities – rank histogram	55		
		4.1.2 Kolmogorov–Smirnov test	56		
		4.1.3 Maximum likelihood	57		
		4.1.4 Relative likelihood	59		
		4.1.5 A general caveat	60		
	4.2	Empirical moments: estimation and error	60		
		4.2.1 Empirical mean	60		
		4.2.2 Empirical variance and MAD	61		
		4.2.3 Empirical kurtosis	61		
		4.2.4 Error on the volatility	61		
	4.3	Correlograms and variograms	62		
		4.3.1 Variogram	62		
		4.3.2 Correlogram	03 64		
		4.3.5 Huist exponent	64		
	44	A.S.4 Conclutions across unretent time zones	66		
	т.т 4 5	Summary	67		
	т.5	Summary	07		
5	Fina	ancial products and financial markets	69		
	5.1	Introduction	69		
	5.2	Financial products	69		
		5.2.1 Cash (Interbank market)	69		
		5.2.2 Stocks	71		
		5.2.3 Stock indices	72		
		5.2.4 Bonds	75		
		5.2.5 Commodities	77		
		5.2.6 Derivatives	77		

		Contents	vii
	5.3	Financial markets	79
		5.3.1 Market participants	79
		5.3.2 Market mechanisms	80
		5.3.3 Discreteness	81
		5.3.4 The order book	81
		5.3.5 The bid-ask spread	83
		5.3.6 Transaction costs	84
	~ 4	5.3.7 Time zones, overnight, seasonalities	85
	5.4	Summary	85
6	Stat	istics of real prices: basic results	87
	6.1	Aim of the chapter	87
	6.2	Second-order statistics	90
		6.2.1 Price increments vs. returns	90
		6.2.2 Autocorrelation and power spectrum	91
	6.3	Distribution of returns over different time scales	94
		6.3.1 Presentation of the data	95
		6.3.2 The distribution of returns	96
		6.3.3 Convolutions	101
	6.4	Tails, what tails?	102
	6.5	Extreme markets	103
	6.6	Discussion	104
	6.7	Summary	105
7	Non	-linear correlations and volatility fluctuations	107
	7.1	Non-linear correlations and dependence	107
		7.1.1 Non identical variables	107
		7.1.2 A stochastic volatility model	109
		7.1.3 GARCH(1,1)	110
		7.1.4 Anomalous kurtosis	111
		7.1.5 The case of infinite kurtosis	113
	7.2	Non-linear correlations in financial markets: empirical results	114
		7.2.1 Anomalous decay of the cumulants	114
		7.2.2 Volatility correlations and variogram	117
	7.3	Models and mechanisms	123
		7.3.1 Multifractality and multifractal models (*)	123
		7.3.2 The microstructure of volatility	125
	7.4	Summary	127
8	Ske	vness and price-volatility correlations	130
	8.1	Theoretical considerations	130
		8.1.1 Anomalous skewness of sums of random variables	130
		8.1.2 Absolute vs. relative price changes	132
		8.1.3 The additive-multiplicative crossover and the q-transformation	134

viii

Cambridge University Press 0521819164 - Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, Second Edition Jean-Philippe Bouchaud and Marc Potters Frontmatter <u>More information</u>

Contents

	8.2	A retarded model	135
		8.2.1 Definition and basic properties	135
		8.2.2 Skewness in the retarded model	136
	8.3	Price-volatility correlations: empirical evidence	137
		8.3.1 Leverage effect for stocks and the retarded model	139
		8.3.2 Leverage effect for indices	140
		8.3.3 Return-volume correlations	141
	8.4	The Heston model: a model with volatility fluctuations and skew	141
	8.5	Summary	144
9	Cross	s-correlations	145
	9.1	Correlation matrices and principal component analysis	145
		9.1.1 Introduction	145
		9.1.2 Gaussian correlated variables	147
		9.1.3 Empirical correlation matrices	147
	9.2	Non-Gaussian correlated variables	149
		9.2.1 Sums of non Gaussian variables	149
		9.2.2 Non-linear transformation of correlated Gaussian variables	150
		9.2.3 Copulas	150
		9.2.4 Comparison of the two models	151
		9.2.5 Multivariate Student distributions	153
		9.2.6 Multivariate Lévy variables (*)	154
		9.2.7 Weakly non Gaussian correlated variables (*)	155
	9.3	Factors and clusters	156
		9.3.1 One factor models	156
		9.3.2 Multi-factor models	157
		9.3.3 Partition around medoids	158
		9.3.4 Eigenvector clustering	159
		9.3.5 Maximum spanning tree	159
	9.4	Summary	160
	9.5	Appendix A: central limit theorem for random matrices	161
	9.6	Appendix B: density of eigenvalues for random correlation matrices	164
10	Risk	measures	168
	10.1	Risk measurement and diversification	168
	10.2	Risk and volatility	168
	10.3	Risk of loss, 'value at risk' (VaR) and expected shortfall	171
		10.3.1 Introduction	171
		10.3.2 Value-at-risk	172
		10.3.3 Expected shortfall	175
	10.4	Temporal aspects: drawdown and cumulated loss	176
	10.5	Diversification and utility – satisfaction thresholds	181
	10.6	Summary	184

		Contents	іх
11	Extr	eme correlations and variety	186
	11.1	Extreme event correlations	187
		11.1.1 Correlations conditioned on large market moves	187
		11.1.2 Real data and surrogate data	188
		11.1.3 Conditioning on large individual stock returns:	
		exceedance correlations	189
		11.1.4 Tail dependence	191
		11.1.5 Tail covariance (*)	194
	11.2	Variety and conditional statistics of the residuals	195
		11.2.1 The variety	195
		11.2.2 The variety in the one-factor model	196
		11.2.3 Conditional variety of the residuals	197
		11.2.4 Conditional skewness of the residuals	198
	11.3	Summary	199
	11.4	Appendix C: some useful results on power-law variables	200
12	Opti	mal portfolios	202
	12.1	Portfolios of uncorrelated assets	202
		12.1.1 Uncorrelated Gaussian assets	203
		12.1.2 Uncorrelated 'power-law' assets	206
		12.1.3 'Exponential' assets	208
		12.1.4 General case: optimal portfolio and VaR (*)	210
	12.2	Portfolios of correlated assets	211
		12.2.1 Correlated Gaussian fluctuations	211
		12.2.2 Optimal portfolios with non-linear constraints (*)	215
		12.2.3 'Power-law' fluctuations – linear model (*)	216
		12.2.4 'Power-law' fluctuations – Student model (*)	218
	12.3	Optimized trading	218
	12.4	Value-at-risk – general non-linear portfolios (*)	220
		12.4.1 Outline of the method: identifying worst cases	220
		12.4.2 Numerical test of the method	223
	12.5	Summary	224
13	Futu	res and options: fundamental concepts	226
	13.1	Introduction	226
		13.1.1 Aim of the chapter	226
		13.1.2 Strategies in uncertain conditions	226
		13.1.3 Trading strategies and efficient markets	228
	13.2	Futures and forwards	231
		13.2.1 Setting the stage	231
		13.2.2 Global financial balance	232
		13.2.3 Riskless hedge	233
		13.2.4 Conclusion: global balance and arbitrage	235

х		Contents	
	133	Options: definition and valuation	236
	10.0	13.3.1 Setting the stage	236
		13.3.2 Orders of magnitude	238
		13.3.3 Quantitative analysis – option price	239
		13.3.4 Real option prices, volatility smile and 'implied'	
		kurtosis	242
		13.3.5 The case of an infinite kurtosis	249
	13.4	Summary	251
14	Optio	ons: hedging and residual risk	254
	14.1	Introduction	254
	14.2	Optimal hedging strategies	256
		14.2.1 A simple case: static hedging	256
		14.2.2 The general case and ' Δ ' hedging	257
		14.2.3 Global hedging vs. instantaneous hedging	262
	14.3	Residual risk	263
		14.3.1 The Black–Scholes miracle	263
		14.3.2 The 'stop-loss' strategy does not work	265
		14.3.3 Instantaneous residual risk and kurtosis risk	266
		14.3.4 Stochastic volatility models	267
	14.4	Hedging errors. A variational point of view	268
	14.5	Other measures of risk – hedging and VaR (*)	268
	14.6	Conclusion of the chapter	271
	14.7	Summary	272
	14.8	Appendix D	273
15	Optio	ons: the role of drift and correlations	276
	15.1	Influence of drift on optimally hedged option	276
		15.1.1 A perturbative expansion	276
	15.0	Drift rick and dalta hadged antions	278
	13.2	15.2.1 Undering the drift right	279
		15.2.2 The price of delte hadged entions	279
		15.2.2 The price of defia-fielded options	200
	153	Pricing and hedging in the presence of temporal correlations (*)	282
	15.5	15.3.1 A general model of correlations	283
		15.3.2 Derivative pricing with small correlations	285
		15.3.2 Derivative prening with small correlations	285
	154	Conclusion	285
	12.7	15.4.1 Is the price of an option unique?	285
		15.4.2 Should one always optimally hedge?	286
	15.5	Summary	287
	15.6	Appendix E	287
		11	

		Contents	xi
16	Opti	ons: the Black and Scholes model	290
	16.1	Ito calculus and the Black-Scholes equation	290
		16.1.1 The Gaussian Bachelier model	290
		16.1.2 Solution and Martingale	291
		16.1.3 Time value and the cost of hedging	293
		16.1.4 The Log-normal Black–Scholes model	293
		16.1.5 General pricing and hedging in a Brownian world	294
		16.1.6 The Greeks	295
	16.2	Drift and hedge in the Gaussian model (*)	295
		16.2.1 Constant drift	295
		16.2.2 Price dependent drift and the Ornstein–Uhlenbeck paradox	296
	16.3	The binomial model	297
	16.4	Summary	298
17	Optio	ons: some more specific problems	300
	17.1	Other elements of the balance sheet	300
		17.1.1 Interest rate and continuous dividends	300
		17.1.2 Interest rate corrections to the hedging strategy	303
		17.1.3 Discrete dividends	303
		17.1.4 Transaction costs	304
	17.2	Other types of options	305
		17.2.1 'Put-call' parity	305
		17.2.2 'Digital' options	305
		17.2.3 'Asian' options	306
		17.2.4 'American' options	308
		17.2.5 'Barrier' options (*)	310
		17.2.6 Other types of options	312
	17.3	The 'Greeks' and risk control	312
	17.4	Risk diversification (*)	313
	17.5	Summary	316
18	Optio	ons: minimum variance Monte-Carlo	317
	18.1	Plain Monte-Carlo	317
		18.1.1 Motivation and basic principle	317
		18.1.2 Pricing the forward exactly	319
		18.1.3 Calculating the Greeks	320
		18.1.4 Drawbacks of the method	322
	18.2	An 'hedged' Monte-Carlo method	323
		18.2.1 Basic principle of the method	323
		18.2.2 A linear parameterization of the price and hedge	324
		18.2.3 The Black-Scholes limit	325
	18.3	Non Gaussian models and purely historical option pricing	327
	18.4	Discussion and extensions. Calibration	329

xii		Contents	
	18.5	Summary	331
	18.6	Appendix F: generating some random variables	331
19	The g	yield curve	334
	19.1	Introduction	334
	19.2	The bond market	335
	19.3	Hedging bonds with other bonds	335
		19.3.1 The general problem	335
		19.3.2 The continuous time Gaussian limit	336
	19.4	The equation for bond pricing	337
		19.4.1 A general solution	339
		19.4.2 The Vasicek model	340
		19.4.3 Forward rates	341
		19.4.4 More general models	341
	19.5	Empirical study of the forward rate curve	343
		19.5.1 Data and notations	343
		19.5.2 Quantities of interest and data analysis	343
	19.6	Theoretical considerations (*)	346
		19.6.1 Comparison with the Vasicek model	346
		19.6.2 Market price of risk	348
	10.7	19.6.3 Risk-premium and the $\sqrt{\theta}$ law	349
	19.7	Summary	351
	19.8	Appendix G: optimal portfolio of bonds	352
20	Simp	le mechanisms for anomalous price statistics	355
	20.1	Introduction	355
	20.2	Simple models for herding and mimicry	356
		20.2.1 Herding and percolation	356
		20.2.2 Avalanches of opinion changes	357
	20.3	Models of feedback effects on price fluctuations	359
		20.3.1 Risk-aversion induced crashes	359
		20.3.2 A simple model with volatility correlations and tails	363
		20.3.3 Mechanisms for long ranged volatility correlations	364
	20.4	The Minority Game	366
	20.5	Summary	368
Ind	ex of n	nost important symbols	372
Ind	ex	- ·	377
mu	-n		511

Foreword

Since the 1980s an increasing number of physicists have been using ideas from statistical mechanics to examine financial data. This development was partially a consequence of the end of the cold war and the ensuing scarcity of funding for research in physics, but was mainly sustained by the exponential increase in the quantity of financial data being generated everyday in the world's financial markets.

Jean-Philippe Bouchaud and Marc Potters have been important contributors to this literature, and *Theory of Financial Risk and Derivative Pricing*, in this much revised second English-language edition, is an admirable summary of what has been achieved. The authors attain a remarkable balance between rigour and intuition that makes this book a pleasure to read.

To an economist, the most interesting contribution of this literature is a new way to look at the increasingly available high-frequency data. Although I do not share the authors' pessimism concerning long time scales, I agree that the methods used here are particularly appropriate for studying fluctuations that typically occur in frequencies of minutes to months, and that understanding these fluctuations is important for both scientific and pragmatic reasons. As most economists, Bouchaud and Potters believe that models in finance are never 'correct' – the specific models used in practice are often chosen for reasons of tractability. It is thus important to employ a variety of diagnostic tools to evaluate hypotheses and goodness of fit. The authors propose and implement a combination of formal estimation and statistical tests with less rigorous graphical techniques that help inform the data analyst. Though in some cases I wish they had provided conventional standard errors, I found many of their figures highly informative.

The first attempts at applying the methodology of statistical physics to finance dealt with individual assets. Financial economists have long emphasized the importance of correlations across assets returns. One important addition to this edition of *Theory of Financial Risk and Derivative Pricing* is the treatment of the joint behaviour of asset returns, including clustering, extreme correlations and the cross-sectional variation of returns, which is here named *variety*. This discussion plays an important role in risk management.

In this book, as in much of the finance literature inspired by physics, a *model* is typically a set of mathematical equations that 'fit' the data. However, in Chapter 20, Bouchaud and Potters study how such equations may result from the behaviour of economic agents. Much

xiv

Foreword

of modern economic theory is occupied by questions of this kind, and here again physicists have much to contribute.

This text will be extremely useful for natural scientists and engineers who want to turn their attention to financial data. It will also be a good source for economists interested in getting acquainted with the very active research programme being pursued by the authors and other physicists working with financial data.

> José A. Scheinkman Theodore Wells '29 Professor of Economics, Princeton University

Preface

Je vais maintenant commencer à prendre toute la phynance. Après quoi je tuerai tout le monde et je m'en irai.

(A. Jarry, Ubu roi.)

Scope of the book

Finance is a rapidly expanding field of science, with a rather unique link to applications. Correspondingly, recent years have witnessed the growing role of financial engineering in market rooms. The possibility of easily accessing and processing huge quantities of data on financial markets opens the path to new methodologies, where systematic comparison between theories and real data not only becomes possible, but mandatory. This perspective has spurred the interest of the statistical physics community, with the hope that methods and ideas developed in the past decades to deal with complex systems could also be relevant in finance. Many holders of PhDs in physics are now taking jobs in banks or other financial institutions.

The existing literature roughly falls into two categories: either rather abstract books from the mathematical finance community, which are very difficult for people trained in natural sciences to read, or more professional books, where the scientific level is often quite poor.[†] Moreover, even in excellent books on the subject, such as the one by J. C. Hull, the point of view on derivatives is the traditional one of Black and Scholes, where the whole pricing methodology is based on the construction of *riskless strategies*. The idea of zero-risk is counter-intuitive and the reason for the existence of these riskless strategies in the Black–Scholes theory is buried in the premises of Ito's stochastic differential rules.

Recently, a handful of books written by physicists, including the present one,[‡] have tried to fill the gap by presenting the physicists' way of approaching scientific problems. The difference lies in priorities: the emphasis is less on rigour than on pragmatism, and no

[†] There are notable exceptions, such as the remarkable book by J. C. Hull, *Futures, Options and Other Derivatives*, Prentice Hall, 1997, or P. Wilmott, *Derivatives, The theory and practice of financial engineering*, John Wiley, 1998.

[‡] See 'Further reading' below.

xvi

Preface

theoretical model can ever supersede empirical data. Physicists insist on a detailed comparison between 'theory' and 'experiments' (i.e. empirical results, whenever available), the art of approximations and the systematic use of intuition and simplified arguments.

Indeed, it is our belief that a more intuitive understanding of standard mathematical theories is needed for a better training of scientists and financial engineers in charge of financial risks and derivative pricing. The models discussed in *Theory of Financial Risk and Derivative Pricing* aim at accounting for real markets statistics where the construction of riskless hedges is generally impossible and where the Black–Scholes model is inadequate. The mathematical framework required to deal with these models is however not more complicated, and has the advantage of making the issues at stake, in particular the problem of risk, more transparent.

Much activity is presently devoted to create and develop new methods to measure and control financial risks, to price derivatives and to devise decision aids for trading. We have ourselves been involved in the construction of risk control and option pricing softwares for major financial institutions, and in the implementation of statistical arbitrage strategies for the company Capital Fund Management. This book has immensely benefited from the constant interaction between theoretical models and practical issues. We hope that the content of this book can be useful to all quants concerned with financial risk control and derivative pricing, by discussing at length the advantages and limitations of various statistical models and methods.

Finally, from a more academic perspective, the remarkable stability across markets and epochs of the anomalous statistical features (fat tails, volatility clustering) revealed by the analysis of financial time series begs for a simple, generic explanation in terms of agent based models. This had led in the recent years to the development of the rich and interesting models which we discuss. Although still in their infancy, these models will become, we believe, increasingly important in the future as they might pave the way to more ambitious models of collective human activities.

Style and organization of the book

Despite our efforts to remain simple, certain sections are still quite technical. We have used a smaller font to develop the more advanced ideas, which are not crucial to the understanding of the main ideas. Whole sections marked by a star (*) contain rather specialized material and can be skipped at first reading. Conversely, crucial concepts and formulae are highlighted by 'boxes', either in the main text or in the summary section at the end of each chapter. Technical terms are set in boldface when they are first defined.

We have tried to be as precise as possible, but are sometimes deliberately sloppy and nonrigorous. For example, the idea of probability is not axiomatized: its intuitive meaning is more than enough for the purpose of this book. The notation $P(\cdot)$ means the probability distribution for the variable which appears between the parentheses, and not a well-determined function of a dummy variable. The notation $x \to \infty$ does not necessarily mean that x tends to infinity in a mathematical sense, but rather that x is 'large'. Instead of trying to derive

Preface

xvii

results which hold true in any circumstances, we often compare order of magnitudes of the different effects: small effects are neglected, or included perturbatively.^{\dagger}

Finally, we have not tried to be comprehensive, and have left out a number of important aspects of theoretical finance. For example, the problem of interest rate derivatives (swaps, caps, swaptions...) is not addressed. Correspondingly, we have not tried to give an exhaustive list of references, but rather, at the end of each chapter, a selection of books and specialized papers that are directly related to the material presented in the chapter. One of us (J.-P. B.) has been for several years an editor of the *International Journal of Theoretical and Applied Finance* and of the more recent *Quantitative Finance*, which might explain a certain bias in the choice of the specialized papers. Most papers that are still in e-print form can be downloaded from http://arXiv.org/ using their reference number.

This book is divided into twenty chapters. Chapters 1–4 deal with important results in probability theory and statistics (the central limit theorem and its limitations, the theory of extreme value statistics, the theory of stochastic processes, etc.). Chapter 5 presents some basic notions about financial markets and financial products. The statistical analysis of real data and empirical determination of statistical laws, are discussed in Chapters 6-8. Chapters 9-11 are concerned with the problems of inter-asset correlations (in particular in extreme market conditions) and the definition of risk, value-at-risk and expected shortfall. The theory of optimal portfolio, in particular in the case where the probability of extreme risks has to be minimized, is given in Chapter 12. The problem of forward contracts and options, their optimal hedge and the residual risk is discussed in detail in Chapters 13–15. The standard Black-Scholes point of view is given its share in Chapter 16. Some more advanced topics on options are introduced in Chapters 17 and 18 (such as exotic options, the role of transaction costs and Monte-Carlo methods). The problem of the yield curve, its theoretical description and some empirical properties are addressed in Chapter 19. Finally, a discussion of some of the recently proposed agent based models (in particular the now famous Minority Game) is given in Chapter 20. A short glossary of financial terms, an index and a list of symbols are given at the end of the book, allowing one to find easily where each symbol or word was used and defined for the first time.

Comparison with the previous editions

This book appeared in its first edition in French, under the title: *Théorie des Risques Financiers*, Aléa–Saclay–Eyrolles, Paris (1997). The second edition (or first English edition) was *Theory of Financial Risks*, Cambridge University Press (2000). Compared to this edition, the present version has been substantially reorganized and augmented – from five to twenty chapters, and from 220 pages to 400 pages. This results from the large amount of new material and ideas in the past four years, but also from the desire to make the book

[†] $a \simeq b$ means that *a* is of order *b*, $a \ll b$ means that *a* is smaller than, say, b/10. A computation neglecting terms of order $(a/b)^2$ is therefore accurate to 1%. Such a precision is usually enough in the financial context, where the uncertainty on the value of the parameters (such as the average return, the volatility, etc.), is often larger than 1%.

xviii

Preface

more self-contained and more accessible: we have split the book in shorter chapters focusing on specific topics; each of them ends with a summary of the most important points. We have tried to give explicitly many useful formulas (probability distributions, etc.) or practical clues (for example: how to generate random variables with a given distribution, in Appendix F.)

Most of the figures have been redrawn, often with updated data, and quite a number of new data analysis is presented. The discussion of many subtle points has been extended and, hopefully, clarified. We also added 'Derivative Pricing' in the title, since almost half of the book covers this topic.

More specifically, we have added the following important topics:

- A specific chapter on stochastic processes, continuous time and Ito calculus, and path integrals (see Chapter 3).
- A chapter discussing various aspects of data analysis and estimation techniques (see Chapter 4).
- A chapter describing financial products and financial markets (see Chapter 5).
- An extended description of non linear correlations in financial data (volatility clustering and the leverage effect) and some specific mathematical models, such as the multifractal Bacry–Muzy–Delour model or the Heston model (see Chapters 7 and 8).
- A detailed discussion of models of inter-asset correlations, multivariate statistics, clustering, extreme correlations and the notion of 'variety' (see Chapters 9 and 11).
- A detailed discussion of the influence of drift and correlations in the dynamics of the underlying on the pricing of options (see Chapter 15).
- A whole chapter on the Black-Scholes way, with an account of the standard formulae (see Chapter 16).
- A new chapter on Monte-Carlo methods for pricing and hedging options (see Chapter 18).
- A chapter on the theory of the yield curve, explaining in (hopefully) transparent terms the Vasicek and Heath–Jarrow–Morton models and comparing their predictions with empirical data. (See Chapter 19, which contains some material that was not previously published.)
- A whole chapter on herding, feedback and agent based models, most notably the minority game (see Chapter 20).

Many chapters now contain some new material that have never appeared in press before (in particular in Chapters 7, 9, 11 and 19). Several more minor topics have been included or developed, such as the theory of progressive dominance of extremes (Section 2.4), the anomalous time evolution of 'hypercumulants' (Section 7.2.1), the theory of optimal portfolios with non linear constraints (Section 12.2.2), the 'worst fluctuation' method to estimate the value-at-risk of complex portfolios (Section 12.4) and the theory of value-at-risk hedging (Section 14.5).

We hope that on the whole, this clarified and extended edition will be of interest both to newcomers and to those already acquainted with the previous edition of our book.

Preface

xix

Acknowledgements[†]

This book owes much to discussions that we had with our colleagues and friends at Science and Finance/CFM: Jelle Boersma, Laurent Laloux, Andrew Matacz, and Philip Seager. We want to thank in particular Jean-Pierre Aguilar, who introduced us to the reality of financial markets, suggested many improvements, and supported us during the many years that this project took to complete.

We also had many fruitful exchanges over the years with Alain Arnéodo, Erik Aurell, Marco Avellaneda, Elie Ayache, Belal Baaquie, Emmanuel Bacry, François Bardou, Martin Baxter, Lisa Borland, Damien Challet, Pierre Cizeau, Rama Cont, Lorenzo Cornalba, Michel Dacorogna, Michael Dempster, Nicole El Karoui, J. Doyne Farmer, Xavier Gabaix, Stefano Galluccio, Irene Giardina, Parameswaran Gopikrishnan, Philippe Henrotte, Giulia Iori, David Jeammet, Paul Jefferies, Neil Johnson, Hagen Kleinert, Imre Kondor, Jean-Michel Lasry, Thomas Lux, Rosario Mantegna,[‡] Matteo Marsili, Marc Mézard, Martin Meyer, Aubry Miens, Jeff Miller, Jean-François Muzy, Vivienne Plerou, Benoît Pochart, Bernd Rosenow, Nicolas Sagna, José Scheinkman, Farhat Selmi, Dragan Šestović, Jim Sethna, Didier Sornette, Gene Stanley, Dietrich Stauffer, Ray Streater, Nassim Taleb, Robert Tompkins, Johaness Voït, Christian Walter, Mark Wexler, Paul Wilmott, Matthieu Wyart, Tom Wynter and Karol Życzkowski.

We thank Claude Godrèche, who was the editor for the French version of this book, and Simon Capelin, in charge of the two English editions at C.U.P., for their friendly advice and support, and José Scheinkman for kindly accepting to write a foreword. M. P. wishes to thank Karin Badt for not allowing any compromises in the search for higher truths. J.-P. B. wants to thank J. Hammann and all his colleagues from Saclay and elsewhere for providing such a free and stimulating scientific atmosphere, and Elisabeth Bouchaud for having shared so many far more important things.

This book is dedicated to our families and children and, more particularly, to the memory of Paul Potters.

Further reading

• ECONOPHYSICS AND 'PHYNANCE'

J. Baschnagel, W. Paul, Stochastic Processes, From Physics to Finance, Springer-Verlag, 2000.

J.-P. Bouchaud, K. Lauritsen, P. Alstrom (Edts), *Proceedings of "Applications of Physics in Financial Analysis*", held in Dublin (1999), Int. J. Theo. Appl. Fin., **3**, (2000).

- J.-P. Bouchaud, M. Marsili, B. Roehner, F. Slanina (Edts), Proceedings of the Prague Conference on Application of Physics to Economic Modelling, Physica A, 299, (2001).
- A. Bunde, H.-J. Schellnhuber, J. Kropp (Edts), The Science of Disaster, Springer-Verlag, 2002.
- J. D. Farmer, *Physicists attempt to scale the ivory towers of finance*, in Computing in Science and Engineering, November 1999, reprinted in Int. J. Theo. Appl. Fin., **3**, 311 (2000).

[†] Funding for this work was made available in part by market inefficiencies.

[‡] Who kindly gave us the permission to reproduce three of his graphs.

хх

Preface

- M. Levy, H. Levy, S. Solomon, *Microscopic Simulation of Financial Markets*, Academic Press, San Diego, 2000.
- R. Mantegna, H. E. Stanley, An Introduction to Econophysics, Cambridge University Press, Cambridge, 1999.
- B. Roehner, *Patterns of Speculation: A Study in Observational Econophysics*, Cambridge University Press, 2002.

J. Voït, The Statistical Mechanics of Financial Markets, Springer-Verlag, 2001.