Index

ABC Communications case study, 281–284
Accelerated SAP framework, 320
activity-oriented processes, 337
Actual Implementation phase of implementation, 200
adopters
organizations studied, 32–36, 37
success measurement by, 24
see also implementers; users
advantages of ERP systems, 277–278
AeroGroup, 373
anticipated change, 330
Antony’s planning and systems control framework, 76
application hosting see application service providers
application service providers, 8–9
and collaborative commerce, 433
as maintainers, 229
as software integrators, 422–423
market, size and revenues, 116–117
at Melbourne University, 8
reluctance to use, 426–427
shared service model, 8
application software integration, 6
see also enterprise application integration architectures for ERP, 7–8, 308
‘as is’
implementation phase, 199–200
process modelling, 321–324
ASP see application service providers
‘association’ critical links, 198
Australian utility company case studies, 90–94
awareness generating process, 363–364
axial coding analysis stage, 355, 360–362
Baan, market share, 4
Bancroft phase model, 199–200, 319
BEA, 6
benefits, see business benefits; IT infrastructural benefits; managerial benefits of enterprise systems; metrics for benefit assessment; operational benefits of enterprise systems; organizational benefits of enterprise systems; software maintenance, benefits and costs; strategic benefits of enterprise systems
best practice, 197, 217, 335, 375
beverage manufacturer case study, 168, 169, 171
big bang implementations, 252, 258
Biztro, 435–436
business benefits
assessment framework, 98–101
by organization size, 89
by vendor, 89
over time, 88, 93
types of, 65–66, 71
unknown or disappointing, 51–52
business engineering phase, process models, 320–324
business growth plans, 99
business innovation, 99
business practices, 1–2, 50, 67, 71
see also business benefits; business engineering phase, process models; business process reference models; reengineering business processes
business process change and software configuration CSF factor, 186, 190
business process reference models, 315, 335–336, 337
business vision CSF factor, 184, 189
canonical business processes, 337
causal critical link, 198
c-commerce, 432
champions, 173, 197, 216, 283, 310
see also sponsors
change equations, 304
change management of process models, 330
Charting phase of implementation, 53, 54, 200
chemical manufacturer case study, 168, 170, 171
Chevron, 429
chief information officers (CIOs)
leadership, 307
relationship with company board, 305
views on risk control, 152
see also IT departments
client acceptance CSF factor, 184, 190
client consultation CSF factor, 186, 190
clients, relationship with implementers, 292–295
see also users
client–server systems, 165–167, 423
collaboration facilitators, 430–432, 435–436
and ERP, 432–433
collaborative commerce, 432, 434
unsuitability of ERP for, 433–434
collaborative planning, 431
collaborative planning, forecasting and
replenishment (CPFR), 431
COM, 425
CommerceOne, 425, 429
commodification of software, 235
common platform, motivation for ERP, 104–105
communication, 173, 294
see also diffusion of technology
communication CSF factor, 186, 190
company cultures, Scandinavian pharmaceuticals
subsidiary, 400, 406–407
compatibility between ERP systems, 425–426
competitive advantages, realizing, 347–348
complexity, of implementation, 69–70
component interface protocols, 425
componentization, 425
‘comprehensive’ category of ERP
implementation, 216
configuration
and reference models, 317, 318, 326–328
definition, 3
difficulty of, 423
management of, 326–328
conflict see resistance
Construction and Testing phase of
implementation, 200
consultants
and success of implementations, 69
bypass IT departments, 305–306
problems with, 46–47
skills of, 142
use of, 172–173
consumer product manufacturer case study, 168, 170, 171
continuity view, of ERP future, 420–427, 438
Continuous Improvement phase of
implementation, 109–110, 200
controlling risks, strategies for, 177
CORBA, 425
cosmetic misfits, 381–383, 384
cost of ERP packages, 423–424
cost reductions, 104–105
country-specific misfits, 376–377, 381–383
critical factors for ERP implementation, 313
critical success factors, literature review, 196
critical success factors (Parr and Danks)
definition, 198
in project phase model, 197–198, 199
types of criticality, 198
critical success factors framework, 184
relationship between factors, 192–193
strategic factors, 184–186
tactical factors, 186
Critical Success Factors theory, 181, 182
cross-functional integration, 48, 353
cultural resistance, 113
culture
in benefits framework (Shang and Seddon), 101
objections to process standardization, 108
overview of research, 390–392
see also company cultures; national cultures;
organizational cultures; supplier’s culture
culture-sensitive ERP implementations, 390
custom reporting system, Microsoft, 422
customer relationship management (CRM), 2
facilities for, 422
future integration by ERP, 7
reference models for, 331
customer responsiveness, 104–105
customer services improvement, 98
customization, 3–4, 107
inadvisability of, 45
problems of, 45, 50, 52
cycle times, 98
data integration, 175, 176
data police, 110
data quality, 46, 50–51
data reference models, 315
data reporting, 46
data visibility, 104–105
data warehousing, 2, 7, 424
decentralization of decision making, 140–141, 144
decision support facilities in ERP, 23, 98–99, 422, 424
Design stage of Ross implementation model, 106–108, 200
developers, recruitment and turnover, 171–172
development agenda for ERP systems, 424–427
diffusion of technology, 347, 352
see also communication
documentation, reference models for, 328
dolphin teams, 310, 313
domain relevance factor, Dow Corning and FoxMeyer compared, 259, 265–266
double-loop learning, 244
Dow Corning case study, 252–270
implementation history, 253–255
intelligent failure model analysis, 257–266
similarities with FoxMeyer implementation, 255–257
Druid, 302
EAI see enterprise application integration
e-business, as business benefit, 99–100
see also e-commerce; internet; netsourcing
e-commerce, 7–8, 422, 425, 436–437
see also e-business; internet; netsourcing
EDI see electronic data interchange
electrical manufacturer case study, 168, 170, 171
electronic data interchange (EDI), 427–428
electronic marketplaces, 428–430, 432
emergent change, 330
employees
morale, 101
resistance, 112–113
end users
and reference models, 316–317
involvement in adoption decision, 68
maintenance benefits, 230
numbers of, 63
training, 172
Enhancement phase of project phase model, 202
enterprise application integration (EAI), 2, 6–8
enterprise resource planning (ERP) systems
advantages, 277–278
and collaboration facilitators, 432–433
and IT departments, 304–305, 358–359
architectures for, 7–8, 308
‘comprehensive’ implementation, 216
cost of, 423–424
critical factors, 313
customization, 3–4, 45, 50, 52, 107
decision support facilities, 23, 98–99, 422, 424
development agenda, 424–427
expectations of, 292–293
First Wave, 5, 103
future of, 419–441
goals, 287–292
hosted services, 8–9
life expectancy, 89
migration problems, 52
mobile access, 426
problems, 420–424
reliability, 70–71
revenue growth, 74
risk factors, 170–175
Second Wave (ERPII), 5, 115–116
version compatibility, 425–426
enterprise systems (ES), 1
alignment with business processes, 139–140, 144
managerial benefits, 79–80, 87, 91–93, 98–99
operational benefits, 78–79, 87, 91–93, 98
organizational benefits, 79, 81, 87, 91–93,
100–101
requirements specifications, 139–140, 142, 144
selection of, 89, 324–326
strategic benefits, 79, 80, 87, 91–93, 99–100
enterprise systems software (ESS), 1–2
enterprise-individual models, 324
eProcurement software, 2
ERP see enterprise resource planning (ERP)
systems
ERP Experience Cycle, 25
ERP strategy CSF factor, 185–186, 189
ERP systems
advantages, 277–278
disadvantages, 278–280
ERPII, 115–116
exchanges see electronic marketplaces
expectations of ERP software, 292–293
experiential learning, 243
expertise, in-house, 142, 144, 172–173, 176
explicit knowledge, 336
exploration, 244
Exploreco case study
background, 203, 204–206
conclusions, 206, 212–216
results, 206, 207–211
external factors in technology implementation, 352–353
external technology service providers, 435–437
failure management systems, 248, 249, 252
inapplicability to ERP, 268
First Wave ERP, 5, 103
Focus phase of implementation, 199–200
FoxMeyer case study, 252–270
implementation history, 254–255
intelligent failure model analysis, 257–266
similarities with Dow Corning implementation, 255–257
frameworks
Antony’s planning and systems control framework, 76
business benefits assessment, 98–101
for critical success factors, 184
for maintenance costs and benefits, 221, 225–227
for misfits, 374
for profiling netsourcing risks, 121–123
software maintenance research framework, 226
user-organization centric, 225–226
FreeMarkets OnLine, 430–431
function reference models, 315
functional deficiencies, 385
functional excesses, 385
future of ERP systems
discontinuity view, 427–438
problem-led extrapolation, 420–427, 438
Gable, Scott and Davenport phase model, 319
goals of ERP implementations, 287–292
grounded theory, 353–355
Guinness, ERP implementation, 302–303
Health First case study, 84–87
help desks, 150
help internet pages, 345, 358–359, 363
Hershey, 276
Host Logic, 9
hosted ERP services, 8–9
see also application service providers
hub and exchange architecture, 7–8
hubs see electronic marketplaces
IBM, EAI software, 6
ICI Polyurethanes, 312–313
implementation
and consultants, 69
and IT departments, 358–359
and top management, 68, 69–70, 185, 189
big bang, 252, 258
complexity of, 69–70
comprehensive, 216
critical factors, 313
culture-sensitive, 390
external factors, 352–353
goals, 287–292
in Ireland, 284–292
in small and medium enterprises, 284–292
inhibiting factors, 352
internal factors, 352
knowledge transfer in, 337–339, 345–348, 386
middle-level, 216
obstacles to, 110–113
organizational learning in, 244–246, 250–252
partitioning, 216
phased, 252
process models for, 199–201
reference models for, 326–328
risks, 137–139
roll-out, 252, 258
scope cutting, 43, 48–49
strategic approaches to, 181
vanilla, 4, 197, 216
implementation partners, as maintenance stakeholders, 225, 229, 232
Implementation Processes category, 357, 360
implementers
relationship with clients, 292–295
social construction viewpoint, 351–352
success measurement by, 24
industry-specific misfits, 377–378, 381–383
inhibiting factors, in ERP implementation, 352
in-house skills, 142, 144, 172–173, 176
innovation see business innovation; processes innovation; product innovation
innovation reinforcing process, 365–366
input misfits, 379, 381
insourcing, 308, 311–312
Institute of Internal Auditors, 146
integration
business reengineering and IT planning, 307
ERP and legacy software, 423
lack of as risk factor, 172
intelligent failure, Sitkin theory of, 247–250
in ERP implementations, 251–252
intelligent presentation layers, 2
internal auditors, 140–141, 142, 144
Internal Conditions category, 357, 359
internal factors in technology implementation, 352
Internalization phase of ERP knowledge transfer, 338, 339, 344–345
internet
for business-to-business links, 428
for ERP service delivery, 9
see also e-business; e-commerce; netsourcing
inter-organizational process integration, 6–8
inventory costs, 98
investment brokerage firm case study, 168, 170, 171
Ireland
ABC Communications case study, 281–284
research methods, 280–281
survey of ERP implementations, 284–292
IS Context category, 356, 358–359
ISO9000 accreditation, 282
IT departments
attitude to ERP, 304–305
in-house capabilities, 307–308
possible isolation of, 306–307
role in ERP Implementation, 358–359
staff turnover, 62–63, 69, 292
see also chief information officers
IT infrastructural benefits, 79, 80–81, 87, 91–93, 100
JD Edwards, market share, 4
job satisfaction of ERP users, 403–404, 406–407
‘know-how’ for transition to packages, 59
knowledge acquisition, 363
knowledge gap, of implementers, 373
knowledge integration, 353, 361–362
case study, 354–355
processes, 362–366
knowledge meta-schema, 393–396, 405–407
knowledge transfer
in ERP implementations, 337–339, 345–348, 386
research model, 338–339, 346
types of, 336–337
University of Nebraska case study, 339–345
‘know-when’ for package transition, 59
‘know-why’ for package transition, 59
labour costs, 98
learning by doing, 245
learning by using, 245
learning from failure, 247
learning from success, 246–247
legacy data, 50
‘legacy’ ERP systems, 42, 52
legacy information systems CSF factor, 185, 189
legacy systems
linking to, 46, 173–174, 175, 176
need for, 422
replacement of, 50, 56, 105
life cycle of EP systems, 221, 224–225, 318–320
life expectancy, of ERP systems, 89
localization, 303
loss of control, in ERP implementation, 140–141, 144
maintenance see software maintenance
managed ERP services, 9
management of ERP projects, literature review, 161–167
management reporting requirements, 112
management structure and strategy risk factors, 158–159
managerial benefits of enterprise systems, 79–80, 87, 91–93, 98–99
managers
commitment of, 172, 176
middle-level, 75
people skills, 143, 144
see also chief information officers; top management
marketing activities, lack of ERP support for, 422
MarketSite, 429–430
Markus and Tanis phase model, 25, 200–201, 319
materials requirements planning (MRP), 2
Melbourne University, 8
meta-knowledge, 346
metrics for benefit assessment, 105–106, 111, 140, 142
MFG/PRO, 277
Microsoft, 278, 422, 436
middle-level ERP implementation, 216
middle-level managers, 75
middleware channels, 6
migration problems, between ERP versions, 52
military aircraft manufacturer case study, 168, 170, 171
misfit analysis, 386
misfits, 373
sources and nature, 375–376, 380, 381–383, 384–385
typology of, 375–385
mobile access to ERP systems, 426
modest scale factor, Dow Corning and FoxMeyer compared, 258–259, 263–264
monitoring and feedback CSF factor, 186, 190
of user staff, 292–295, 343–344
MQ Series, 6
national cultures
definition of, 388, 390–392
in Scandinavian case study, 402–403, 405–407
necessary and sufficient critical link, 198
necessary critical link, 198
netsourcing
case studies, 123–130
growth of, 116–117
market size, 123–124
mySAP.com product, 123
risks, 117–123
see also e-business; e-commerce; internet
NFMS see university New Financial Management System
non-canonical business processes, 337
object reference models, 315, 329
obstacles to ERP success, 110–113
Oilco case study
background, 203, 204–206
conclusions, 206, 212–216
results, 206, 207–211
Onward and Upward phase, of ERP implementation, 25, 30–31, 37, 40–42, 51–53, 200
open coding analysis stage, 355–360
operational benefits of enterprise systems, 78–79, 87, 91–93, 98
operational management level, 76
opportunity-based change, 330
optimal success criterion, 26–27
Oracle, 4, 6, 87, 89, 170
organizational benefits of enterprise systems, 79, 81, 87, 91–93, 100–101
organizational characteristics, Dow Corning and FoxMeyer compared, 257–261
organizational context category, 356, 358
organizational culture factor, Dow Corning and FoxMeyer compared, 258, 260–261
organizational cultures, 389, 390–392
organizational discipline, 113–114
organizational effectiveness, Whetten criteria, 75–76
organizational environment, 227–228
organizational fit risks, 158
organizational knowledge strategy, and software maintenance, 235
organizational learning as benefit, 100
Dow Corning and FoxMeyer compared, 266–269
from unsuccessful projects, 197
in IT implementations, 244–246, 250–252
outputs, 244
types of, 243–244
organizational resistance, 338, 339, 343–344
organizational size, and software maintenance, 225, 227
organizational-type processes, 337
organization-specific misfits, 378–379, 381–383
outcome uncertainty factor, Dow Corning and FoxMeyer compared, 258, 263
outcomes, 27, 39–42, 291–292
output misfits, 379, 383
outsourcing, 311–312, 431
package transition, 57–59
competencies needed, 59
comprehension of, 58
motivation for, 59
need for, 56–57
timing of, 58–59
partitioning of ERP implementations, 216
PeopleSoft, 4, 6, 84–87, 89, 170
performance control, 99
performance dip, 108–109
personnel
misuse of, 52
turnover, 47, 52
Personnel CSF factor, 186, 190
Petrocosm Marketplace, 429
pharmaceutical manufacturer case study, 168, 169, 171
phased implementations, 252
phases in implementation, models for, 198–201, 319
Planning phase of project phase model, 202
PPM see Project Phase Model
private trading exchanges see electronic marketplaces
problems of ERP packages, 420–424
process change, desire for, 107
process data, reference models for, 329
Process Focus factor, Dow Corning and FoxMeyer compared, 257–260
processes
improvements, 5, 104–105
innovation, 315, 358
inter-organizational integration, 6–8
misfits, 379, 381–382
owners, 5–6, 75
performance databases, 329
standardization, 108
see also business practices; reference models
product innovation, 358
product life cycle management (PLM), 2, 7
productivity, 98, 102
productivity paradox, 351
project characteristics, Dow Corning and FoxMeyer compared, 258–259, 261–266
Project context category, 356–357, 359
Project Phase Model (PPM)
definition, 196–197, 201–203
phases, 202–203
research method, 198, 203–204, 217–218
Project phase of Markus and Tanis model, 25, 28–29, 37, 39–42, 43, 44–47
Project schedule/plans CSF factor, 185, 189
projects
complexity, associated risks, 141–142, 144
justification for, 169–171
ownership, 149–151
phases, 198–201, 319
sponsors, 140, 142, 144, 176, 310
success of, 201, 203
Punch International netsourcing case study, 123–127
QAD, 295
quality improvement, as business benefit, 98
RealScale Technologies case study, 127–130
reengineering business processes, 140, 144
failure in, 170–171, 175, 176
risk factors, 170–171
reference models, 313–331
change management of, 330
example, 316
for business reengineering, 320–324
for data, 328
for system implementation, 326–328
for system selection, 324–326
for system use and change, 328–330
high level of, 386
relational databases, 278, 317–318
reliability of ERP packages, 70–71
reporting software
customized, 422
for data, 46
need for, 173
problems, 50–51, 56
required for management, 112
requirements specifications for ES software, 139–140, 142, 144
resistance
cultural, 113
departmental, 360, 364–365
employee, 112–113
organizational, 338, 339, 343–344
user, 142–143, 144, 151
resource data, reference models for, 329
resource management, 98
resource requirements, continuing, 111–112
Revel Asia, 423
revenue, ERP systems, 74
risk factors, unique to ERP, 170–175
risks, 158–161
controls for, 144, 177
definition, 158
risks in implementation, literature review, 137–139
Index

roll-out implementations, 252, 258
Ross phase model, 106–110, 200, 319
Sachs’ classification of business processes, 337
Sandoe, Corbitt and Boykin phase model, 319
SAP, 4, 5, 87, 89, 169, 170
Scandinavian pharmaceuticals subsidiary case study
company culture, 400, 406–407
ERP implementation, 399–400, 404–405
national culture, 402–403
stakeholder satisfaction, 403–405, 406–407
supplier’s culture, 406, 408
survey method, 396–399, 405, 410–415
scope cutting, in implementation, 43, 48–49
Second Wave (ERP II) enterprise systems, 5, 115–116
sector-specific misfits, 377, 381–383
selection of enterprise systems, 89, 324–326
selective coding analysis stage, 355, 362–366
senior management see top management service providers, as maintenance stakeholders, 222, 232–233
Shakedown phase, of ERP implementation, 25, 29–30, 37, 39–42, 200
problems, 47–51
Shanks consolidated phase model, 319
Shell, shared services for, 8
sigh effect, 292
Singapore hospitals case study, 374–375
methodology, 374–375
results, 375–383
single-loop learning, 244
skill mix risks, 158
small and medium enterprises (SMEs)
ABC Communications case study, 281–284
and reference models, 331
application service providers for, 9, 116–117
Biztro system, 435–436
definition of, 280
experience of ERP, 283–284, 295–296
survey of ERP implementations, 284–292
Smart-Enterprise, 9
social commitment risk factors, 159, 160–161
social construction of technology (SCOT) viewpoints, 351–352
society, as maintenance stakeholders, 222, 233–234
software design risk factors, 159–160
software maintenance, 220–236
benefits and costs, 222–224
life cycle, 224–225
overview, 220–222
research framework, 225–226
revenue growth, 231
sourcing, 228–229
stakeholders, 229–235
software modification of ERP systems see customization
sourcing of software and maintenance, 225, 228–229
speedy action cycles factor, Dow Corning and FoxMeyer compared, 259, 264–265
sponsors, 140, 142, 144, 176, 310
see also champions
Stabilization stage of Ross implementation model, 108–109
stakeholders
involvement of, 160
stakeholders, for maintenance costs and benefits, 222, 225–226, 229–234
standardization of requirements, 173
standards for EDI and e-commerce, 427–428, 436–437
StatCo case study, 182–183, 188–192
steering committees, 140, 142, 144
strategic approaches to implementation, 181
strategic benefits of enterprise systems, 79, 80, 87, 91–93, 99–100
strategic decision making, 104–105
strategic failure, 248, 251
strategic management level, 76
substantive misfits, 381–383, 384
success
by ERP phases, 43–44
criteria for, 26, 28–31, 43
factors, 114–115
measuring/assessing, 10
of package transition, 63–65
over time, 24–25, 26
viewpoints of, 24
suitability, of packages, 67
super users, 142
supplier management, 308, 311
supplier’s culture, 389, 406, 408
supply chain management (SCM), 2
and reference models, 331
future integration by ERP, 7

© in this web service Cambridge University Press
www.cambridge.org
lack of ERP facilities, 422, 433–434
outsourcing, 431
support sources, 229
support sustaining process, 364–365
survey methods, 59–60, 61–62, 82–87, 90, 103–104, 167
system implementation phase, 326–328
system integration problems, 46
system organization reference models, 315
system selection phase, 324–326
system testing, 139–140, 144
tacit knowledge, 336–337
tactical management level, 76
tailoring ERP software, 45
'technological bottlenecks', 173–174
'technological determinism', 351
'technological imperative', 107
technology planning risk factors, 159, 160
testing, inadequacies in, 49–50
third-party facilitation see collaboration facilitators
Threads case study, 182–183, 187–188, 189–190, 191
Tibco, 6
time box approach, 309, 310–311
To Be phase of implementation, 200
'to-be' process modelling, 321–324
top management
commitment, 114
counter user resistance, 142–144
ignore IT department, 305–306
lack of commitment, 170–171
monitor project team, 140
role in Chartering phase, 53, 54
support for implementation, 68, 69–70, 185, 189
see also chief information officers; managers
training, 142, 144, 150
as critical success factor, 150
building in-house skills, 142, 144
of developers, insufficiency of, 171, 175, 176
of end users, 49, 51
of management, 113
Transformation stage of Ross phase model, 110
Troubleshooting CSF factor, 190
trusted third parties, 431
turnover, user staff, 343
United Technologies Corp., 430
university New Financial Management System (NFMS)
case study, 143–151
controls used, 149–150
survey method, 143, 143–146
user-focused approach, 309
user-organization centric framework, 225–226
users
as maintenance stakeholders, 222, 229–230
expectations of, 161
expert, 142
involvement, 144, 159, 160
learning, 344–345, 346
resistance, 142–143, 144, 151
see also clients
ValueSAP framework, 320
vanilla implementations, 4, 197, 216
vendors
and customization, 4
as maintenance stakeholders, 222, 230–232
bypassing IT departments, 305–306
growth of, 4
market shares, 4, 62
relationship with adopters, 70–71
user problems with, 46–47
vicarious learning, 243–244
virtual organizations for ERP maintenance, 224, 234–235
Vision Web, The, 125–127, 128–129
torntals see electronic marketplaces
Wal-Mart Stores, 429
web-based ERP delivery see netsourcing
web-enablement, 426
webMethods, 6
webSphere, 6
Well-planned actions factor, Dow Corning and FoxMeyer compared, 258, 261–262
Whetten criteria for organizational effectiveness, 75–76
XML, 425
Y2K problem, 57, 104, 147, 279, 374