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1

Foundation of radiation theory

In this chapter we review the physical foundation of remote sensing. Except for
possible gravitational effects, information accessible to a distant observer must be
sensed as electromagnetic radiation, either in the form of reflected or refracted solar
or stellar radiation, or in the form of thermal or nonthermal emission. We restrict
the discussion to passive techniques. Active methods, involving the generation of
electromagnetic radiation (radar, lidar), are not explicitly treated. However, the
physical principles discussed in this text are equally applicable to passive and
active methods. In either case a discussion of the measurement and interpretation
of remotely sensed data must be based on electromagnetic theory. In Section 1.1
we begin with that theory by reviewing Maxwell’s equations. The application of
the principle of energy conservation to Maxwell’s equations leads to the Poynting
theorem with the Poynting vector describing radiative energy transport; this is
discussed in Section 1.2. However, the Poynting vector does not characterize more
complex phenomena, such as reflection, refraction, polarization, or interference; all
of these phenomena play significant roles in many aspects of remote sensing. Their
study requires, first, a derivation of the wave equation from Maxwell’s formulas,
and second, finding appropriate solutions for the electric and magnetic field vectors;
this is the subject of Section 1.3. Polarization is briefly reviewed in Section 1.4.
Effects of electromagnetic waves striking an interface between two media and the
conditions that must be satisfied at the boundary are treated in Section 1.5. The
derived conditions are then applied to the boundary to find expressions for reflected
and refracted waves. These expressions, the Fresnel equations, are discussed in
Section 1.6. The same boundary conditions are used again in Section 5.6 to describe
the behavior of thin films employed in many ways in remote sensing instruments.
The Planck function is introduced in Section 1.7. In Section 1.8, we return to the
Poynting vector in a discussion of quantities used in the theory of radiative transfer,
such as spectral intensity and radiative flux.
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2 Foundation of radiation theory

1.1 Maxwell’s equations

Electromagnetic radiation between the red limit of the visible spectrum and the
microwave region is called the infrared. In round numbers the infrared covers the
spectral range from 1 to 1000µm. Although only the range from 0.35 to 0.75µm
is truly visible to the human eye, the region between 0.75 and 1µm is often
considered as a part of the ‘visible’ spectrum because many detectors common to
that spectral domain, such as conventional photomultipliers, photographic film, and
charge-coupled silicon devices, work well up to about 1µm. At the far end of the
infrared spectrum, tuned circuits, waveguides, and other elements associated with
radio and microwave technology become the commonly employed detection tools.

Whatever the wavelength, electromagnetic radiation obeys the laws expressed by
Maxwell’s equations. These equations describe the interrelationship of electric and
magnetic quantities by field action, in contrast to action at a distance, which up to
Maxwell’s time (1873) was the generally accepted point of view. The field concept
goes back to Michael Faraday. In all likelihood, the concept suggested itself to him
in experiments with magnets and iron filings in which lines of force become almost
an observable reality. However, it was left to James Clerk Maxwell to give the field
concept a far-reaching and elegant mathematical formulation. Fifteen years after
the publication of Maxwell’s treatise (1873), Heinrich Hertz (1888) discovered
electromagnetic waves, an experimental verification of Maxwell’s theory.

In differential form, using the rationalized system and vector notation, the first
pair of Maxwell’s equations is (e.g. Sommerfeld, 1952):

Ḋ + J = ∇ × H (1.1.1)

and

Ḃ = −∇ × E, (1.1.2)

whereD andB are the electric displacement and magnetic induction, andE and
H the electric and magnetic field strengths, respectively;J is the current density.
The dot symbolizes differentiation with respect to time. Definitions of the curl
(∇×) and the divergence (∇ ·) operators are given in Appendix 1. The concept of
the electric displacement was introduced by Maxwell. The first equation includes
Ampère’s law and the second represents Faraday’s law of induction.

Besides the main equations (1.1.1) and (1.1.2), two more expressions are tradi-
tionally considered part of Maxwell’s equations,

∇ · D = ρ (1.1.3)
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and

∇ · B = 0. (1.1.4)

Equation (1.1.3) defines the electric charge density,ρ, while Eq. (1.1.4) states the
nonexistence of magnetic charges or monopoles. Strictly from symmetry consider-
ations of Maxwell’s equations one may be led to postulate the existence of magnetic
charges, but despite many attempts none has been found.

By applying the divergence operator to Eq. (1.1.1) and substitutingρ for ∇ · D,
one arrives at the electric continuity equation,

ρ̇ + ∇ · J = 0, (1.1.5)

which states the conservation of electric charge: a change in the charge density
of a volume element must be associated with a current flow across the boundary
of that arbitrarily chosen element. The continuity equation in fluid dynamics is an
analogous expression of the conservation of mass.

In order to study the interaction of matter with electric and magnetic fields, three
material constants are introduced: the electric conductivity,σ ,

J = σE, (1.1.6)

the dielectric constant,ε,

D = εE, (1.1.7)

and the magnetic permeability,µ,

B = µH. (1.1.8)

Equation (1.1.6) is a form of Ohm’s law. SinceJ is the current density (A m−2)
andE the electric field strength (V m−1), σ is expressed in�−1 m−1. The inverse
conductivity is the resistivity. In the rationalized system the dielectric constant is
conveniently written

ε = ε0εrel, (1.1.9)

whereε0 is the dielectric constant of free space (see Appendix 2 for numerical
values) andεrel is a dimensionless quantity, which is unity for free space and which
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has the same value as the dielectric constant in the Gaussian system of units. The
permeability is

µ = µ0µrel, (1.1.10)

whereµ0 represents the permeability of free space. The relative permeability is
unity for free space, larger than unity for paramagnetic materials, and less than
unity for diamagnetic substances.

Maxwell’s equations are linear. However, the parameters that describe material
properties may become nonlinear in exceptionally strong fields, such as in power-
ful lasers. In these cases nonlinear terms have to be included. The linear material
equations, Eqs. (1.1.6) to (1.1.8), are not applicable to ferroelectric or ferromag-
netic substances where the relationship between the electric field strength,E, and
the electric displacement,D, or between the magnetic field strength,H, and the
magnetic induction,B, are not only nonlinear, but show hysteresis effects as well.
In any case, Maxwell’s equations are the foundation of electromagnetism, which
includes optics and infrared physics.

1.2 Conservation of energy and the Poynting vector

The Poynting theorem expresses the conservation of energy in electromagnetism.
If one takes the scalar product of Eq. (1.1.1) withE and of Eq. (1.1.2) withH, and
adds the results one finds

H · Ḃ + E · Ḋ + E · J = E · (∇ × H) − H · (∇ × E). (1.2.1)

With the vector identity

E · (∇ × H) − H · (∇ × E) ≡ −∇ · (E × H) (1.2.2)

and the definition

S= E × H (1.2.3)

one obtains

H · Ḃ + E · Ḋ + E · J + ∇ · S= 0. (1.2.4)

This is the Poynting theorem;S is the Poynting vector. The first two terms in
Eq. (1.2.4) represent rate of change of the magnetic and electric energy densities
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in the field. The third term,E · J, describes the energy dissipated by the motion of
electric charges. Generally, this motion results in Joule heating and, therefore, in
losses to the energy stored in the field. The last term,∇ · S, represents the net flow
of electromagnetic energy across the boundaries of the chosen volume. All terms
of Eq. (1.2.4) are measured in J m−3 s−1, which is energy per unit volume and unit
time. Since the divergence operator corresponds to a differentiation with respect to
space coordinates, the units ofSare J m−2 s−1 or W m−2, thusS is an energy flux
through a surface element.

The definition of the Poynting vector, Eq. (1.2.3), requires thatSbe orthogonal
to bothE andH. In order to better visualize the relative orientation of these three
vectors, we align a Cartesian coordinate system so that thex-axis coincides with
the direction of the Poynting vector. The components ofSalong they- andz-axes,
as well as the components ofE andH in the direction of thex-axis, must then
be zero:Sy = Sz = Ex = Hx = 0. The vectorsE andH do not have components
in the direction of energy transport represented byS. Electromagnetic waves are
transverse, in contrast to sound waves, which are longitudinal. To investigate the
relative orientation betweenE andH, we use the second of Maxwell’s equations
(Eq. 1.1.2) and the explicit expression of the curl operator (see Appendix 1). With
the assumption thatµ is constant andEx andHx equal zero, one obtains one scalar
equation for each of thêj - andk̂-directions (̂i, ĵ , andk̂ are the unit vectors in the
x-, y-, andz-directions):

µ
∂Hy

∂t
= ∂Ez

∂x
; µ

∂Hz

∂t
= −∂Ey

∂x
. (1.2.5)

Except for a static field, which is not of interest in this context, Eq. (1.2.5) indicates
thatHy must be zero ifEz vanishes and, conversely,Hz must disappear whenEy

is zero. These conditions requireE andH to be at right angles to each other;E,H,

andS form a right-handed, orthogonal system of vectors.

1.3 Wave propagation

In an isotropic, stationary medium, the material constantsσ, ε, andµ are uniform
and constant scalars. The first pair of Maxwell’s equations may then be stated:

εĖ + σE = ∇ × H (1.3.1)

and

µḢ = −∇ × E. (1.3.2)
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If one differentiates Eq. (1.3.1) with respect to time and multiplies byµ, one obtains

εµË + σµĖ = µ
∂

∂t
(∇ × H). (1.3.3)

Application of the curl operator to Eq. (1.3.2) yields

µ∇ × Ḣ = −∇ × (∇ × E). (1.3.4)

For a medium at rest the order of differentiation with respect to space and time may
be interchanged. Applying the vector identity

∇ × (∇ × E) ≡ ∇(∇ · E) − ∇2E (1.3.5)

and assuming the medium to be free of electric charges [(∇ · E) = 0] leads to

εµË + σµĖ = ∇2E. (1.3.6)

The Laplace operator,∇2, is defined in Appendix 1. This partial differential equa-
tion characterizes wave and relaxation phenomena. Again, we assume thex-axis
to be aligned with the Poynting vector, so thatEx = 0. To simplify matters fur-
ther, we rotate the coordinate system around thex-axis until they-axis coincides
with the direction of the electric field strength, so thatEz = 0 also. Only they-
component ofE remains and Eq. (1.3.6) becomes a scalar equation for the unknown
Ey(x, t),

εµËy + σµĖy = E′′
y. (1.3.7)

Wedenotedifferentiationwith respect to timebyadot andwith respect toaspaceco-
ordinate (in this case with respect tox) by a prime. The assumptionEy = T(t)X(x)
separates the variables,

εµ
T̈

T
+ σµ

Ṫ

T
= X′′

X
= −k2. (1.3.8)

Since the left side depends only on the variablet and the middle part only on the
variablex, Eq. (1.3.8) can only be satisfied if the left and the middle part equal a
constant,−k2. The reason for choosing a negative square and the physical meaning
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of k will become apparent later. With the introduction ofk, Eq. (1.3.8) yields two
ordinary differential equations:

εµT̈ + σµṪ + k2T = 0 (1.3.9)

and

X′′ + k2X = 0. (1.3.10)

A solution of Eq. (1.3.10) is readily shown to be

X = Ae±ikx. (1.3.11)

The amplitudeA is not defined by Eq. (1.3.10); it is determined by boundary condi-
tions. For convenience we use notation with complex arguments in the treatment of
wavephenomena. To simplify notationweomit theamplitudesbut reintroduce them
when needed. To solve Eq. (1.3.9) one may assume a solution of exponential form,

T = ept, (1.3.12)

which yields a characteristic equation forp,

εµp2 + σµp+ k2 = 0. (1.3.13)

We make two choices forp. In the first case we find the roots of Eq. (1.3.13) for
p, assuming the coefficientsε, µ, σ , andk to be real quantities. Later, we will be
interested in periodic solutions of Eq. (1.3.12), which implyp = ± iω. In that case,
if σ 
= 0, at least one of the coefficients must be complex. The roots of Eq. (1.3.13)
for p are

p = − σ

2ε
±

(
σ 2

4ε2
− k2

εµ

) 1
2

. (1.3.14)

The parameterp is complex because the term withσ 2 in the parentheses is
generally smaller than the term containingk2,

Ey = exp

[
− σ t

2ε
± i

(
k2

εµ
− σ 2

4ε2

) 1
2

t

]
exp (± ikx). (1.3.15)
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Ey is an oscillating function oft andx. Before we discuss the physical content
of Eq. (1.3.15) we consider the meaning of some of the quantities involved.
It is convenient to introduce new terms pertinent to the description of optical
phenomena in the infrared. Consider the inverse productε−1µ−1, which has the
dimension of the square of a velocity, m2 s−2. This is the propagation velocity,v,
of electromagnetic waves in a medium with dielectric constantε and permeability
µ. For free space this velocity is the velocity of light,c. We have

v = (εµ)−
1
2 ; c = (ε0µ0)

− 1
2 . (1.3.16)

Consequently

c

v
=

(
εµ

ε0µ0

) 1
2

= (εrelµrel)
1
2 = n. (1.3.17)

The ratio of the propagation velocity of free space to that of a medium is the
refractive index,n, of the medium. In this case bothn andk are real quantities.
Sinceµrel is nearly unity for most materials of importance in the infrared, the
refractive index can often be approximated byn ∼ (εrel)

1
2 .

The constantk has the dimension of inverse length; it is the number of radians
per meter, the angular wavenumber. Therefore,

kλ = 2π, (1.3.18)

whereλ is the wavelength in meters. The angular frequency,ω, measured in radians
per second, is then

ω = kv. (1.3.19)

The frequency,f , in hertz (cycles per second), and the wavenumber,ν, in m−1, are

f = ω

2π
; ν = k

2π
. (1.3.20)

Even for a wavelength of 1000µm the frequency is approximately 3× 1011 Hz, a
very high frequency compared with radio waves. The FM broadcast band is about
100 MHz or 108 Hz, for comparison. The termk2/εµ in Eq. (1.3.15) is simplyω2
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and the solution forEy becomes:

Ey = exp

(
− σ t

2ε

)
exp

{
±iω

[
1−

(
σ

2εω

)2
] 1

2

t

}
exp (±ikx). (1.3.21)

As required for a second order differential equation, Eq. (1.3.21) represents two
solutions, indicated by the± signs. One solution describes a wave traveling in
the direction ofx (outgoing wave, opposite signs,+ − or − +), and the other,
a wave traveling in the opposite direction (incoming wave, equal signs,+ + or
− −). If the amplitudes of these waves are equal, only a standing wave exists.
For a nonconductive medium, whereσ is zero, the solution for the outgoing wave
simplifies to

Ey(σ = 0) = e±i(kx−ωt), (1.3.22)

which is a plane, unattenuated wave traveling in thex-direction. This case is shown
in Fig. 1.3.1 by the periodic curve marked ‘0’.

For a weakly conducting material – dry soil or rocks, for example – two effects
may be noted. First, due to the factor exp (−σ t/2ε) in Eq. (1.3.21), the
amplitudes of the waves diminish exponentially with time. Materials with good
optical transmission properties must, therefore, be electrical insulators, but not
all insulators are transparent. For many substances the frequency dependence of
the refractive index is due to quantum mechanical resonances. Equation (1.3.17)
is valid for low frequencies wherev and n can be determined from the static
values ofε and µ, but not necessarily at infrared or visible wavelengths. The
second effect to be noted in Eq. (1.3.21) concerns a frequency shift by the factor
[1 − (σ/2εω)2]

1
2 . As long asσ is small compared with 2εω, as in the case marked

0.05 in Fig. 1.3.1, the frequency shift is negligible, but it becomes noticeable for
the caseσ/2εω = 0.2. If σ is equal to or larger than 2εω – that is, if the conduction
current is comparable to or larger than the displacement current, as in metals – then
the square root in Eq. (1.3.21) becomes zero or imaginary; in either case periodic
solutions disappear and only an exponential decay exists, shown by curve 1 of
Fig. 1.3.1.

Now we return to the choice ofp in Eq. (1.3.12). With the assumptionp = ±iω
the solution forT becomes

T = e±iωt , (1.3.23)
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Fig. 1.3.1 Amplitudes of electromagnetic waves propagating in a medium. The parameter
refers to the ratio of conduction to displacement current. If this ratio is zero the material is
transparent. If this ratio is one or larger, such as in metals, only an exponential decay exists.

but in this casek is complex. We have

k = (εµω2 + iσµω)
1
2 = ω

c
(nr + ini ), (1.3.24)

wherenr is the real andni the imaginary part of the refractive index,n. Squaring
Eq. (1.3.24) and setting the real and imaginary parts of both sides equal leads to
equations for the real part ofk,

ωnr

c
= ω

(
εµ

2

{ [
1+

(
σ

εω

)2
] 1

2

+ 1

}) 1
2

, (1.3.25)
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and for the imaginary part,

ωni

c
= ω

(
εµ

2

{ [
1+

(
σ

εω

)2
] 1

2

− 1

}) 1
2

. (1.3.26)

Therefore,Ey may also be expressed by

Ey = e±iω(nr+ini )x/ce±iωt . (1.3.27)

The termn = nr + ini is the complex refractive index, a concept that is used in
the discussion of the interaction of radiation with solid matter (Sections 3.7.b
and 3.8).

So far we have concerned ourselves with the electric field strength,E. Now we
return to the magnetic field strength,H. Following a similar procedure forH as for
E leads to analogous equations. After multiplication byε and differentiation with
respect to time of Eq. (1.3.2), one obtains

εµḦ = −ε
∂

∂t
(∇ × E). (1.3.28)

If one applies the curl operator to Eq. (1.3.1) one finds

ε
∂

∂t
(∇ × E) + σ (∇ × E) = ∇ × (∇ × H). (1.3.29)

Multiplication of Eq. (1.3.2) byσ and substitution of this as well as Eq. (1.3.29)
into Eq. (1.3.28) yields

εµḦ + σµḢ = ∇2H, (1.3.30)

which is identical in form with Eq. (1.3.6) for the electrical field strength. The
solution forH is, therefore, analogous to that forE. Forσ = 0, and for theE vector
in the y-direction only, a component ofH in thez-direction exists. With the help
of Eq. (1.3.22), Eq. (1.3.2) reduces to

µ
∂Hz

∂t
= −∂Ey

∂x
= −ike±i(kx−ωt). (1.3.31)

For a periodic function, integration with respect to time is accomplished by dividing
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by (−iω) and, sincekµ−1ω−1 equalsε
1
2 µ− 1

2 ,

Hz = k

µω
e±i(kx−ωt) =

(
ε

µ

) 1
2

Ey = mEy. (1.3.32)

The factormhas the dimension of a conductance or, equivalently, of a reciprocal re-
sistance. This resistance is called the wave resistance or, more generally, the optical
wave impedance of the medium. For free space the wave resistance is∼377�. For
maximum efficiency transmitting and receiving antennas must be matched to that
impedance. Similarly, electrical transmission lines must be terminated by their con-
jugate wave impedances to avoid reflections. In optics an analogous situation exists.
No reflection takes place at the interface of two media if their wave impedances are
matched, a consideration important for the design of antireflection coatings.

A wave (σ = 0) traveling in thex-direction, such as described by Eq. (1.3.22),
is displayed in Fig. 1.3.2. The electric field strengthE has a component only in the
y-direction and the magnetic vectorH has one only in thez-direction. The Poynting
vectorS lies along thex-axis. In the time dt the whole pattern moves the distance
dx with velocityv in the direction ofS.

The case shown in Fig. 1.3.2 is for a nonabsorbing medium. To find the relation-
ship betweenHz andEy for an absorbing medium we apply the solution forEy

(Eq. 1.3.27) to the second of Maxwell’s equations (Eq. 1.3.2) and find

µ
∂Hz

∂t
= −∂Ey

∂x
= −i

ω

c
(nr + ini )Ey, (1.3.33)

which leads after integration (division by−iω) to

Hz = (nr + ini )

µc
Ey. (1.3.34)

Fig. 1.3.2 Electric (Ey) and magnetic (Hz) vectors in a linearly polarized electromagnetic
wave propagating along thex-axis.
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Since (nr + ini ) can be expressed by an amplitude, (n2
r + n2

i )
1
2 , and a phase angle,

γ = arctgni/nr, we obtain

Hz = ± 1

µc

(
n2

r + n2
i

) 1
2 eiγ Ey. (1.3.35)

In a conductive materialEy andHz are still at right angles to each other and toS, but
they are phase shifted by an angleγ , and not in phase as shown for a nonabsorbing
medium in Fig. 1.3.2.

1.4 Polarization

Now we return to waves in nonabsorbing media. The wave shown in Fig. 1.3.2
is linearly polarized in they-direction. Traditionally, the direction of the electric
field strength,E, and the Poynting vector define the plane of polarization. Linearly
polarized waves are also possible in thez-direction or at any angle in they–zplane.
The vectorE may be decomposed into itsy- andz-components,

E = ĵEy + k̂Ez. (1.4.1)

A linearly polarized wave with an arbitrary plane of polarization may be visualized
as the superposition of two waves of the same frequency and phase, one linearly
polarized in they- and the other in thez-direction. But what is the consequence
when two waves,Ey andEz, of the same frequency, both linearly polarized, but
with a distinct difference in phase and with different amplitudes, are superimposed?
By phase difference we mean differences between theE vectors and not between
E andH, which occur only in absorbing media. Since Maxwell’s equations are
linear, the corresponding vectors,Ey andEz, of the two waves must be added. The
resulting vector sum,E, is then the combined field strength. The same applies to the
H vectors;E andH are still orthogonal. However, the tip ofE does not describe a
strictly sinusoidal curve in a plane, as shown in Fig. 1.3.2, but rather a curve in space
that progresses uniformly along thex-axis; the projection in they–z plane is not a
straight line but an ellipse. We call such a wave elliptically polarized (Fig. 1.4.1).
Conversely, an elliptically polarized wave may be decomposed into two linearly
polarizedwaves. If the amplitudes of both superimposedwavesare equal, the ellipse
becomes a circle and we speak of circular polarization. In that case the end point of
theE vector travels on a spiral of constant radius around thex-axis. The end point
of a circularly or elliptically polarized wave can form a right- or a left-handed spiral.
Unfortunately, according to tradition, a right-handed spiral is called a left-handed
polarizationbecause in thenineteenthcentury right- and left-handednesswas judged
by the observer facing the beam of light. Polarization phenomena play important
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Fig. 1.4.1 Electric vector in an elliptically polarized wave propagating in thex-direction.
The magnetic vector is orthogonal to the electric vector.

roles in instrument design, in the theory of reflection and refraction, and in theories
of scattering of radiation by particles.

1.5 Boundary conditions

So far we have discussed electromagnetic phenomena in a homogenous medium;
now we consider two media and the conditions at their interface. We restrict the
discussion to transparent substances. In the media (medium 1 above and medium 0
below theboundary) there exist electric andmagnetic fields. In this section the index
zero does not refer to free space. At the dividing surface between both domains
the fields can be decomposed into two components normal and tangential to the
boundary. Consider first the normal component ofB. To deal with the discontinuity
in ε andµ across the dividing surface we consider a small volume that contains
a small region of the surface between media 1 and 0 (Fig. 1.5.1). The area of this
volume element exposed to medium 1 isδA1 plus the circumference,s, timesδh/2.
The area exposed to medium 0 isδA0 plus the other half of the circumferential area.
Instead of the abrupt change at the boundary we letBn change gradually from the
valueB(1)

n at the surfaceδA1 to the valueB(0)
n at the surfaceδA0. Applying Gauss’

theorem to this volume yields

∫
Volume

(∇ · B) dV =
∫

Surface
B · dA. (1.5.1)
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Fig. 1.5.1 Surface element of the boundary of two media of different electromagnetic
properties. One half of the volume element is in medium 1, and the other half is in medium 0.

Since (∇ · B) is zero [Eq. (1.1.4)] the integrals in Eq. (1.5.1) must also be zero.
The right side may be expressed by

∫
B · dA = B(1)

n · δA1 − B(0)
n · δA0 + (

B(1)
t + B(0)

t

)
s
δh

2
= 0. (1.5.2)

Let δh become very small; the contribution from the circumferential area dimin-
ishes. Since the areasδA1 andδA0 are equal

B(1)
n − B(0)

n = 0. (1.5.3)

At the interface the normal components of the induction are identical in both media;
Bn is continuous across the boundary.

The behavior of the component ofD normal to the boundary may be treated sim-
ilarly, except that the integrals are not necessarily zero. In this case the charge
density ρ must be taken into account. In the transition from the volume ele-
ment to the surface element, the volume density becomes a surface density,ρsurf,
given by

D(1)
n − D(0)

n = ρsurf. (1.5.4)

In the presence of a surface charge the normal component of the electric displace-
ment changes abruptly. In the absence of a surface charge,Dn is continuous across
the boundary.

To investigate the tangential components ofE andH consider a closed loop
(Fig. 1.5.2). The loop consists of the elementsδs1, δs0, and two short connectors,
each of lengthδh. The surface normal of the loop dA is in the direction of unit
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Fig. 1.5.2 Loop at the interface between two media. The vectorsn, t, andb indicate the
directions normal to the interface surface, tangential to the surface, but in the plane of the
loop, and the orthogonal direction, also tangential to the interface, but normal to the loop
area.

vectorb. Applying Stokes’ theorem to the loop, one finds

∫
loop area

(∇ × E) · dA =
∫

contour
E · ds. (1.5.5)

The integration path of the contour integral is alongδs1, δh, δs0, andδh, as indicated
in Fig. 1.5.2. By replacing the contour integral by its elements, the second of
Maxwell’s equations, Eq. (1.1.2), yields

−
∫

Ḃb δsδh = E(1)
t δs1 − En δh+ E(0)

t δs0 + En δh. (1.5.6)

Upon once again lettingδh approach zero, the integral over the area of the loop
vanishes (̇B is assumed to be finite) and, considering thatδs1 andδs0 are opposite
in sign, we find

E(1)
t − E(0)

t = 0. (1.5.7)

The tangential component of the electric field strength is continuous across the
boundary. Following a similar procedure for the tangential component ofH one
finds:

H (1)
t − H (0)

t = jsurf. (1.5.8)

The tangential component of the magnetic field strength changes abruptly in
the presence of a surface current, but it is continuous in the absence of such a
current.



1.6 Reflection, refraction, and the Fresnel equations 17

1.6 Reflection, refraction, and the Fresnel equations

With the boundary conditions established, one may examine an electromagnetic
wave striking the interface between two media. As before, we assume both media
to be nonconductive and located above and below a flat surface, which we choose
to be thex–z plane. The dividing surface between both media is assumed to be
free of charges and currents, which implies that the normal components ofD and
B and the tangential components ofE andH are continuous across the boundary.
Medium 1 has the dielectric constantsε1 and the permeabilityµ1; medium 0 has
the propertiesε0 andµ0. We consider a plane wave with Poynting vectorS incident
on the interface; the plane containingSand the normal to the interface is called the
plane of incidence. Here, we assume this is thex–y plane (Sz = 0), and that the
electric field vector is perpendicular to this plane; later we consider the case where
the electric vector lies in the plane of incidence. The incident wave will be split at
the interface into a reflected and a transmitted (refracted) wave. In medium 1 the
superposition of the incoming and the reflected wave is

Ez(y ≥ 0) = B1 eik1(x sinφ1−y cosφ1) + C1 eik1(x sinφ′
1+y cosφ′

1). (1.6.1)

The refracted wave in the lower half-space is

Ez(y ≤ 0) = B0 eik0(x sinφ0−y cosφ0). (1.6.2)

The factor exp (iωt) has been omitted for simplicity, but the amplitudes,B1,C1, and
B0 have been written explicitly. Aty = 0, continuity of the tangential component,
Ez, across the boundary requires

B1 eik1x sinφ1 + C1 eik1x sinφ′
1 = B0 eik0x sinφ0. (1.6.3)

Since this equation must be valid for all values ofx, all exponentials must be the
same, which leads to two conditions:

φ1 = φ′
1, (1.6.4)

which expresses the law of reflection, and

k1 sinφ1 = k0 sinφ0 (1.6.5)
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or

sinφ1

sinφ0
= k0

k1
=

(
ε0µ0

ε1µ1

) 1
2

= n0

n1
= n10, (1.6.6)

which is the law of refraction;n10 is the relative refractive index between media
1 and 0. For these conditions, Eq. (1.6.3) reduces to

B1 + C1 = B0. (1.6.7)

The tangential component ofH provides another set of equations for the amplitudes
B1,C1, andB0. According to Eq. (1.3.32), the amplitude ofH can be found by
multiplyingE by ±m. The right-hand rule for the vectorsE, H, andSdetermines
the choice of sign ofm.

Hx(y ≥ 0) = m1 cosφ1 eik1x sinφ1(−B1 e−ik1y cosφ1 + C1 eik1y cosφ1) (1.6.8)

and

Hx(y ≤ 0) = −m0 cosφ0 eik0x sinφ0B0 e−ik0y cosφ0. (1.6.9)

For y = 0 the tangential components ofH must be the same for both media, which
leads to

m1 cosφ1(−B1 + C1) = −m0 cosφ0B0, (1.6.10)

wherem1 andm0 are the conductances of medium 1 and 0, respectively [see
Eq. (1.3.32)]. Combining Eqs. (1.6.10) and (1.6.7) permits elimination ofB0

or C1. The relative amplitudes of the transmitted (T⊥ = B0/B1) and reflected
(R⊥ = C1/B1) waves are

T⊥ = 2m1 cosφ1

m1 cosφ1 +m0 cosφ0
(1.6.11)

and

R⊥ = m1 cosφ1 −m0 cosφ0

m1 cosφ1 +m0 cosφ0
. (1.6.12)
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Now we consider the case of the magnetic vector normal to the plane of incidence;
i.e., onlyHz exists.E is orthogonal toH and, therefore, in the plane of incidence.
The polarization of this wave is orthogonal to that of the first case. With similar con-
siderations one findsB1 + C1 = m10B0 andB1 − C1 = B0 cosφ0/ cosφ1. Solving
for T‖ = B0/B1 andR‖ = C1/B1 yields in this case

T‖ = 2m1 cosφ1

m0 cosφ1 +m1 cosφ0
(1.6.13)

and

R‖ = m0 cosφ1 −m1 cosφ0

m0 cosφ1 +m1 cosφ0
. (1.6.14)

The transmitted and the reflected fractional amplitudes of the incident radiation
polarized perpendicular to the plane of incidence areT⊥ andR⊥, respectively. The
components polarized in the plane areT‖ andR‖, respectively. Equations (1.6.11)
through (1.6.14) are the Fresnel equations (Fresnel, 1816).

Since the emissivity of a surface is one minus the square of the amplitude ratio,
(R⊥)2 or (R‖)2, the thermal emissivity depends also on the refractive index and
the emission angle. Consider the case of a nonmagnetic homogeneous layer of
refractive indexn0 = n bounded by a vacuum,n1 = 1. With the help of Eq. (1.6.6)
we can eliminateφ0 from the reflection ratios, Eqs. (1.6.12) and (1.6.14); calling
φ1 = φ we obtain for the emissivities

ε⊥ = 1− (R⊥)2 = 1−
[

cosφ − (n2 − sin2 φ)
1
2

cosφ + (n2 − sin2 φ)
1
2

]2

(1.6.15)

and

ε‖ = 1− (R‖)2 = 1−
[
n2 cosφ − (n2 − sin2 φ)

1
2

n2 cosφ + (n2 − sin2 φ)
1
2

]2

. (1.6.16)

The emissivities of substances with refractive indices of 2 or 4, bordered by a
vacuum, are shown in Fig. 1.6.1 for both planes of polarization as functions of the
emission angle,φ. The emitted radiation from a smooth surface is polarized, except
for the case of normal incidence. The emission maximum ofε‖ corresponds to the
reflection minimum at the Brewster angle. To find the hemispherical emissivity one
has to integrateε‖ andε⊥ over the whole hemisphere and average the results for
both planes of polarization.
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Fig. 1.6.1 Emissivity of a smooth flat surface with an index of refraction,n, as a function
of emission angle. Both planes of polarization are shown forn equal to 2 (dashed lines) and
4 (solid lines).

For normal incidence (cosφ1 = cosφ0 = 1) and nonmagnetic materials
(m1/m0 = n1/n0) the Fresnel equations simplify to

T⊥ = T‖ = 2n1

n1 + n0
(1.6.17)

and

R⊥ = −R‖ = n1 − n0

n1 + n0
. (1.6.18)

If the second medium is metal the same equations are valid; however,n0 becomes
complex [see Eq. (1.3.24)]. Forn1 = 1 andn0 = nr + ini the ratio of amplitudes




