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1

Foundation of radiation theory

In this chapter we review the physical foundation of remote sensing. Except for
possible gravitational effects, information accessible to a distant observer must be
sensed as electromagnetic radiation, either in the form of reflected or refracted solar
or stellar radiation, or in the form of thermal or nonthermal emission. We restrict
the discussion to passive techniques. Active methods, involving the generation of
electromagnetic radiation (radar, lidar), are not explicitly treated. However, the
physical principles discussed in this text are equally applicable to passive and
active methods. In either case a discussion of the measurement and interpretation
of remotely sensed data must be based on electromagnetic theory. In Section 1.1
we begin with that theory by reviewing Maxwell's equations. The application of
the principle of energy conservation to Maxwell’s equations leads to the Poynting
theorem with the Poynting vector describing radiative energy transport; this is
discussed in Section 1.2. However, the Poynting vector does not characterize more
complex phenomena, such as reflection, refraction, polarization, or interference; all
of these phenomena play significant roles in many aspects of remote sensing. Their
study requires, first, a derivation of the wave equation from Maxwell's formulas,
and second, finding appropriate solutions for the electric and magnetic field vectors;
this is the subject of Section 1.3. Polarization is briefly reviewed in Section 1.4.
Effects of electromagnetic waves striking an interface between two media and the
conditions that must be satisfied at the boundary are treated in Section 1.5. The
derived conditions are then applied to the boundary to find expressions for reflected
and refracted waves. These expressions, the Fresnel equations, are discussed in
Section 1.6. The same boundary conditions are used again in Section 5.6 to describe
the behavior of thin films employed in many ways in remote sensing instruments.
The Planck function is introduced in Section 1.7. In Section 1.8, we return to the
Poynting vector in a discussion of quantities used in the theory of radiative transfer,
such as spectral intensity and radiative flux.
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1.1 Maxwell's equations

Electromagnetic radiation between the red limit of the visible spectrum and th
microwave region is called the infrared. In round numbers the infrared covers tf
spectral range from 1 to 10Qom. Although only the range from 0.35 to 0.7%n
is truly visible to the human eye, the region between 0.75 andrlis often
considered as a part of the ‘visible’ spectrum because many detectors common
that spectral domain, such as conventional photomultipliers, photographic film, ar
charge-coupled silicon devices, work well up to abouitrit. At the far end of the
infrared spectrum, tuned circuits, waveguides, and other elements associated w
radio and microwave technology become the commonly employed detection tool

Whatever the wavelength, electromagnetic radiation obeys the laws expressed
Maxwell's equations. These equations describe the interrelationship of electric a
magnetic quantities by field action, in contrast to action at a distance, which up 1
Maxwell’s time (1873) was the generally accepted point of view. The field concef
goes back to Michael Faraday. In all likelihood, the concept suggested itself to hi
in experiments with magnets and iron filings in which lines of force become almos
an observable reality. However, it was left to James Clerk Maxwell to give the fiel
concept a far-reaching and elegant mathematical formulation. Fifteen years aff
the publication of Maxwell’s treatise (1873), Heinrich Hertz (1888) discovered
electromagnetic waves, an experimental verification of Maxwell’s theory.

In differential form, using the rationalized system and vector notation, the firs
pair of Maxwell’'s equations is (e.g. Sommerfeld, 1952):

D+J=V xH (1.1.1)
and
B=-V xE, (1.1.2)

whereD andB are the electric displacement and magnetic induction,Eaadd
H the electric and magnetic field strengths, respectivklg; the current density.
The dot symbolizes differentiation with respect to time. Definitions of the curl
(V x) and the divergenceV -) operators are given in Appendix 1. The concept of
the electric displacement was introduced by Maxwell. The first equation include
Ampere’s law and the second represents Faraday’s law of induction.

Besides the main equations (1.1.1) and (1.1.2), two more expressions are tra
tionally considered part of Maxwell’s equations,

V.-D=p (1.1.3)
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and
V.-B=0. (1.1.4)

Equation (1.1.3) defines the electric charge dengityhile Eq. (1.1.4) states the
nonexistence of magnetic charges or monopoles. Strictly from symmetry consider-
ations of Maxwell's equations one may be led to postulate the existence of magnetic
charges, but despite many attempts none has been found.

By applying the divergence operator to Eq. (1.1.1) and substitytiiog V - D,
one arrives at the electric continuity equation,

p+V-3=0, (1.1.5)

which states the conservation of electric charge: a change in the charge density
of a volume element must be associated with a current flow across the boundary
of that arbitrarily chosen element. The continuity equation in fluid dynamics is an
analogous expression of the conservation of mass.

In order to study the interaction of matter with electric and magnetic fields, three
material constants are introduced: the electric conductivity,

J=0E, (1.1.6)
the dielectric constant,

D = ¢E, (1.1.7)
and the magnetic permeability,

B = uH. (1.1.8)

Equation (1.1.6) is a form of Ohm’s law. Sindds the current density (A nf)
andE the electric field strength (V m), o is expressed i ! m~L. The inverse
conductivity is the resistivity. In the rationalized system the dielectric constant is
conveniently written

£ = £0&rel, (1.1.9

wheregy is the dielectric constant of free space (see Appendix 2 for numerical
values) and is a dimensionless quantity, which is unity for free space and which
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has the same value as the dielectric constant in the Gaussian system of units. -
permeability is

U = [LofLrel, (1.1.10)

where o represents the permeability of free space. The relative permeability i
unity for free space, larger than unity for paramagnetic materials, and less th:
unity for diamagnetic substances.

Maxwell's equations are linear. However, the parameters that describe mater
properties may become nonlinear in exceptionally strong fields, such as in powe
ful lasers. In these cases nonlinear terms have to be included. The linear matel
equations, Egs. (1.1.6) to (1.1.8), are not applicable to ferroelectric or ferroma
netic substances where the relationship between the electric field strEngtig
the electric displacemen, or between the magnetic field strength, and the
magnetic inductionB, are not only nonlinear, but show hysteresis effects as well.
In any case, Maxwell's equations are the foundation of electromagnetism, whic
includes optics and infrared physics.

1.2 Conservation of energy and the Poynting vector

The Poynting theorem expresses the conservation of energy in electromagnetis
If one takes the scalar product of Eq. (1.1.1) vitland of Eq. (1.1.2) witlH, and
adds the results one finds
H-B+E-D+E-J=E-(V xH)—H-(V xE). (1.2.1)
With the vector identity
E-(VxH)—H-(VxE)=-V.(E xH) (1.2.2)
and the definition
S=ExH (1.2.3)
one obtains
H.-B+E-D+E-J+V -S=0. (1.2.4)

This is the Poynting theoreng is the Poynting vector. The first two terms in
Eqg. (1.2.4) represent rate of change of the magnetic and electric energy densit
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in the field. The third termk: - J, describes the energy dissipated by the motion of
electric charges. Generally, this motion results in Joule heating and, therefore, in
losses to the energy stored in the field. The last t&&m S, represents the net flow
of electromagnetic energy across the boundaries of the chosen volume. All terms
of Eq. (1.2.4) are measured in JAs 1, which is energy per unit volume and unit
time. Since the divergence operator corresponds to a differentiation with respect to
space coordinates, the units®ére J nt2 s~ or W m2, thusSis an energy flux
through a surface element.

The definition of the Poynting vector, Eq. (1.2.3), requires Siaé orthogonal
to bothE andH. In order to better visualize the relative orientation of these three
vectors, we align a Cartesian coordinate system so that-thés coincides with
the direction of the Poynting vector. The componentS afong they- andz-axes,
as well as the components BfandH in the direction of thex-axis, must then
be zero:S, = S, = Ex = Hy = 0. The vector€ andH do not have components
in the direction of energy transport representedsb¥lectromagnetic waves are
transverse, in contrast to sound waves, which are longitudinal. To investigate the
relative orientation betwees andH, we use the second of Maxwell's equations
(Eg. 1.1.2) and the explicit expression of the curl operator (see Appendix 1). With
the assumption that is constant and, and HX equal zero, one obtains one scalar
equation for each of thje andk-directions ( j andk are the unit vectors in the
X-, y-, andz-directions):

oH, OE, oH,  9E,
= X = — . 1.2.5
Ho9t = ox Moot ax (1.2.5)

Except for a static field, which is not of interest in this context, Eq. (1.2.5) indicates
that H, must be zero i€, vanishes and, converseld, must disappear wheh,

is zero. These conditions requiteandH to be at right angles to each oth&r;H,

andS form a right-handed, orthogonal system of vectors.

1.3 Wave propagation

In an isotropic, stationary medium, the material constants andu are uniform
and constant scalars. The first pair of Maxwell's equations may then be stated:

¢E+0E=V x H (1.3.1)
and

uH = -V x E. (1.3.2)
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If one differentiates Eq. (1.3.1) with respect to time and multiplieg byne obtains
enE 4+ o uE = M%(V x H). (1.3.3)
Application of the curl operator to Eq. (1.3.2) yields
uV xH= -V x (V x E). (1.3.4)

For a medium at rest the order of differentiation with respect to space and time m:
be interchanged. Applying the vector identity

V x (V xE)=V(V -E) - VE (1.3.5)
and assuming the medium to be free of electric chard€s ) = 0] leads to
euE + o uE = V2E. (1.3.6)

The Laplace operato¥?, is defined in Appendix 1. This partial differential equa-
tion characterizes wave and relaxation phenomena. Again, we assumexise

to be aligned with the Poynting vector, so tiat = 0. To simplify matters fur-
ther, we rotate the coordinate system aroundxtfais until they-axis coincides
with the direction of the electric field strength, so tligt= 0 also. Only they-
component oE remains and Eq. (1.3.6) becomes a scalar equation for the unknow
Ey(x, 1),

enEy +ouEy = Ej. (1.3.7)

We denote differentiation with respect to time by a dot and with respectto a space ¢
ordinate (in this case with respecttpby a prime. The assumptidf, = T (t) X(x)
separates the variables,
T T X
_ — = = K% 1.3.8
s,u_l_ + a,u_l_ X ( )

Since the left side depends only on the variabésd the middle part only on the
variablex, Eqg. (1.3.8) can only be satisfied if the left and the middle part equal ¢
constant—k?. The reason for choosing a negative square and the physical meanil



1.3 Wave propagation 7

of k will become apparent later. With the introductionkpfEq. (1.3.8) yields two
ordinary differential equations:

euT +ouT +KT =0 (1.3.9)
and
X" +k?X = 0. (1.3.10)
A solution of Eq. (1.3.10) is readily shown to be
X = Aeti*x, (1.3.11)
The amplitudeA is not defined by Eq. (1.3.10); it is determined by boundary condi-
tions. For convenience we use notation with complex arguments in the treatment of

wave phenomena. To simplify notation we omit the amplitudes but reintroduce them
when needed. To solve Eq. (1.3.9) one may assume a solution of exponential form,

T =e", (1.3.12)
which yields a characteristic equation for
eup® +oup+k?=0. (2.3.13)

We make two choices fop. In the first case we find the roots of Eq. (1.3.13) for

p, assuming the coefficients i, o, andk to be real quantities. Later, we will be
interested in periodic solutions of Eq. (1.3.12), which imply + iw. In that case,

if o # 0, at least one of the coefficients must be complex. The roots of Eq. (1.3.13)
for p are

o o2 K2\?
p=——=x|-—-——]) . (1.3.14)
42 gp

The parameterp is complex because the term with? in the parentheses is
generally smaller than the term containirg

k2 o?

ot . : .
Ey = exp|: ~ +i <a — 4—82) t:| exp @& ikx). (1.3.15)
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Ey is an oscillating function of and x. Before we discuss the physical content
of Eg. (1.3.15) we consider the meaning of some of the quantities involvec
It is convenient to introduce new terms pertinent to the description of optica
phenomena in the infrared. Consider the inverse progult—1, which has the
dimension of the square of a velocity?sr2. This is the propagation velocity,

of electromagnetic waves in a medium with dielectric constaarid permeability

wu. For free space this velocity is the velocity of light We have

v=(en)" 2 €= (eopo) 2. (1.3.16)
Consequently

C e % 1

v oMo

The ratio of the propagation velocity of free space to that of a medium is th
refractive indexn, of the medium. In this case bothandk are real quantities.
Since el IS nearly unity for most materials of importance in the infrared, the
refractive index can often be approximatedrby (gre|)%.

The constank has the dimension of inverse length; it is the number of radians
per meter, the angular wavenumber. Therefore,

ki = 27, (1.3.18)

wherel is the wavelength in meters. The angular frequencyneasured in radians
per second, is then

w = kv. (1.3.19)

The frequencyf, in hertz (cycles per second), and the wavenumbén m—1, are
f=—; V= —. (1.3.20)

Even for a wavelength of 100@m the frequency is approximately>310'* Hz, a
very high frequency compared with radio waves. The FM broadcast band is abo
100 MHz or 18 Hz, for comparison. The terk? /s in Eq. (1.3.15) is simply»?
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and the solution foEy becomes:

2k
Ey=®m<—g>@mkm4}—(i%)}t}wp&m@. (1.3.21)

As required for a second order differential equation, Eq. (1.3.21) represents two
solutions, indicated by the- signs. One solution describes a wave traveling in
the direction ofx (outgoing wave, opposite signs, — or — +), and the other,

a wave traveling in the opposite direction (incoming wave, equal signs, or

— —). If the amplitudes of these waves are equal, only a standing wave exists.
For a nonconductive medium, wheres zero, the solution for the outgoing wave
simplifies to

Ey(o = 0) = gtitkx=et) (1.3.22)

which is a plane, unattenuated wave traveling indfdérection. This case is shown
in Fig. 1.3.1 by the periodic curve marked ‘0’.

For a weakly conducting material — dry soil or rocks, for example — two effects
may be noted. First, due to the factor expo(t/2¢) in Eq. (1.3.21), the
amplitudes of the waves diminish exponentially with time. Materials with good
optical transmission properties must, therefore, be electrical insulators, but not
all insulators are transparent. For many substances the frequency dependence of
the refractive index is due to quantum mechanical resonances. Equation (1.3.17)
is valid for low frequencies where andn can be determined from the static
values ofe and x, but not necessarily at infrared or visible wavelengths. The
second effect to be noted in Eqg. (1.3.21) concerns a frequency shift by the factor
[1 — (0/2sw)?2. As long as> is small compared witha, as in the case marked
0.05in Fig. 1.3.1, the frequency shift is negligible, but it becomes noticeable for
the caser /2:w = 0.2. If o is equal to or larger thare2 — that is, if the conduction
currentis comparable to or larger than the displacement current, as in metals —then
the square root in Eq. (1.3.21) becomes zero or imaginary; in either case periodic
solutions disappear and only an exponential decay exists, shown by curve 1 of
Fig. 1.3.1.

Now we return to the choice gi in Eq. (1.3.12). With the assumptign= +iw
the solution forT becomes

T = gtiot, (1.3.23)
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Fig. 1.3.1 Amplitudes of electromagnetic waves propagating in a medium. The paramet
refers to the ratio of conduction to displacement current. If this ratio is zero the material |
transparent. If this ratio is one or larger, such as in metals, only an exponential decay exis

but in this casd is complex. We have

K = (epue? + io pw)? = %)(nr +in), (1.3.24)
wheren; is the real andy; the imaginary part of the refractive index, Squaring
Eq. (1.3.24) and setting the real and imaginary parts of both sides equal leads
equations for the real part &f

A5
anr _ w(%““[ {1+ (%) } +1D , (1.3.25)



1.3 Wave propagation 11

and for the imaginary patrt,

LI (TN Y i 1 % 1.3.26

Therefore Ey may also be expressed by
Ey = eHotinx/egtiol, (1.3.27)

The termn = n, + in; is the complex refractive index, a concept that is used in
the discussion of the interaction of radiation with solid matter (Sections 3.7.b
and 3.8).

So far we have concerned ourselves with the electric field streBgtiow we
return to the magnetic field strength, Following a similar procedure fd# as for
E leads to analogous equations. After multiplicationsbgnd differentiation with
respect to time of Eq. (1.3.2), one obtains

. 9
euH = —sﬁ(V x E). (2.3.28)
If one applies the curl operator to Eq. (1.3.1) one finds
)
85(V x E)+0(V xE)=V x (V x H). (2.3.29)

Multiplication of Eq. (1.3.2) by and substitution of this as well as Eq. (1.3.29)
into Eq. (1.3.28) yields

euH + oul.-l = V?H, (1.3.30)

which is identical in form with Eq. (1.3.6) for the electrical field strength. The
solution forH is, therefore, analogous to that #érForo = 0, and for theE vector

in the y-direction only, a component ¢ in the z-direction exists. With the help
of Eq. (1.3.22), Eqg. (1.3.2) reduces to

oH,  9E,
oot ™ " ox T

—iketitkx—et), (1.3.31)

For a periodic function, integration with respect to time is accomplished by dividing



12 Foundation of radiation theory
by (—iw) and, sinc&kutw! equalse? 3,

1

Hy = < gitoon _ (5) “E, = mE,. (1.3.32)

e Iz

The factomm has the dimension of a conductance or, equivalently, of a reciprocal re
sistance. This resistance is called the wave resistance or, more generally, the opt
wave impedance of the medium. For free space the wave resistan8& #&2. For
maximum efficiency transmitting and receiving antennas must be matched to th
impedance. Similarly, electrical transmission lines must be terminated by their col
jugate wave impedances to avoid reflections. In optics an analogous situation exis
No reflection takes place at the interface of two media if their wave impedances a
matched, a consideration important for the design of antireflection coatings.

A wave (@ = 0) traveling in thex-direction, such as described by Eq. (1.3.22),
is displayed in Fig. 1.3.2. The electric field strengthas a component only in the
y-direction and the magnetic vectdrhas one only in the-direction. The Poynting
vectorS lies along thex-axis. In the time tthe whole pattern moves the distance
dx with velocity v in the direction ofS.

The case shown in Fig. 1.3.2 is for a nonabsorbing medium. To find the relatior
ship betweerH, and E for an absorbing medium we apply the solution &y
(Eqg. 1.3.27) to the second of Maxwell’s equations (Eq. 1.3.2) and find

oH; oEy NO) .
m T % C( r+ M) Ey, ( )

which leads after integration (division byiw) to

Ny + in;
Hy = M EI e (1.3.34)
s
Az
H,
Y
E

X

Fig. 1.3.2 Electric Ey) and magneticll,) vectors in a linearly polarized electromagnetic
wave propagating along theaxis.
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Since r + in;) can be expressed by an amplitud®, { niz)%, and a phase angle,
y = arctgn;/n;, we obtain

1 1
H, = ﬁ:M—C(nr2 +n?)2eEy. (1.3.35)

In a conductive materidty andH, are still at right angles to each other an&tbut
they are phase shifted by an angleand not in phase as shown for a nonabsorbing
medium in Fig. 1.3.2.

1.4 Polarization

Now we return to waves in nonabsorbing media. The wave shown in Fig. 1.3.2
is linearly polarized in the/-direction. Traditionally, the direction of the electric
field strengthE, and the Poynting vector define the plane of polarization. Linearly
polarized waves are also possible in théirection or at any angle in the-z plane.

The vectorE may be decomposed into i¥s andz-components,

E=JE,+KE,. (1.4.1)

A linearly polarized wave with an arbitrary plane of polarization may be visualized
as the superposition of two waves of the same frequency and phase, one linearly
polarized in they- and the other in the-direction. But what is the consequence
when two wavesEy and E;, of the same frequency, both linearly polarized, but
with a distinct difference in phase and with different amplitudes, are superimposed?
By phase difference we mean differences betweerkthiectors and not between

E andH, which occur only in absorbing media. Since Maxwell’s equations are
linear, the corresponding vectoEs, andE,, of the two waves must be added. The
resulting vector suntk, is then the combined field strength. The same applies to the

H vectors;E andH are still orthogonal. However, the tip & does not describe a
strictly sinusoidal curve in a plane, as shown in Fig. 1.3.2, but rather a curve in space
that progresses uniformly along tReaxis; the projection in thg—z plane is not a
straight line but an ellipse. We call such a wave elliptically polarized (Fig. 1.4.1).
Conversely, an elliptically polarized wave may be decomposed into two linearly
polarized waves. If the amplitudes of both superimposed waves are equal, the ellipse
becomes a circle and we speak of circular polarization. In that case the end point of
the E vector travels on a spiral of constant radius aroundktiagis. The end point

of acircularly or elliptically polarized wave can form aright- or a left-handed spiral.
Unfortunately, according to tradition, a right-handed spiral is called a left-handed
polarization because inthe nineteenth century right- and left-handedness was judged
by the observer facing the beam of light. Polarization phenomena play important
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Fig. 1.4.1 Electric vector in an elliptically polarized wave propagating inxtugrection.
The magnetic vector is orthogonal to the electric vector.

roles in instrument design, in the theory of reflection and refraction, and in theorie
of scattering of radiation by particles.

1.5 Boundary conditions

So far we have discussed electromagnetic phenomena in a homogenous medi
now we consider two media and the conditions at their interface. We restrict th
discussion to transparent substances. In the media (medium 1 above and mediu
below the boundary) there exist electric and magnetic fields. In this section the ind
zero does not refer to free space. At the dividing surface between both domai
the fields can be decomposed into two components hormal and tangential to t
boundary. Consider first the normal componerBofo deal with the discontinuity

in ¢ and u across the dividing surface we consider a small volume that contain
a small region of the surface between media 1 and 0 (Fig. 1.5.1). The area of tt
volume element exposed to medium 2 A plus the circumferencs, timessh/2.

The area exposed to medium @ &, plus the other half of the circumferential area.
Instead of the abrupt change at the boundary w8lathange gradually from the
valueB(Y at the surfacé A; to the valueB( at the surfacé Ay. Applying Gauss'’
theorem to this volume yields

/Vomme(v-B)dv =/ B - dA. (1.5.1)

Surface
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Fig. 1.5.1 Surface element of the boundary of two media of different electromagnetic
properties. One half of the volume elementis in medium 1, and the other half is in medium 0.

Since V - B) is zero [Eg. (1.1.4)] the integrals in Eq. (1.5.1) must also be zero.
The right side may be expressed by

sh

5 =0. (1.5.2)

b/B.dA::BSWSAy—B$%8A0+(QD+-Qmﬁ

Let sh become very small; the contribution from the circumferential area dimin-
ishes. Since the ared#\; ands Ag are equal

B —BO = 0. (1.5.3)

Atthe interface the normal components of the induction are identical in both media;
B, is continuous across the boundary.

The behavior of the componentBfnormal to the boundary may be treated sim-
ilarly, except that the integrals are not necessarily zero. In this case the charge
density p must be taken into account. In the transition from the volume ele-
ment to the surface element, the volume density becomes a surface degsity,
given by

DY — DO = peur. (1.5.4)

In the presence of a surface charge the normal component of the electric displace-
ment changes abruptly. In the absence of a surface chagge continuous across
the boundary.

To investigate the tangential componentskoind H consider a closed loop
(Fig. 1.5.2). The loop consists of the elemedds 6, and two short connectors,
each of lengthh. The surface normal of the loopAdis in the direction of unit
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€oHo

Fig. 1.5.2 Loop at the interface between two media. The vectorsandb indicate the
directions normal to the interface surface, tangential to the surface, but in the plane of t
loop, and the orthogonal direction, also tangential to the interface, but normal to the loc
area.

vectorb. Applying Stokes’ theorem to the loop, one finds

/ (V x E)-dA :/ E.ds (1.5.5)
| contour

oop area

The integration path of the contour integral is alésg éh, §s, andsh, as indicated
in Fig. 1.5.2. By replacing the contour integral by its elements, the second c
Maxwell’s equations, Eq. (1.1.2), yields

—/ Bpsssh = EM ss, — Ensh + E 8sp + Ensh. (1.5.6)

Upon once again lettingh approach zero, the integral over the area of the loop
vanishes B is assumed to be finite) and, considering #i®mtandésy are opposite
in sign, we find

EY - e?=0. (1.5.7)

The tangential component of the electric field strength is continuous across tl
boundary. Following a similar procedure for the tangential componeht ohe
finds:

Ht(l) - Ht(O) = Jsurt (1.5.8)

The tangential component of the magnetic field strength changes abruptly
the presence of a surface current, but it is continuous in the absence of suct
current.
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1.6 Reflection, refraction, and the Fresnel equations

With the boundary conditions established, one may examine an electromagnetic
wave striking the interface between two media. As before, we assume both media
to be nonconductive and located above and below a flat surface, which we choose
to be thex—z plane. The dividing surface between both media is assumed to be
free of charges and currents, which implies that the normal componebtsiod

B and the tangential componentsfindH are continuous across the boundary.
Medium 1 has the dielectric constantsand the permeabilityt;; medium 0 has

the propertiesy andug. We consider a plane wave with Poynting ve@ancident

on the interface; the plane containi8@nd the normal to the interface is called the
plane of incidence. Here, we assume this isxthg plane §, = 0), and that the
electric field vector is perpendicular to this plane; later we consider the case where
the electric vector lies in the plane of incidence. The incident wave will be split at
the interface into a reflected and a transmitted (refracted) wave. In medium 1 the
superposition of the incoming and the reflected wave is

E,(y > 0)= B, gka(xsing,—y cosgy) +C; gki(xsing;+y cospy) (1.6.1)
The refracted wave in the lower half-space is
E,(y <0)= By g*e(x singo—y cosgo) (1.6.2)

The factor exp (t) has been omitted for simplicity, but the amplitudBg, C,, and
By have been written explicitly. Ay = 0, continuity of the tangential component,
E,, across the boundary requires

Bl eiklxsingbl + Cl eiklx sing} — BO eikoxsinqb[,. (1.6.3)

Since this equation must be valid for all valuesxgfall exponentials must be the
same, which leads to two conditions:

$1 = @1, (1.6.4)

which expresses the law of reflection, and

Ky Sin¢1 = koSind)o (165)
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or

. 1
Sin 2 n
b _ko_ (8°“°> =0 . (1.6.6)

singo ki g1M1 Ny

which is the law of refractionnyg is the relative refractive index between media
1 and 0. For these conditions, Eq. (1.6.3) reduces to

The tangential component Bifprovides another set of equations for the amplitudes
B, C1, and By. According to Eq. (1.3.32), the amplitude Hf can be found by

multiplying E by + m. The right-hand rule for the vectoEs H, andS determines
the choice of sign om.

Hx(y > 0) = my cosg, €KX SiNd1(— B, g kaycostr | ¢, dkaycosin) (1.6.8)
and
Hx(y < 0) = —mg cosgg €% %0 By g~ Tkoy cOSPo (1.6.9)

Fory = 0 the tangential componentsigfmust be the same for both media, which
leads to

m; coSp1(— By + C1) = —Mp COSepo By, (1.6.10)

wherem; and my are the conductances of medium 1 and 0, respectively [se
Eq. (1.3.32)]. Combining Egs. (1.6.10) and (1.6.7) permits eliminatiorBpf

or C;. The relative amplitudes of the transmitte@, (= By/B1) and reflected
(RL = C./B;) waves are

2m; COS¢,

= (1.6.11)
My COS¢h1 + Mo COSehg

and

R My COS¢p1 — Mg COSo
L= .
My COS¢1 4+ Mg COSho

(1.6.12)
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Now we consider the case of the magnetic vector normal to the plane of incidence;
i.e., only H, exists.E is orthogonal tdd and, therefore, in the plane of incidence.
The polarization of this wave is orthogonal to that of the first case. With similar con-
siderations one findB; + C; = myoBg andB; — C; = By c0S¢g/ COSeh1. Solving

for Ty = Bo/By andR = Cy/By yields in this case

2m; co
T, = 1001 (1.6.13)
Mg COS¢1 + My COSepg
and
Mgy COS¢ — My CO
Ry = MoC0SPs — M COSo (1.6.14)

Mo COS¢py + My COSpp”

The transmitted and the reflected fractional amplitudes of the incident radiation
polarized perpendicular to the plane of incidenceTarandR_ , respectively. The
components polarized in the plane dieand R, respectively. Equations (1.6.11)
through (1.6.14) are the Fresnel equations (Fresnel, 1816).

Since the emissivity of a surface is one minus the square of the amplitude ratio,
(RL)? or (R))?, the thermal emissivity depends also on the refractive index and
the emission angle. Consider the case of a nonmagnetic homogeneous layer of
refractive indexng = n bounded by a vacuumg = 1. With the help of Eq. (1.6.6)
we can eliminatep, from the reflection ratios, Egs. (1.6.12) and (1.6.14); calling
¢1 = ¢ we obtain for the emissivities

L am2
el =1—(R)2=1— [COS"S_ (nZ—an2¢)ij| (1.6.15)
cosg + (n2 — sirf ¢)2
and
2 —(n? — sir? )% 2
1 (R =1_|Mcost—(n"—sime): | 1.6.16
g (Rp |:n2cos¢+(n2—sin2¢)§ ( )

The emissivities of substances with refractive indices of 2 or 4, bordered by a
vacuum, are shown in Fig. 1.6.1 for both planes of polarization as functions of the
emission anglep. The emitted radiation from a smooth surface is polarized, except
for the case of normal incidence. The emission maximug) ebrresponds to the
reflection minimum at the Brewster angle. To find the hemispherical emissivity one
has to integrate; ande, over the whole hemisphere and average the results for
both planes of polarization.
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Fig. 1.6.1 Emissivity of a smooth flat surface with an index of refractipms a function
of emission angle. Both planes of polarization are shownfegual to 2 (dashed lines) and
4 (solid lines).

For normal incidence (cafs = cosgo=1) and nonmagnetic materials
(m1/mg = n1/ng) the Fresnel equations simplify to

2n,
T, =T = 1.6.17
L= = ( )
and
N1 — Ng
R =—-R/ = . 1.6.18
1l = N T, ( )

If the second medium is metal the same equations are valid; howgWmgomes
complex [see Eq. (1.3.24)]. For = 1 andng = n, + in; the ratio of amplitudes





